Amen Ekhosuehi, Odion O. Ikhimiukor, Helen Michelle Korkor Essandoh, Nana Yaw Asiedu, Isoken Tito Aighewi, Gabriel Temitope Sunmonu, Erkison Ewomazino Odih, Anderson O. Oaikhena, Dorothy Cyril-Okoh, Clara Yeboah, Iruka N. Okeke
Antimicrobial resistance (AMR) is under-monitored in Africa, with few reports characterizing resistant bacteria from the environment. This study examined physicochemical parameters, chemical contaminants and antibiotic-resistant bacteria in waste stabilization pond effluents, hospital wastewater and domestic wastewater from four sewerage sites in Kumasi. The bacteria isolates were sequenced. Three sites exceeded national guidelines for total suspended solids, biochemical oxygen demand, chemical oxygen demand and electrical conductivity. Although sulfamethoxazole levels were low, the antibiotic was detected at all sites. Multi-drug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa were isolated with multi-locus sequence typing identifying K. pneumoniae strains as ST18 and ST147, and P. aeruginosa as ST235, all of clinical relevance. A comparison of ST147 genomes with isolates from human infections in Africa showed remarkable similarity and shared AMR profiles. Thirteen of the twenty-one plasmids from ST147 harbored at least one AMR gene, including blaCTX-M-15 linked to copper-resistance genes. Our study demonstrated high bacterial counts and organic matter in the analysed wastewater. The recovery of clinically significant isolates with multiple antibiotic and heavy metal resistance genes from the wastewater samples raises public health concerns.
非洲对抗生素耐药性(AMR)的监测不足,有关环境中耐药细菌特征的报道很少。本研究检测了库马西四个污水处理场的废物稳定池污水、医院废水和生活废水中的理化参数、化学污染物和抗生素耐药细菌。对分离出的细菌进行了测序。三个地点的总悬浮固体、生化需氧量、化学需氧量和电导率均超过了国家指导方针。虽然磺胺甲噁唑的含量较低,但在所有地点都检测到了这种抗生素。通过多焦点序列分型,分离出多重耐药的肺炎克雷伯氏菌和铜绿假单胞菌,确定肺炎克雷伯氏菌为 ST18 和 ST147 菌株,铜绿假单胞菌为 ST235 菌株,这些菌株都具有临床意义。将 ST147 基因组与来自非洲人类感染的分离株进行比较后发现,它们具有显著的相似性和共同的 AMR 特征。在 ST147 的 21 个质粒中,有 13 个质粒含有至少一个 AMR 基因,包括与铜抗性基因相关的 blaCTX-M-15。我们的研究表明,分析废水中的细菌数量和有机物含量都很高。从废水样本中发现具有多种抗生素和重金属耐药性基因的临床重要分离菌株,引起了公共卫生方面的关注。
{"title":"Recovery of clinically relevant multidrug-resistant Klebsiella pneumoniae lineages from wastewater in Kumasi Metropolis, Ghana","authors":"Amen Ekhosuehi, Odion O. Ikhimiukor, Helen Michelle Korkor Essandoh, Nana Yaw Asiedu, Isoken Tito Aighewi, Gabriel Temitope Sunmonu, Erkison Ewomazino Odih, Anderson O. Oaikhena, Dorothy Cyril-Okoh, Clara Yeboah, Iruka N. Okeke","doi":"10.1111/1758-2229.70018","DOIUrl":"10.1111/1758-2229.70018","url":null,"abstract":"<p>Antimicrobial resistance (AMR) is under-monitored in Africa, with few reports characterizing resistant bacteria from the environment. This study examined physicochemical parameters, chemical contaminants and antibiotic-resistant bacteria in waste stabilization pond effluents, hospital wastewater and domestic wastewater from four sewerage sites in Kumasi. The bacteria isolates were sequenced. Three sites exceeded national guidelines for total suspended solids, biochemical oxygen demand, chemical oxygen demand and electrical conductivity. Although sulfamethoxazole levels were low, the antibiotic was detected at all sites. Multi-drug-resistant <i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa were isolated</i> with multi-locus sequence typing identifying <i>K. pneumoniae</i> strains as ST18 and ST147, and <i>P. aeruginosa</i> as ST235, all of clinical relevance. A comparison of ST147 genomes with isolates from human infections in Africa showed remarkable similarity and shared AMR profiles. Thirteen of the twenty-one plasmids from ST147 harbored at least one AMR gene, including blaCTX-M-15 linked to copper-resistance genes. Our study demonstrated high bacterial counts and organic matter in the analysed wastewater. The recovery of clinically significant isolates with multiple antibiotic and heavy metal resistance genes from the wastewater samples raises public health concerns.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oona Hillgén, Marjo Palviainen, Annamari Laurén, Mari Könönen, Anne Ojala, Jukka Pumpanen, Elina Peltomaa
