Marine animals often harbour complex microbial communities that influence their physiology. However, strong evidence for resident microbiomes in marine bivalves is lacking, despite their contribution to estuarine habitats and coastal economies. We investigated whether marine bivalves harbour stable, resident microorganisms in specific tissues or if their microbiomes primarily consist of transient members reflecting the environmental microbial pool. Conducting a latitudinal study of wild eastern oysters (Crassostrea virginica) along the East Coast of the United States, we aimed to identify resident microorganisms that persist across a wide geographical range. Our results revealed that microbial communities in seawater and sediment samples followed latitudinal diversity patterns driven by geographic location. In contrast, oyster-associated microbiomes were distinct from their surrounding environments and exhibited tissue-specific compositions. Notably, oyster microbiomes showed greater similarity within the same tissue type across different geographic locations than among different tissue types within the same location. This indicates the presence of tissue-specific resident microbes that persist across large geographical ranges. We identified a persistent set of resident microbiome members for each tissue type, with key microbial members consistent across all locations. These findings underscore the oyster host's role in selecting its microbiome and highlight the importance of tissue-specific microbial communities in understanding bivalve-associated microbiomes.
{"title":"Persistent tissue-specific resident microbiota in oysters across a broad geographical range","authors":"Andrea Unzueta-Martínez, Jennifer Bowen","doi":"10.1111/1758-2229.70026","DOIUrl":"10.1111/1758-2229.70026","url":null,"abstract":"<p>Marine animals often harbour complex microbial communities that influence their physiology. However, strong evidence for resident microbiomes in marine bivalves is lacking, despite their contribution to estuarine habitats and coastal economies. We investigated whether marine bivalves harbour stable, resident microorganisms in specific tissues or if their microbiomes primarily consist of transient members reflecting the environmental microbial pool. Conducting a latitudinal study of wild eastern oysters (<i>Crassostrea virginica</i>) along the East Coast of the United States, we aimed to identify resident microorganisms that persist across a wide geographical range. Our results revealed that microbial communities in seawater and sediment samples followed latitudinal diversity patterns driven by geographic location. In contrast, oyster-associated microbiomes were distinct from their surrounding environments and exhibited tissue-specific compositions. Notably, oyster microbiomes showed greater similarity within the same tissue type across different geographic locations than among different tissue types within the same location. This indicates the presence of tissue-specific resident microbes that persist across large geographical ranges. We identified a persistent set of resident microbiome members for each tissue type, with key microbial members consistent across all locations. These findings underscore the oyster host's role in selecting its microbiome and highlight the importance of tissue-specific microbial communities in understanding bivalve-associated microbiomes.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica M. Murphy, Eamonn P. Culligan, Craig P. Murphy
Antimicrobial resistance (AMR), known as the “silent pandemic,” is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as Bacillus subtilis MTUA2 and Bacillus velezensis MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, Staphylococcus aureus, Acinetobacter baumannii and Escherichia coli. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both Bacillus species exhibited unique antimicrobial effects, reducing MRSA and S. aureus planktonic cell growth by 50% and sessile cell growth for S. aureus and E. coli by 50% and 90%, respectively. No effect was observed against A. baumannii. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and S. aureus biofilms. Additionally, 90% and 50% inhibition was observed in E. coli and A. baumannii biofilms, respectively, with a 50% reduction in E. coli biofilm. These findings suggest that the mode of action employed by B. subtilis MTUA2 and B. velezensis MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.
