Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_9
C J Wruck, M Claussen, G Fuhrmann, L Römer, A Schulz, T Pufe, V Waetzig, M Peipp, T Herdegen, M E Götz
Oxidative stress is central to neuronal damage in neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In consequence, activation of the cerebral oxidative stress defence is considered as a promising strategy of therapeutic intervention. Here we demonstrate that the flavone luteolin confers neuroprotection against oxidative stress via activation of the nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor central to the maintenance of the cellular redox homeostasis. Luteolin protects rat neural PC12 and glial C6 cells from N-methyl-4-phenyl-pyridinium (MPP+) induced toxicity in vitro and effectively activates Nrf2 as shown by ARE-reporter gene assays. This protection critically depends on the activation of Nrf2 since downregulation of Nrf2 by shRNA completely abrogates the protection of luteolin in vitro. Furthermore, the neuroprotective effect of luteolin is abolished by the inhibition of the luteolin-induced ERK1/2-activation. Our results highlight the relevance of Nrf2 for neural cell survival conferred by flavones. In particular, we identified luteolin as a promising lead for the search of orally available, blood brain barrier permeable compounds to support the therapy of neurodegenerative disorders.
{"title":"Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway.","authors":"C J Wruck, M Claussen, G Fuhrmann, L Römer, A Schulz, T Pufe, V Waetzig, M Peipp, T Herdegen, M E Götz","doi":"10.1007/978-3-211-73574-9_9","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_9","url":null,"abstract":"<p><p>Oxidative stress is central to neuronal damage in neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In consequence, activation of the cerebral oxidative stress defence is considered as a promising strategy of therapeutic intervention. Here we demonstrate that the flavone luteolin confers neuroprotection against oxidative stress via activation of the nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor central to the maintenance of the cellular redox homeostasis. Luteolin protects rat neural PC12 and glial C6 cells from N-methyl-4-phenyl-pyridinium (MPP+) induced toxicity in vitro and effectively activates Nrf2 as shown by ARE-reporter gene assays. This protection critically depends on the activation of Nrf2 since downregulation of Nrf2 by shRNA completely abrogates the protection of luteolin in vitro. Furthermore, the neuroprotective effect of luteolin is abolished by the inhibition of the luteolin-induced ERK1/2-activation. Our results highlight the relevance of Nrf2 for neural cell survival conferred by flavones. In particular, we identified luteolin as a promising lead for the search of orally available, blood brain barrier permeable compounds to support the therapy of neurodegenerative disorders.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"57-67"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41015055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_33
N Miüller, M J Schwarz
This overview presents a hypothesis to bridge the gap between psychoneuroimmunological findings and recent results from pharmacological, neurochemical and genetic studies in schizophrenia. In schizophrenia, a glutamatergic hypofunction is discussed to be crucially involved in dopaminergic dysfunction. This view is supported by findings of the neuregulin- and dysbindin genes, which have functional impact on the glutamatergic system. Glutamatergic hypofunction is mediated by NMDA (N-methyl-D-aspartate) receptor antagonism. The only endogenous NMDA receptor antagonist identified up to now is kynurenic acid (KYN-A). KYN-A also blocks the nicotinergic acetycholine receptor, i.e. increased KYN-A levels can explain psychotic symptoms and cognitive deterioration. KYN-A levels are described to be higher in the CSF and in critical CNS regions of schizophrenics. Another line of evidence suggests that of the immune system in schizophrenic patients is characterized by an imbalance between the type-1 and the type-2 immune responses with a partial inhibition of the type-1 response, while the type-2 response is relatively over-activated. This immune constellation is associated with the inhibition of the enzyme indoleamine 2,3-dioxygenase (IDO), because type-2 cytokines are potent inhibitors of IDO. Due to the inhibition of IDO, tryptophan is predominantly metabolized by tryptophan 2,3-dioxygenase (TDO), which is located in astrocytes, but not in microglia cells. As indicated by increased levels of S100B, astrocytes are activated in schizophrenia. On the other hand, the kynurenine metabolism in astrocytes is restricted to the dead-end arm of KYN-A production. Accordingly, an increased TDO activity and an accumulation of KYN-A in the CNS of schizophrenics have been described. Thus, the immune-mediated glutamatergic-dopaminergic dysregulation may lead to the clinical symptoms of schizophrenia. Therapeutic consequences, e.g. the use of antiinflammatory cyclooxygenase-2 inhibitors, which also are able to directly decrease KYN-A, are discussed.