A major consequence of anthropogenic climate change is the intensification and extension of drought periods. Prolonged drought can alter conditions in drained peatlands and cause disturbances in microbial communities in the topsoil layer of the peat. Varying environmental conditions throughout the growing season, such as the availability of organic matter and nutrients, temperature and water table, further impact these communities and consequently affect carbon and nutrient cycles. The impact of drought and new forestry practices is largely unknown in drained peatland forests. We examined how microbial communities change over a growing season in different harvesting intensities (continuous cover forestry, clear-cut and uncut) in a drained peatland site using bacterial 16S and fungal ITS2 rRNA analysis. We found seasonal differences in bacterial and fungal diversity and species richness, and subtle changes in microbial communities at the phylum and genus levels when comparing various environmental factors. Diversity, species richness and relative abundance differed in spring compared to summer and autumn. However, significant differences in the microbial community structure were not detected. Understanding the responses of microbial communities to disturbances like drought and other environmental factors provides new insights into the consequences of climate change on drained forested peatlands.
{"title":"Subtle changes in topsoil microbial communities of drained forested peatlands after prolonged drought","authors":"Oona Hillgén, Marjo Palviainen, Annamari Laurén, Mari Könönen, Anne Ojala, Jukka Pumpanen, Elina Peltomaa","doi":"10.1111/1758-2229.70041","DOIUrl":"10.1111/1758-2229.70041","url":null,"abstract":"<p>A major consequence of anthropogenic climate change is the intensification and extension of drought periods. Prolonged drought can alter conditions in drained peatlands and cause disturbances in microbial communities in the topsoil layer of the peat. Varying environmental conditions throughout the growing season, such as the availability of organic matter and nutrients, temperature and water table, further impact these communities and consequently affect carbon and nutrient cycles. The impact of drought and new forestry practices is largely unknown in drained peatland forests. We examined how microbial communities change over a growing season in different harvesting intensities (continuous cover forestry, clear-cut and uncut) in a drained peatland site using bacterial 16S and fungal ITS2 rRNA analysis. We found seasonal differences in bacterial and fungal diversity and species richness, and subtle changes in microbial communities at the phylum and genus levels when comparing various environmental factors. Diversity, species richness and relative abundance differed in spring compared to summer and autumn. However, significant differences in the microbial community structure were not detected. Understanding the responses of microbial communities to disturbances like drought and other environmental factors provides new insights into the consequences of climate change on drained forested peatlands.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan Michael Thompson, David George, Maria del Carmen Montero-Calasanz
Bioremediation of degraded soils is increasingly necessary due to rising food demand, reductions in agricultural productivity, and limitations in total available arable area. Several bioremediation strategies could be utilized to combat soil degradation, with phytoremediation emerging as a standout option due to its in situ approach and low implementation and maintenance costs compared to other methods. Phytoremediation is also a sustainable solution, which is increasingly desirable to blunt the progression of global warming. Actinorhizal plants display several desirable traits for application in phytoremediation, including the ability to revegetate saline soil and sequester heavy metals with low foliar translocation. Additionally, when grown in association with Frankiaceae endophytes, these abilities are improved and expanded to include the degradation of anthropogenic pollutants and the restoration of soil fertility. However, despite this significant potential to remediate marginalized land, the actinorhizal-Frankiaceae symbiosis remains heavily understudied and underutilized. This review aims to collate the scattered studies that demonstrate these bioremediation abilities and explain the mechanics behind such abilities to provide the necessary insight. Finally, this review will conclude with proposed future directions for utilizing this symbiosis and how it can be optimized further to facilitate improved bioremediation outcomes.