{"title":"Investigating the antimicrobial and antibiofilm properties of marine halophilic Bacillus species against ESKAPE pathogens","authors":"Monica M. Murphy, Eamonn P. Culligan, Craig P. Murphy","doi":"10.1111/1758-2229.70027","DOIUrl":"10.1111/1758-2229.70027","url":null,"abstract":"<p>Antimicrobial resistance (AMR), known as the “silent pandemic,” is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as <i>Bacillus subtilis</i> MTUA2 and <i>Bacillus velezensis</i> MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, <i>Staphylococcus aureus</i>, <i>Acinetobacter baumannii</i> and <i>Escherichia coli</i>. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both <i>Bacillus</i> species exhibited unique antimicrobial effects, reducing MRSA and <i>S. aureus</i> planktonic cell growth by 50% and sessile cell growth for <i>S. aureus</i> and <i>E. coli</i> by 50% and 90%, respectively. No effect was observed against <i>A. baumannii</i>. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and <i>S. aureus</i> biofilms. Additionally, 90% and 50% inhibition was observed in <i>E. coli</i> and <i>A. baumannii</i> biofilms, respectively, with a 50% reduction in <i>E. coli</i> biofilm. These findings suggest that the mode of action employed by <i>B. subtilis</i> MTUA2 and <i>B. velezensis</i> MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina K. Carstens, Joelle K. Salazar, Shreela Sharma, Wenyaw Chan, Charles Darkoh
Dish sponges are known to support the proliferation of human bacterial pathogens, yet they are commonly used by consumers. Exposure to foodborne pathogens via sponge use may lead to illness, a serious concern among susceptible populations. The extent of exposure risks from sponge use has been limited by constraints associated with culture-independent or dependent methods for bacterial community characterization. Therefore, five used dish sponges were characterized to evaluate the presence of viable bacterial foodborne pathogens using the novel application of propidium monoazide (PMA) treatment and targeted 16S rRNA gene amplicon sequencing. Select pathogen viability was confirmed using targeted selective enrichment. The taxonomic abundance profiles of total and viable sponge microbiomes did not vary significantly. The numbers of unique bacterial species (p = 0.0465) and foodborne pathogens (p = 0.0102) identified were significantly lower in viable sponge microbiomes. Twenty unique bacterial foodborne pathogens were detected across total and viable sponge microbiomes, and three to six viable foodborne pathogens were identified in each sponge. Escherichia coli and Staphylococcus aureus were identified in each viable sponge microbiome, and viable E. coli were recovered from two sponges via targeted selective enrichment. These findings suggest that sponge-associated bacterial communities are primarily viable and contain multiple viable bacterial foodborne pathogens.
{"title":"Viability discrimination of bacterial microbiomes in home kitchen dish sponges using propidium monoazide treatment","authors":"Christina K. Carstens, Joelle K. Salazar, Shreela Sharma, Wenyaw Chan, Charles Darkoh","doi":"10.1111/1758-2229.70006","DOIUrl":"10.1111/1758-2229.70006","url":null,"abstract":"<p>Dish sponges are known to support the proliferation of human bacterial pathogens, yet they are commonly used by consumers. Exposure to foodborne pathogens via sponge use may lead to illness, a serious concern among susceptible populations. The extent of exposure risks from sponge use has been limited by constraints associated with culture-independent or dependent methods for bacterial community characterization. Therefore, five used dish sponges were characterized to evaluate the presence of viable bacterial foodborne pathogens using the novel application of propidium monoazide (PMA) treatment and targeted 16S rRNA gene amplicon sequencing. Select pathogen viability was confirmed using targeted selective enrichment. The taxonomic abundance profiles of total and viable sponge microbiomes did not vary significantly. The numbers of unique bacterial species (<i>p</i> = 0.0465) and foodborne pathogens (<i>p</i> = 0.0102) identified were significantly lower in viable sponge microbiomes. Twenty unique bacterial foodborne pathogens were detected across total and viable sponge microbiomes, and three to six viable foodborne pathogens were identified in each sponge. <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> were identified in each viable sponge microbiome, and viable <i>E. coli</i> were recovered from two sponges via targeted selective enrichment. These findings suggest that sponge-associated bacterial communities are primarily viable and contain multiple viable bacterial foodborne pathogens.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of Streptomyces, Bacillus, Mycobacterium or Agromyces. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.