这篇综述提出了一个假设,以弥合精神分裂症的精神神经免疫学发现和最近的药理学、神经化学和遗传学研究结果之间的差距。在精神分裂症中,谷氨酸能功能减退被认为是多巴胺能功能障碍的关键因素。这一观点得到了神经调节蛋白和异常结合蛋白基因的支持,它们对谷氨酸系统有功能影响。谷氨酸能功能减退是由NMDA (n -甲基- d -天冬氨酸)受体拮抗介导的。目前唯一鉴定的内源性NMDA受体拮抗剂是犬尿酸(KYN-A)。KYN-A也阻断烟碱能乙酰胆碱受体,即增加的KYN-A水平可以解释精神病症状和认知退化。KYN-A水平在精神分裂症患者的脑脊液和关键中枢神经系统区域较高。另一项证据表明,精神分裂症患者的免疫系统的特点是1型和2型免疫反应不平衡,1型免疫反应部分抑制,而2型免疫反应相对过度激活。这种免疫系统与吲哚胺2,3-双加氧酶(IDO)的抑制有关,因为2型细胞因子是IDO的有效抑制剂。由于IDO的抑制作用,色氨酸主要由色氨酸2,3-双加氧酶(TDO)代谢,该酶位于星形胶质细胞中,而不在小胶质细胞中。S100B水平升高表明,精神分裂症患者星形胶质细胞被激活。另一方面,星形胶质细胞中的犬尿氨酸代谢仅限于产生KYN-A的末端臂。因此,已经描述了精神分裂症患者中枢神经系统中TDO活性增加和KYN-A积累。因此,免疫介导的谷氨酸-多巴胺能失调可能导致精神分裂症的临床症状。治疗结果,例如使用抗炎环氧合酶-2抑制剂,也能够直接降低KYN-A,进行了讨论。
{"title":"The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view.","authors":"N Miüller, M J Schwarz","doi":"10.1007/978-3-211-73574-9_33","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_33","url":null,"abstract":"<p><p>This overview presents a hypothesis to bridge the gap between psychoneuroimmunological findings and recent results from pharmacological, neurochemical and genetic studies in schizophrenia. In schizophrenia, a glutamatergic hypofunction is discussed to be crucially involved in dopaminergic dysfunction. This view is supported by findings of the neuregulin- and dysbindin genes, which have functional impact on the glutamatergic system. Glutamatergic hypofunction is mediated by NMDA (N-methyl-D-aspartate) receptor antagonism. The only endogenous NMDA receptor antagonist identified up to now is kynurenic acid (KYN-A). KYN-A also blocks the nicotinergic acetycholine receptor, i.e. increased KYN-A levels can explain psychotic symptoms and cognitive deterioration. KYN-A levels are described to be higher in the CSF and in critical CNS regions of schizophrenics. Another line of evidence suggests that of the immune system in schizophrenic patients is characterized by an imbalance between the type-1 and the type-2 immune responses with a partial inhibition of the type-1 response, while the type-2 response is relatively over-activated. This immune constellation is associated with the inhibition of the enzyme indoleamine 2,3-dioxygenase (IDO), because type-2 cytokines are potent inhibitors of IDO. Due to the inhibition of IDO, tryptophan is predominantly metabolized by tryptophan 2,3-dioxygenase (TDO), which is located in astrocytes, but not in microglia cells. As indicated by increased levels of S100B, astrocytes are activated in schizophrenia. On the other hand, the kynurenine metabolism in astrocytes is restricted to the dead-end arm of KYN-A production. Accordingly, an increased TDO activity and an accumulation of KYN-A in the CNS of schizophrenics have been described. Thus, the immune-mediated glutamatergic-dopaminergic dysregulation may lead to the clinical symptoms of schizophrenia. Therapeutic consequences, e.g. the use of antiinflammatory cyclooxygenase-2 inhibitors, which also are able to directly decrease KYN-A, are discussed.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"269-80"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_33","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41015397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_40
C Rajda, J Bergquist, L Vécsei
Multiple sclerosis (MS) is a chronic, demyelinating disease of unknown origin. Sophisticated analytical methods have made it possible to measure small biologically active molecules at low endogenous levels, and understand their role in the network of other biologically active compounds actively involved in inflammatory and neurodegenerative processes. Evidence is accumulating as concerns the disturbances of the kynurenine pathway and redox changes in MS. A new promising metabolite of the kynurenine pathway seems to beneficially influence experimental allergic encephalomyelitis. More clinical evidence is needed to prove the role of kynurenic acid analogues and/or enzyme inhibitors as potential medications in MS in the future. Various compounds have been shown to be important in the pathophysiological processes of the disease and are targets for pharmaceutical intervention.