{"title":"Actinorhizal plants and Frankiaceae: The overlooked future of phytoremediation","authors":"Ryan Michael Thompson, David George, Maria del Carmen Montero-Calasanz","doi":"10.1111/1758-2229.70033","DOIUrl":"10.1111/1758-2229.70033","url":null,"abstract":"<p>Bioremediation of degraded soils is increasingly necessary due to rising food demand, reductions in agricultural productivity, and limitations in total available arable area. Several bioremediation strategies could be utilized to combat soil degradation, with phytoremediation emerging as a standout option due to its in situ approach and low implementation and maintenance costs compared to other methods. Phytoremediation is also a sustainable solution, which is increasingly desirable to blunt the progression of global warming. Actinorhizal plants display several desirable traits for application in phytoremediation, including the ability to revegetate saline soil and sequester heavy metals with low foliar translocation. Additionally, when grown in association with <i>Frankiaceae</i> endophytes, these abilities are improved and expanded to include the degradation of anthropogenic pollutants and the restoration of soil fertility. However, despite this significant potential to remediate marginalized land, the actinorhizal-<i>Frankiaceae</i> symbiosis remains heavily understudied and underutilized. This review aims to collate the scattered studies that demonstrate these bioremediation abilities and explain the mechanics behind such abilities to provide the necessary insight. Finally, this review will conclude with proposed future directions for utilizing this symbiosis and how it can be optimized further to facilitate improved bioremediation outcomes.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We aimed to evaluate the ability of naturally occurring colonies of Microcystis, embedded in a thick mucilage, to persist in estuarine waters. In two batch experiments, we examined the dynamics of microbial communities, including cyanobacteria and associated heterotrophic bacteria, sampled from the field during both a cyanobacterial bloom (non-limiting nutrient condition) and the post-bloom period (limiting nutrient condition), and subjected them to a salinity gradient representative of the freshwater-marine continuum. We demonstrated that both Microcystis aeruginosa and M. wesenbergii survived high salinities due to osmolyte accumulation. Specifically, prolonged exposure to high salinity led to betaine accumulation in the cyanobacterial biomass. The relative abundance of the mcyB gene remained around 30%, suggesting no selection for toxic genotypes with salinity or nutrient changes. Microcystins were predominantly intracellular, except at high salinity levels (>15), where more than 50% of the total microcystin concentration was extracellular. In both nutrient conditions, over 70% of the heterotrophic bacterial community belonged to the Gammaproteobacteria family, followed by the Bacteroidota. Bacterial community composition differed in both size fractions, as well as along the salinity gradient over time. Finally, genus-specific core microbiomes were identified and conserved even under highly stressful conditions, suggesting interactions that support community stability and resilience.