为了发展更可持续的农业,人们倾向于使用磷矿石(RP)代替可溶性磷肥。然而,高浓度磷酸盐对细菌和真菌群落的影响仍鲜有记载。因此,我们利用下一代测序技术,分析了在一个自我恢复的生态系统中自然生长的四种植物的土壤和根系中的细菌和真菌群落的特征,该生态系统位于以前的露天磷矿上,过去的开采造成当地土壤中磷酸盐大量富集。我们的研究结果表明,细菌群落以放线菌门和变形菌门为主,而真菌群落则以子囊菌门和担子菌门为主。细菌和真菌群落的α和β多样性在根区和土壤区之间有显著差异,但受 RP 输入的影响不大。不过,已经发现了表明土壤中富含 RP 的扩增子序列变异(ASV),其中包括链霉菌、芽孢杆菌、分枝杆菌或农杆菌的代表细菌。这些结果的影响开辟了新的思考途径,有助于了解微生物在添加可再生原料和长期土壤修复后的反应,以及基于更适应高浓度可再生原料的微生物,为可持续农业应用配制基于微生物的生物絮凝剂。
{"title":"How do high phosphate concentrations affect soil microbial communities after a century of ecosystem self-reclamation?","authors":"Amandine Ducousso-Détrez, Simon Morvan, Joël Fontaine, Mohamed Hijri, Anissa Lounès-Hadj Sahraoui","doi":"10.1111/1758-2229.70003","DOIUrl":"10.1111/1758-2229.70003","url":null,"abstract":"<p>The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of <i>Streptomyces</i>, <i>Bacillus</i>, <i>Mycobacterium</i> or <i>Agromyces</i>. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mirosław Słowakiewicz, Weronika Goraj, Tomasz Segit, Katarzyna Wątor, Dariusz Dobrzyński
Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO4 contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO4 and Cl/HCO3 ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.
{"title":"Hydrochemical gradients driving extremophile distribution in saline and brine groundwater of southern Poland","authors":"Mirosław Słowakiewicz, Weronika Goraj, Tomasz Segit, Katarzyna Wątor, Dariusz Dobrzyński","doi":"10.1111/1758-2229.70030","DOIUrl":"10.1111/1758-2229.70030","url":null,"abstract":"<p>Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO<sub>4</sub> contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO<sub>4</sub> and Cl/HCO<sub>3</sub> ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana C. Mogrovejo-Arias, Melanie C. Hay, Arwyn Edwards, Andrew C. Mitchell, Jörg Steinmann, Florian H. H. Brill, Bernd Neumann
Microorganisms inhabiting hostile Arctic environments express a variety of functional phenotypes, some of clinical interest, such as haemolytic ability and antimicrobial resistance. We studied haemolytic bacterial isolates from Arctic habitats, assessing their minimum inhibitory concentration (MIC) against antimicrobials. We then performed whole genome sequencing and analysed them for features conferring antimicrobial resistance. MIC data showed that Micromonospora spp. belong to 33% non-wild type (NWT) for erythromycin and penicillin and 22% NWT for tetracycline. Both Pseudomonas spp. belong to 43% NWT for nalidixic acid and streptomycin and 29% NWT for colistin. Finally, the Pedobacter isolate was in 80% NWT for antimicrobials tested. Whole-genome sequencing analyses revealed that fluoroquinolones, tetracyclines, macrolides and penams were the most frequent drug classes against which genotypic resistance was found. Additionally, resistance genes to heavy metals and disinfectants were identified. Our research demonstrates the presence of antimicrobial resistance in bacteria from Arctic habitats and highlights the importance of conservation efforts in these environments, where anthropogenic influence is becoming more evident. Furthermore, our data suggest the possible presence of novel resistance mechanisms, which could pose a threat if the responsible genes are transferable between species or become widespread due to environmental stress and alterations brought about by climate change.