{"title":"Kynurenines, redox disturbances and neurodegeneration in multiple sclerosis.","authors":"C Rajda, J Bergquist, L Vécsei","doi":"10.1007/978-3-211-73574-9_40","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_40","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic, demyelinating disease of unknown origin. Sophisticated analytical methods have made it possible to measure small biologically active molecules at low endogenous levels, and understand their role in the network of other biologically active compounds actively involved in inflammatory and neurodegenerative processes. Evidence is accumulating as concerns the disturbances of the kynurenine pathway and redox changes in MS. A new promising metabolite of the kynurenine pathway seems to beneficially influence experimental allergic encephalomyelitis. More clinical evidence is needed to prove the role of kynurenic acid analogues and/or enzyme inhibitors as potential medications in MS in the future. Various compounds have been shown to be important in the pathophysiological processes of the disease and are targets for pharmaceutical intervention.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"323-9"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_40","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41014718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_14
T Nagatsu, M Sawada
Biochemical studies on postmortem brains of patients with Parkinson's disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCHI), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTH1-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine beta-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains. Programmed cell death of the nigro-striatal dopamine neurons in PD has been suggested from the following findings on postmortem brains: (1) increased levels of pro-inflammatory cytokines such as TNF-alpha and IL-6; (2) increased levels of apoptosis-related factors such as TNF-alpha receptor R1 (p 55), soluble Fas and bcl-2, and increased activities of caspases 1 and 3; and (3) decreased levels of neurotrophins such as brain-derived nerve growth factor (BDNF). Immunohistochemical data and the mRNA levels of the above molecules in PD brains supported these biochemical data. We confirmed by double immunofluorescence staining the production of TNF-alpha and IL-6 in activated microglia in the putamen of PD patients. Owing to the recent development of highly sensitive and wide-range analytical methods for quantifying mRNAs and proteins, future assays of the levels of various mRNAs and proteins not only in micro-dissected brain tissues containing neurons and glial cells, but also in single cells from frozen brain slices isolated by laser capture micro-dissection, coupled with toluidine blue, Nissl staining or immunohistochemical staining, should further contribute to the elucidation of the molecular pathogenesis of PD and other neurodegenerative or neuropsychiatric diseases.
{"title":"Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects.","authors":"T Nagatsu, M Sawada","doi":"10.1007/978-3-211-73574-9_14","DOIUrl":"10.1007/978-3-211-73574-9_14","url":null,"abstract":"<p><p>Biochemical studies on postmortem brains of patients with Parkinson's disease (PD) have greatly contributed to our understanding of the molecular pathogenesis of this disease. The discovery by 1960 of a dopamine deficiency in the nigro-striatal dopamine region of the PD brain was a landmark in research on PD. At that time we collaborated with Hirotaro Narabayashi and his colleagues in Japan and with Peter Riederer in Germany on the biochemistry of PD by using postmortem brain samples in their brain banks. We found that the activity, mRNA level, and protein content of tyrosine hydroxylase (TH), as well as the levels of the tetrahydrobiopterin (BH4) cofactor of TH and the activity of the BH4-synthesizing enzyme, GTP cyclohydrolase I (GCHI), were markedly decreased in the substantia nigra and striatum in the PD brain. In contrast, the molecular activity (enzyme activity/enzyme protein) of TH was increased, suggesting