{"title":"Effects of salinity and nutrient stress on a toxic freshwater cyanobacterial community and its associated microbiome: An experimental study","authors":"Océane Reignier, Enora Briand, Fabienne Hervé, Elise Robert, Véronique Savar, Simon Tanniou, Zouher Amzil, Cyril Noël, Myriam Bormans","doi":"10.1111/1758-2229.70029","DOIUrl":"10.1111/1758-2229.70029","url":null,"abstract":"<p>We aimed to evaluate the ability of naturally occurring colonies of <i>Microcystis</i>, embedded in a thick mucilage, to persist in estuarine waters. In two batch experiments, we examined the dynamics of microbial communities, including cyanobacteria and associated heterotrophic bacteria, sampled from the field during both a cyanobacterial bloom (non-limiting nutrient condition) and the post-bloom period (limiting nutrient condition), and subjected them to a salinity gradient representative of the freshwater-marine continuum. We demonstrated that both <i>Microcystis aeruginosa</i> and <i>M. wesenbergii</i> survived high salinities due to osmolyte accumulation. Specifically, prolonged exposure to high salinity led to betaine accumulation in the cyanobacterial biomass. The relative abundance of the <i>mcyB</i> gene remained around 30%, suggesting no selection for toxic genotypes with salinity or nutrient changes. Microcystins were predominantly intracellular, except at high salinity levels (>15), where more than 50% of the total microcystin concentration was extracellular. In both nutrient conditions, over 70% of the heterotrophic bacterial community belonged to the Gammaproteobacteria family, followed by the Bacteroidota. Bacterial community composition differed in both size fractions, as well as along the salinity gradient over time. Finally, genus-specific core microbiomes were identified and conserved even under highly stressful conditions, suggesting interactions that support community stability and resilience.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marine animals often harbour complex microbial communities that influence their physiology. However, strong evidence for resident microbiomes in marine bivalves is lacking, despite their contribution to estuarine habitats and coastal economies. We investigated whether marine bivalves harbour stable, resident microorganisms in specific tissues or if their microbiomes primarily consist of transient members reflecting the environmental microbial pool. Conducting a latitudinal study of wild eastern oysters (Crassostrea virginica) along the East Coast of the United States, we aimed to identify resident microorganisms that persist across a wide geographical range. Our results revealed that microbial communities in seawater and sediment samples followed latitudinal diversity patterns driven by geographic location. In contrast, oyster-associated microbiomes were distinct from their surrounding environments and exhibited tissue-specific compositions. Notably, oyster microbiomes showed greater similarity within the same tissue type across different geographic locations than among different tissue types within the same location. This indicates the presence of tissue-specific resident microbes that persist across large geographical ranges. We identified a persistent set of resident microbiome members for each tissue type, with key microbial members consistent across all locations. These findings underscore the oyster host's role in selecting its microbiome and highlight the importance of tissue-specific microbial communities in understanding bivalve-associated microbiomes.
{"title":"Persistent tissue-specific resident microbiota in oysters across a broad geographical range","authors":"Andrea Unzueta-Martínez, Jennifer Bowen","doi":"10.1111/1758-2229.70026","DOIUrl":"10.1111/1758-2229.70026","url":null,"abstract":"<p>Marine animals often harbour complex microbial communities that influence their physiology. However, strong evidence for resident microbiomes in marine bivalves is lacking, despite their contribution to estuarine habitats and coastal economies. We investigated whether marine bivalves harbour stable, resident microorganisms in specific tissues or if their microbiomes primarily consist of transient members reflecting the environmental microbial pool. Conducting a latitudinal study of wild eastern oysters (<i>Crassostrea virginica</i>) along the East Coast of the United States, we aimed to identify resident microorganisms that persist across a wide geographical range. Our results revealed that microbial communities in seawater and sediment samples followed latitudinal diversity patterns driven by geographic location. In contrast, oyster-associated microbiomes were distinct from their surrounding environments and exhibited tissue-specific compositions. Notably, oyster microbiomes showed greater similarity within the same tissue type across different geographic locations than among different tissue types within the same location. This indicates the presence of tissue-specific resident microbes that persist across large geographical ranges. We identified a persistent set of resident microbiome members for each tissue type, with key microbial members consistent across all locations. These findings underscore the oyster host's role in selecting its microbiome and highlight the importance of tissue-specific microbial communities in understanding bivalve-associated microbiomes.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica M. Murphy, Eamonn P. Culligan, Craig P. Murphy
Antimicrobial resistance (AMR), known as the “silent pandemic,” is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as Bacillus subtilis MTUA2 and Bacillus velezensis MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, Staphylococcus aureus, Acinetobacter baumannii and Escherichia coli. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both Bacillus species exhibited unique antimicrobial effects, reducing MRSA and S. aureus planktonic cell growth by 50% and sessile cell growth for S. aureus and E. coli by 50% and 90%, respectively. No effect was observed against A. baumannii. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and S. aureus biofilms. Additionally, 90% and 50% inhibition was observed in E. coli and A. baumannii biofilms, respectively, with a 50% reduction in E. coli biofilm. These findings suggest that the mode of action employed by B. subtilis MTUA2 and B. velezensis MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.