{"title":"Investigating the resistome of haemolytic bacteria in Arctic soils","authors":"Diana C. Mogrovejo-Arias, Melanie C. Hay, Arwyn Edwards, Andrew C. Mitchell, Jörg Steinmann, Florian H. H. Brill, Bernd Neumann","doi":"10.1111/1758-2229.70028","DOIUrl":"10.1111/1758-2229.70028","url":null,"abstract":"<p>Microorganisms inhabiting hostile Arctic environments express a variety of functional phenotypes, some of clinical interest, such as haemolytic ability and antimicrobial resistance. We studied haemolytic bacterial isolates from Arctic habitats, assessing their minimum inhibitory concentration (MIC) against antimicrobials. We then performed whole genome sequencing and analysed them for features conferring antimicrobial resistance. MIC data showed that <i>Micromonospora</i> spp. belong to 33% non-wild type (NWT) for erythromycin and penicillin and 22% NWT for tetracycline. Both <i>Pseudomonas</i> spp. belong to 43% NWT for nalidixic acid and streptomycin and 29% NWT for colistin. Finally, the <i>Pedobacter</i> isolate was in 80% NWT for antimicrobials tested. Whole-genome sequencing analyses revealed that fluoroquinolones, tetracyclines, macrolides and penams were the most frequent drug classes against which genotypic resistance was found. Additionally, resistance genes to heavy metals and disinfectants were identified. Our research demonstrates the presence of antimicrobial resistance in bacteria from Arctic habitats and highlights the importance of conservation efforts in these environments, where anthropogenic influence is becoming more evident. Furthermore, our data suggest the possible presence of novel resistance mechanisms, which could pose a threat if the responsible genes are transferable between species or become widespread due to environmental stress and alterations brought about by climate change.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vertebrate embryos are protected from bacterial infection by various maternally derived factors, yet little is known about the defence mechanisms in elasmobranchs. This study aimed to characterize the intracapsular environment of freshly laid eggs of the oviparous catshark (Scyliorhinus torazame) by investigating the microbial abundance and microbiota to understand its potential contribution to embryonic defence. The egg capsule of oviparous elasmobranchs is tightly sealed until pre-hatching, after which seawater flows into the capsule, exposing the embryos to the surrounding seawater. We found that early embryos were highly vulnerable to environmental pathogens, suggesting that the embryos are somehow protected from infection before pre-hatching. Indeed, the intracapsular environment of freshly laid eggs exhibited significantly low bacterial density, maintained until pre-hatching. Furthermore, the microbiome inside eggs just after oviposition differed markedly from those of rearing seawater and adult oviducal gland epithelia; these eggs were predominantly populated by an unidentified genus of Sphingomonadaceae. Overall, this study provides compelling evidence that early embryos of oviparous cloudy catshark are incubated in a clean intracapsular environment that potentially plays a significant role in embryonic development in oviparous elasmobranchs.
{"title":"Low microbial abundance and community diversity in the egg capsule of the oviparous cloudy catshark (Scyliorhinus torazame) during oviposition","authors":"Wataru Takagi, Ayami Masuda, Koya Shimoyama, Kotaro Tokunaga, Susumu Hyodo, Yuki Sato-Takabe","doi":"10.1111/1758-2229.70025","DOIUrl":"10.1111/1758-2229.70025","url":null,"abstract":"<p>Vertebrate embryos are protected from bacterial infection by various maternally derived factors, yet little is known about the defence mechanisms in elasmobranchs. This study aimed to characterize the intracapsular environment of freshly laid eggs of the oviparous catshark (<i>Scyliorhinus torazame</i>) by investigating the microbial abundance and microbiota to understand its potential contribution to embryonic defence. The egg capsule of oviparous elasmobranchs is tightly sealed until pre-hatching, after which seawater flows into the capsule, exposing the embryos to the surrounding seawater. We found that early embryos were highly vulnerable to environmental pathogens, suggesting that the embryos are somehow protected from infection before pre-hatching. Indeed, the intracapsular environment of freshly laid eggs exhibited significantly low bacterial density, maintained until pre-hatching. Furthermore, the microbiome inside eggs just after oviposition differed markedly from those of rearing seawater and adult oviducal gland epithelia; these eggs were predominantly populated by an unidentified genus of Sphingomonadaceae. Overall, this study provides compelling evidence that early embryos of oviparous cloudy catshark are incubated in a clean intracapsular environment that potentially plays a significant role in embryonic development in oviparous elasmobranchs.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luis Felipe Valdez-Nuñez, Andreas Kappler, Diana Ayala-Muñoz, Idelso Jamín Chávez, Muammar Mansor
Acidophilic sulphate-reducing bacteria (aSRB) are widespread anaerobic microorganisms that perform dissimilatory sulphate reduction and have key adaptations to tolerate acidic environments (pH <5.0), such as proton impermeability and Donnan potential. This diverse prokaryotic group is of interest from physiological, ecological, and applicational viewpoints. In this review, we summarize the interactions between aSRB and other microbial guilds, such as syntrophy, and their roles in the biogeochemical cycling of sulphur, iron, carbon, and other elements. We discuss the biotechnological applications of aSRB in treating acid mine drainage (AMD, pH <3), focusing on their ability to produce biogenic sulphide and precipitate metals, particularly in the context of utilizing microbial consortia instead of pure isolates. Metal sulphide nanoparticles recovered after AMD treatment have multiple potential technological uses, including in electronics and biomedicine, contributing to a cost-effective circular economy. The products of aSRB metabolisms, such as biominerals and isotopes, could also serve as biosignatures to understand ancient and extant microbial life in the universe. Overall, aSRB are active components of the sulphur and carbon cycles under acidic conditions, with potential natural and technological implications for the world around us.