a compensatory increase in the enzyme activity. The mRNA levels of all four isoforms of human TH (hTH1-hTH4), produced by alternative mRNA splicing, were also markedly decreased. This finding is in contrast to a completely parallel decrease in the activity and protein content of dopamine beta-hydroxylase (DBH) without changes in its molecular activity in cerebrospinal fluid (CSF) in PD. We also found that the activities and/or the levels of the mRNA and protein of aromatic L-amino acid decarboxylase (AADC, DOPA decarboxylase), DBH, phenylethanolamine N-methyltransferase (PNMT), which synthesize dopamine, noradrenaline, and adrenaline, respectively, were also decreased in PD brains, indicating that all catecholamine systems were widely impaired in PD brains. Programmed cell death of the nigro-striatal dopamine neurons in PD has been suggested from the following findings on postmortem brains: (1) increased levels of pro-inflammatory cytokines such as TNF-alpha and IL-6; (2) increased levels of apoptosis-related factors such as TNF-alpha receptor R1 (p 55), soluble Fas and bcl-2, and increased activities of caspases 1 and 3; and (3) decreased levels of neurotrophins such as brain-derived nerve growth factor (BDNF). Immunohistochemical data and the mRNA levels of the above molecules in PD brains supported these biochemical data. We confirmed by double immunofluorescence staining the production of TNF-alpha and IL-6 in activated microglia in the putamen of PD patients. Owing to the recent development of highly sensitive and wide-range analytical methods for quantifying mRNAs and proteins, future assays of the levels of various mRNAs and proteins not only in micro-dissected brain tissues containing neurons and glial cells, but also in single cells from frozen brain slices isolated by laser capture micro-dissection, coupled with toluidine blue, Nissl staining or immunohistochemical staining, should further contribute to the elucidation of the molecular pathogenesis of PD and other neurodegenerative or neuropsychiatric diseases.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"113-20"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41014964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_21
K Magyar, I Szatmáry, G Szebeni, J Lengyel
(-)-Deprenyl is a selective irreversible inhibitor of MAO-B. The parent compound is responsible for the enzyme inhibitory effect, but its metabolites are also playing a role in the complex pharmacological activity of the substance. In the present studies male NMRI mice were treated orally, subcutaneously, intraperitoneally and intravenously with 5 mg/kg of (-)-deprenyl. The time related changes of the plasma concentrations of the parent compound and its main metabolites (methamphetamine, desmethyl-deprenyl and amphetamine) were determined by GC/ MSD technique. The main pharmacokinetic parameters (C(max), t(max), t1/2beta, AUC(0-6), AUC(0-infinity)) have been calculated. (-)-Deprenyl is well absorbed after oral and parental treatment. The peak concentrations (C(max)) were reached at 15 min after treatment and the absorption was followed by a fast elimination (t1/2beta < or = 2h). (-)-Deprenyl has an intensive "first pass" metabolism after oral treatment; only 25% of the parent compound reaches the systemic circulation. Increased bioavailability was detected after subcutaneous (87.1%) and intraperitoneal (78.7%) administration. The main metabolic pathway of (-)-deprenyl is the N-depropargylation, leading to the formation of methamphetamine. N-demethylation of (-)-deprenyl leads to formation of desmethyl-deprenyl. Amphetamine is produced from both former metabolites. After oral treatment the plasma concentrations of methamphetamine are higher during the first 6 h than that of (-)-deprenyl, while the opposite was found after parental treatment. The results indicate, that (-)-deprenyl, a potent MAO-B inhibitor, might induce a different spectrum of activity (e.g. antidepressant), when it is administered parenterally (transdermally). The new spectrum can be due to the special pharmacokinetic behaviour of the inhibitor.
{"title":"Pharmacokinetic studies of (-)-deprenyl and some of its metabolites in mouse.","authors":"K Magyar, I Szatmáry, G Szebeni, J Lengyel","doi":"10.1007/978-3-211-73574-9_21","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_21","url":null,"abstract":"<p><p>(-)-Deprenyl is a selective irreversible inhibitor of MAO-B. The parent compound is responsible for the enzyme inhibitory effect, but its metabolites are also playing a role in the complex pharmacological activity of the substance. In the present studies male NMRI mice were treated orally, subcutaneously, intraperitoneally and intravenously with 5 mg/kg of (-)-deprenyl. The time related changes of the plasma concentrations of the parent compound and its main metabolites (methamphetamine, desmethyl-deprenyl and amphetamine) were determined by GC/ MSD technique. The main pharmacokinetic parameters (C(max), t(max), t1/2beta, AUC(0-6), AUC(0-infinity)) have been calculated. (-)-Deprenyl is well absorbed after oral and parental treatment. The peak concentrations (C(max)) were reached at 15 min after treatment and the absorption was followed by a fast elimination (t1/2beta < or = 2h). (-)-Deprenyl has an intensive \"first pass\" metabolism after oral treatment; only 25% of the parent compound reaches the systemic circulation. Increased bioavailability was detected after subcutaneous (87.1%) and intraperitoneal (78.7%) administration. The main metabolic pathway of (-)-deprenyl is the N-depropargylation, leading to the formation of methamphetamine. N-demethylation of (-)-deprenyl leads to formation of desmethyl-deprenyl. Amphetamine is produced from both former metabolites. After oral treatment the plasma concentrations of methamphetamine are higher during the first 6 h than that of (-)-deprenyl, while the opposite was found after parental treatment. The results indicate, that (-)-deprenyl, a potent MAO-B inhibitor, might induce a different spectrum of activity (e.g. antidepressant), when it is administered parenterally (transdermally). The new spectrum can be due to the special pharmacokinetic behaviour of the inhibitor.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"165-73"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40736687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_24
K Hager, M Kenklies, J McAfoose, J Engel, G Münch
Oxidative stress and neuronal energy depletion are characteristic biochemical hallmarks of Alzheimer's disease (AD). It is therefore conceivable that pro-energetic and antioxidant drugs such as alpha-lipoic acid might delay the onset or slow down the progression of the disease. In a previous study, 600mg alpha-lipoic acid was given daily to nine patients with AD (receiving a standard treatment with choline-esterase inhibitors) in an open-label study over an observation period of 12 months. The treatment led to a stabilization of cognitive functions in the study group, demonstrated by constant scores in two neuropsychological tests (the mini mental state exam, MMSE and the Alzheimer's disease assessment score cognitive subscale, ADAScog). In this report, we have extended the analysis to 43 patients over an observation period of up to 48 months. In patients with mild dementia (ADAScog < 15), the disease progressed extremely slowly (ADAScog: +1.2 points/year, MMSE: -0.6 points/year), in patients with moderate dementia at approximately twice the rate. However, the progression appears dramatically lower than data reported for untreated patients or patients on choline-esterase inhibitors in the second year of long-term studies. Despite the fact that this study was not double-blinded, placebo-controlled and randomized, our data suggest that treatment with alpha-lipoic acid might be a successful 'neuroprotective' therapy option for AD. However, a state-of-the-art phase II trial is needed urgently.
{"title":"Alpha-lipoic acid as a new treatment option for Alzheimer's disease--a 48 months follow-up analysis.","authors":"K Hager, M Kenklies, J McAfoose, J Engel, G Münch","doi":"10.1007/978-3-211-73574-9_24","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_24","url":null,"abstract":"<p><p>Oxidative stress and neuronal energy depletion are characteristic biochemical hallmarks of Alzheimer's disease (AD). It is therefore conceivable that pro-energetic and antioxidant drugs such as alpha-lipoic acid might delay the onset or slow down the progression of the disease. In a previous study, 600mg alpha-lipoic acid was given daily to nine patients with AD (receiving a standard treatment with choline-esterase inhibitors) in an open-label study over an observation period of 12 months. The treatment led to a stabilization of cognitive functions in the study group, demonstrated by constant scores in two neuropsychological tests (the mini mental state exam, MMSE and the Alzheimer's disease assessment score cognitive subscale, ADAScog). In this report, we have extended the analysis to 43 patients over an observation period of up to 48 months. In patients with mild dementia (ADAScog < 15), the disease progressed extremely slowly (ADAScog: +1.2 points/year, MMSE: -0.6 points/year), in patients with moderate dementia at approximately twice the rate. However, the progression appears dramatically lower than data reported for untreated patients or patients on choline-esterase inhibitors in the second year of long-term studies. Despite the fact that this study was not double-blinded, placebo-controlled and randomized, our data suggest that treatment with alpha-lipoic acid might be a successful 'neuroprotective' therapy option for AD. However, a state-of-the-art phase II trial is needed urgently.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"189-93"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_24","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40736690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_25