{"title":"Acidophilic sulphate-reducing bacteria: Diversity, ecophysiology, and applications","authors":"Luis Felipe Valdez-Nuñez, Andreas Kappler, Diana Ayala-Muñoz, Idelso Jamín Chávez, Muammar Mansor","doi":"10.1111/1758-2229.70019","DOIUrl":"https://doi.org/10.1111/1758-2229.70019","url":null,"abstract":"<p>Acidophilic sulphate-reducing bacteria (aSRB) are widespread anaerobic microorganisms that perform dissimilatory sulphate reduction and have key adaptations to tolerate acidic environments (pH <5.0), such as proton impermeability and Donnan potential. This diverse prokaryotic group is of interest from physiological, ecological, and applicational viewpoints. In this review, we summarize the interactions between aSRB and other microbial guilds, such as syntrophy, and their roles in the biogeochemical cycling of sulphur, iron, carbon, and other elements. We discuss the biotechnological applications of aSRB in treating acid mine drainage (AMD, pH <3), focusing on their ability to produce biogenic sulphide and precipitate metals, particularly in the context of utilizing microbial consortia instead of pure isolates. Metal sulphide nanoparticles recovered after AMD treatment have multiple potential technological uses, including in electronics and biomedicine, contributing to a cost-effective circular economy. The products of aSRB metabolisms, such as biominerals and isotopes, could also serve as biosignatures to understand ancient and extant microbial life in the universe. Overall, aSRB are active components of the sulphur and carbon cycles under acidic conditions, with potential natural and technological implications for the world around us.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elvira Rey Redondo, Shara Ka Kiu Leung, Charmaine Cheuk Man Yung
Mamiellophyceae are a ubiquitous class of unicellular green algae in the global ocean. Their ecological importance is highlighted in studies focused on the prominent genera Micromonas, Ostreococcus, and Bathycoccus. Mamiellophyceae are susceptible to prasinoviruses, double-stranded DNA viruses belonging to the nucleocytoplasmic large DNA virus group. Our study represents the first isolation of a prasinovirus in the South China Sea and the only one to infect the globally distributed genus Mantoniella. We conducted a comparative analysis with previously identified viral relatives, encompassing morphological characteristics, host specificity, marker-based phylogenetic placement, and whole-genome sequence comparisons. Although it shares morphological and genetic similarities with established prasinoviruses, this novel virus showed distinct genetic traits, confining its infection to the species Mantoniella tinhauana. We also explored the global biogeography of this prasinovirus and its host by mapping metagenomic data and analysing their relationship with various environmental parameters. Our results demonstrate a pronounced link between the virus and its host, both found predominantly in higher latitudes in the surface ocean. By gaining an increased understanding of the relationships between viruses, hosts, and environments, researchers can better make predictions and potentially implement measures to mitigate the consequences of climate change on oceanic processes.