S Hoyer, H Lannert
The triplicate intracerebroventricular (icv) application of the diabetogenic compound streptozotocin (STZ) in low dosage was used in 1-year-old male Wistar rats to induce a damage of the neuronal insulin signal transduction (IST) system and to investigate the activities of hexokinase (HK), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GDH), pyruvate kinase (PK), lactate dehydrogenase (LDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) in frontoparietotemporal brain cortex (ct) and hippocampus (h) 9 weeks after damage. In parallel, the concentrations of adenosine triphosphate (ATP), adenosine diphosphate (ADP), guanosine triphosphate (GTP) and creatine phosphate (CrP) were determined. We found reductions of HK to 53% (ct) and 60% (h) of control, PFK to 63/64% (ct/h); GDH to 56/61% (ct/h), PFK to 57/59% (ct/h), alpha-KGDH to 37/35% (ct/h) and an increase of LDH to 300/240% (ct/h). ATP decreased to 82/87% (ct/h) of control, GTP to 69/81% (ct/h), CrP to 82/81% (ct/h), approximately P to 82/82% (ct/h), whereas ADP increased to 189/154% (ct/h). The fall of the activities of the glycolytic enzymes HK, PFK, GDH and PK was found to be more marked after 9 weeks of damage when compared with 3- and 6-week damage whereas the diminution in the concentration of energy rich compound was stably reduced by between 20 and 10% relative to control. The abnormalities in glucose/energy metabolism were discussed in relation to tau-protein mismetabolism of experimental animals, and of sporadic AD.
{"title":"Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein.","authors":"S Hoyer, H Lannert","doi":"10.1007/978-3-211-73574-9_25","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_25","url":null,"abstract":"<p><p>The triplicate intracerebroventricular (icv) application of the diabetogenic compound streptozotocin (STZ) in low dosage was used in 1-year-old male Wistar rats to induce a damage of the neuronal insulin signal transduction (IST) system and to investigate the activities of hexokinase (HK), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GDH), pyruvate kinase (PK), lactate dehydrogenase (LDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) in frontoparietotemporal brain cortex (ct) and hippocampus (h) 9 weeks after damage. In parallel, the concentrations of adenosine triphosphate (ATP), adenosine diphosphate (ADP), guanosine triphosphate (GTP) and creatine phosphate (CrP) were determined. We found reductions of HK to 53% (ct) and 60% (h) of control, PFK to 63/64% (ct/h); GDH to 56/61% (ct/h), PFK to 57/59% (ct/h), alpha-KGDH to 37/35% (ct/h) and an increase of LDH to 300/240% (ct/h). ATP decreased to 82/87% (ct/h) of control, GTP to 69/81% (ct/h), CrP to 82/81% (ct/h), approximately P to 82/82% (ct/h), whereas ADP increased to 189/154% (ct/h). The fall of the activities of the glycolytic enzymes HK, PFK, GDH and PK was found to be more marked after 9 weeks of damage when compared with 3- and 6-week damage whereas the diminution in the concentration of energy rich compound was stably reduced by between 20 and 10% relative to control. The abnormalities in glucose/energy metabolism were discussed in relation to tau-protein mismetabolism of experimental animals, and of sporadic AD.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"195-202"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_25","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40736691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_26
E A Kogan, R G Verchovsky, M Y Neufeld, S Sh Klimovitsky, T A Treves, A D Korczyn
The development of therapies for Alzheimer's disease (AD) has focused on drugs designed to correct the loss of cholinergic function within the central nervous system. Quantitative EEG (qEEG) changes associated with AD consist of background slowing. One way to study the effects of cholinergic drugs may be through assessment of their qEEG effects. The aim of the current work was to evaluate the effect of long-term treatment with tetrahydroaminoacridine (THA) on qEEG in AD patients.
{"title":"Long-term tetrahydroaminoacridine treatment and quantitative EEG in Alzheimer's disease.","authors":"E A Kogan, R G Verchovsky, M Y Neufeld, S Sh Klimovitsky, T A Treves, A D Korczyn","doi":"10.1007/978-3-211-73574-9_26","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_26","url":null,"abstract":"<p><p>The development of therapies for Alzheimer's disease (AD) has focused on drugs designed to correct the loss of cholinergic function within the central nervous system. Quantitative EEG (qEEG) changes associated with AD consist of background slowing. One way to study the effects of cholinergic drugs may be through assessment of their qEEG effects. The aim of the current work was to evaluate the effect of long-term treatment with tetrahydroaminoacridine (THA) on qEEG in AD patients.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"203-6"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40736692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_36
A Reif, M Melchers, A Strobel, C P Jacob, S Herterich, K P Lesch, M Zimmer
Background: Polymorphisms in the human frizzeled-3 (FZD3) gene have been associated with schizophrenia in an Asian population sample. However, this finding could not be confirmed in subsequent studies investigating other populations. Here we attempted to replicate this finding in a sample of 192 German chronically ill schizophrenic subjects.
Methods: Three single nucleotide polymorphisms in the FZD3 gene have been genotyped by primer extension and MALDI-TOF measurement. Subsequently, associations for single markers as well as haplotypes were tested.
Results: In German patients, neither single markers nor haplotypes in FZD3 were associated with schizophrenia. Further exploratory analyses using a different diagnostic approach did also not yield significant results.
Conclusions: FZD3 is unlikely to play a role in the genetic predisposition towards schizophrenia in the Caucasian population.
{"title":"FZD3 is not a risk gene for schizophrenia: a case-control study in a Caucasian sample.","authors":"A Reif, M Melchers, A Strobel, C P Jacob, S Herterich, K P Lesch, M Zimmer","doi":"10.1007/978-3-211-73574-9_36","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_36","url":null,"abstract":"<p><strong>Background: </strong>Polymorphisms in the human frizzeled-3 (FZD3) gene have been associated with schizophrenia in an Asian population sample. However, this finding could not be confirmed in subsequent studies investigating other populations. Here we attempted to replicate this finding in a sample of 192 German chronically ill schizophrenic subjects.</p><p><strong>Methods: </strong>Three single nucleotide polymorphisms in the FZD3 gene have been genotyped by primer extension and MALDI-TOF measurement. Subsequently, associations for single markers as well as haplotypes were tested.</p><p><strong>Results: </strong>In German patients, neither single markers nor haplotypes in FZD3 were associated with schizophrenia. Further exploratory analyses using a different diagnostic approach did also not yield significant results.</p><p><strong>Conclusions: </strong>FZD3 is unlikely to play a role in the genetic predisposition towards schizophrenia in the Caucasian population.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"297-301"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41014714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2007-01-01DOI: 10.1007/978-3-211-73574-9_5
V N Dedov, F M Griffiths, B Garner, G M Halliday, K L Double
The neuromelanin pigment of the substantia nigra of the human brain is closely associated with lipids and other non-melanogenic compounds which appear to contribute to the unique and complex morphology of neuromelanin pigment granules. In this work we show that insoluble granules isolated from the human substantia nigra associate in vitro to form pigment aggregates similar to those present in the human brain. Extraction of neuromelanin-associated polar lipids by methanol and/or hexane significantly enhanced melanin aggregate size. A marked (10-fold) increase in granule size was seen after methanol treatment, whereas the application of hexane after methanol reduced this pro-aggregation effect. We have previously reported that hexane and methanol remove the neuromelanin-associated polyisoprenoids dolichol and cholesterol respectively. Thus, the current data suggests that pigment-associated lipids may be a factor regulating pigment aggregation and neuromelanin granule size in vivo.
{"title":"Lipid content determines aggregation of neuromelanin granules in vitro.","authors":"V N Dedov, F M Griffiths, B Garner, G M Halliday, K L Double","doi":"10.1007/978-3-211-73574-9_5","DOIUrl":"https://doi.org/10.1007/978-3-211-73574-9_5","url":null,"abstract":"<p><p>The neuromelanin pigment of the substantia nigra of the human brain is closely associated with lipids and other non-melanogenic compounds which appear to contribute to the unique and complex morphology of neuromelanin pigment granules. In this work we show that insoluble granules isolated from the human substantia nigra associate in vitro to form pigment aggregates similar to those present in the human brain. Extraction of neuromelanin-associated polar lipids by methanol and/or hexane significantly enhanced melanin aggregate size. A marked (10-fold) increase in granule size was seen after methanol treatment, whereas the application of hexane after methanol reduced this pro-aggregation effect. We have previously reported that hexane and methanol remove the neuromelanin-associated polyisoprenoids dolichol and cholesterol respectively. Thus, the current data suggests that pigment-associated lipids may be a factor regulating pigment aggregation and neuromelanin granule size in vivo.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"35-8"},"PeriodicalIF":0.0,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41015051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}