单细胞绿藻(Mamiellophyceae)是全球海洋中无处不在的一类单细胞绿藻。对其生态学重要性的研究主要集中在微囊藻属(Micromonas)、球藻属(Ostreococcus)和球藻属(Bathycoccus)。真菌藻类易感染属于核细胞质大 DNA 病毒组的双链 DNA 病毒 prasinoviruses。我们的研究是在中国南海首次分离到朊病毒,也是唯一一种感染全球分布的曼托尼藻属的病毒。我们与以前发现的病毒亲缘种进行了比较分析,包括形态特征、宿主特异性、基于标记的系统发育定位和全基因组序列比较。虽然这种新型病毒在形态和基因上与已发现的普拉西诺病毒有相似之处,但它表现出了独特的基因特征,使其只能感染 Mantoniella tinhauana 这一物种。我们还通过绘制元基因组数据图谱并分析它们与各种环境参数的关系,探索了这种朊病毒及其宿主的全球生物地理学。我们的研究结果表明,这种病毒与其宿主之间存在着明显的联系,两者都主要存在于较高纬度的表层海洋中。通过进一步了解病毒、宿主和环境之间的关系,研究人员可以更好地进行预测,并有可能采取措施减轻气候变化对海洋过程的影响。
{"title":"Genomic and biogeographic characterisation of the novel prasinovirus Mantoniella tinhauana virus 1","authors":"Elvira Rey Redondo, Shara Ka Kiu Leung, Charmaine Cheuk Man Yung","doi":"10.1111/1758-2229.70020","DOIUrl":"10.1111/1758-2229.70020","url":null,"abstract":"<p>Mamiellophyceae are a ubiquitous class of unicellular green algae in the global ocean. Their ecological importance is highlighted in studies focused on the prominent genera <i>Micromonas</i>, <i>Ostreococcus</i>, and <i>Bathycoccus</i>. Mamiellophyceae are susceptible to prasinoviruses, double-stranded DNA viruses belonging to the nucleocytoplasmic large DNA virus group. Our study represents the first isolation of a prasinovirus in the South China Sea and the only one to infect the globally distributed genus <i>Mantoniella</i>. We conducted a comparative analysis with previously identified viral relatives, encompassing morphological characteristics, host specificity, marker-based phylogenetic placement, and whole-genome sequence comparisons. Although it shares morphological and genetic similarities with established prasinoviruses, this novel virus showed distinct genetic traits, confining its infection to the species <i>Mantoniella tinhauana</i>. We also explored the global biogeography of this prasinovirus and its host by mapping metagenomic data and analysing their relationship with various environmental parameters. Our results demonstrate a pronounced link between the virus and its host, both found predominantly in higher latitudes in the surface ocean. By gaining an increased understanding of the relationships between viruses, hosts, and environments, researchers can better make predictions and potentially implement measures to mitigate the consequences of climate change on oceanic processes.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Susannah Halbrook, William Wilber, Mary Elizabeth Barrow, Emily C. Farrer
Disturbance response and recovery are increasingly important in microbial ecology, as microbes may recover from disturbances differently than macro communities. Past disturbances can alter microbial community structure and their response to subsequent disturbance events, but it remains unclear if the same recovery patterns persist after long-term exposure to stress. Here, we compare bacterial community composition in a community that experienced 2 years of monthly salinity addition disturbances with a community that has not experienced salinity additions. We then track the response and recovery to an additional salinity addition based on past disturbance exposure. We tested the following hypotheses: first, communities with a repeated disturbance history will have a different community composition than communities without a disturbance history; second, communities exposed to repeated disturbances will undergo a different recovery trajectory than communities experiencing a novel disturbance. We find that repeated disturbances alter community composition and affect community response and recovery to a subsequent disturbance after 2 years, primarily through increased resistance. This work enhances our understanding of microbial temporal dynamics and suggests that novel disturbances may pose a threat to microbial community structure and function.
{"title":"Bacterial community response to novel and repeated disturbances","authors":"Susannah Halbrook, William Wilber, Mary Elizabeth Barrow, Emily C. Farrer","doi":"10.1111/1758-2229.70022","DOIUrl":"10.1111/1758-2229.70022","url":null,"abstract":"<p>Disturbance response and recovery are increasingly important in microbial ecology, as microbes may recover from disturbances differently than macro communities. Past disturbances can alter microbial community structure and their response to subsequent disturbance events, but it remains unclear if the same recovery patterns persist after long-term exposure to stress. Here, we compare bacterial community composition in a community that experienced 2 years of monthly salinity addition disturbances with a community that has not experienced salinity additions. We then track the response and recovery to an additional salinity addition based on past disturbance exposure. We tested the following hypotheses: first, communities with a repeated disturbance history will have a different community composition than communities without a disturbance history; second, communities exposed to repeated disturbances will undergo a different recovery trajectory than communities experiencing a novel disturbance. We find that repeated disturbances alter community composition and affect community response and recovery to a subsequent disturbance after 2 years, primarily through increased resistance. This work enhances our understanding of microbial temporal dynamics and suggests that novel disturbances may pose a threat to microbial community structure and function.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}