{"title":"Investigating the antimicrobial and antibiofilm properties of marine halophilic Bacillus species against ESKAPE pathogens","authors":"Monica M. Murphy, Eamonn P. Culligan, Craig P. Murphy","doi":"10.1111/1758-2229.70027","DOIUrl":"10.1111/1758-2229.70027","url":null,"abstract":"<p>Antimicrobial resistance (AMR), known as the “silent pandemic,” is exacerbated by pathogenic bacteria's ability to form biofilms. Marine compounds hold promise for novel antibacterial drug discovery. Two isolates from preliminary saltwater environment screening demonstrated antimicrobial activity and were subsequently identified as <i>Bacillus subtilis</i> MTUA2 and <i>Bacillus velezensis</i> MTUC2. Minimum inhibitory concentrations (MICs), minimum biofilm inhibition concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) required to prevent and/or disrupt bacterial growth and biofilm formation were established for MRSA, <i>Staphylococcus aureus</i>, <i>Acinetobacter baumannii</i> and <i>Escherichia coli</i>. The metabolic activity within biofilms was determined by the 2,3,5-triphenyltetrazolium chloride assay. Both <i>Bacillus</i> species exhibited unique antimicrobial effects, reducing MRSA and <i>S. aureus</i> planktonic cell growth by 50% and sessile cell growth for <i>S. aureus</i> and <i>E. coli</i> by 50% and 90%, respectively. No effect was observed against <i>A. baumannii</i>. Significant MBIC and MBEC values were achieved, with 99% inhibition and 90% reduction in MRSA and <i>S. aureus</i> biofilms. Additionally, 90% and 50% inhibition was observed in <i>E. coli</i> and <i>A. baumannii</i> biofilms, respectively, with a 50% reduction in <i>E. coli</i> biofilm. These findings suggest that the mode of action employed by <i>B. subtilis</i> MTUA2 and <i>B. velezensis</i> MTUC2 metabolites should be further characterized and could be beneficial if used independently or in combination with other treatments.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina K. Carstens, Joelle K. Salazar, Shreela Sharma, Wenyaw Chan, Charles Darkoh
Dish sponges are known to support the proliferation of human bacterial pathogens, yet they are commonly used by consumers. Exposure to foodborne pathogens via sponge use may lead to illness, a serious concern among susceptible populations. The extent of exposure risks from sponge use has been limited by constraints associated with culture-independent or dependent methods for bacterial community characterization. Therefore, five used dish sponges were characterized to evaluate the presence of viable bacterial foodborne pathogens using the novel application of propidium monoazide (PMA) treatment and targeted 16S rRNA gene amplicon sequencing. Select pathogen viability was confirmed using targeted selective enrichment. The taxonomic abundance profiles of total and viable sponge microbiomes did not vary significantly. The numbers of unique bacterial species (p = 0.0465) and foodborne pathogens (p = 0.0102) identified were significantly lower in viable sponge microbiomes. Twenty unique bacterial foodborne pathogens were detected across total and viable sponge microbiomes, and three to six viable foodborne pathogens were identified in each sponge. Escherichia coli and Staphylococcus aureus were identified in each viable sponge microbiome, and viable E. coli were recovered from two sponges via targeted selective enrichment. These findings suggest that sponge-associated bacterial communities are primarily viable and contain multiple viable bacterial foodborne pathogens.
{"title":"Viability discrimination of bacterial microbiomes in home kitchen dish sponges using propidium monoazide treatment","authors":"Christina K. Carstens, Joelle K. Salazar, Shreela Sharma, Wenyaw Chan, Charles Darkoh","doi":"10.1111/1758-2229.70006","DOIUrl":"10.1111/1758-2229.70006","url":null,"abstract":"<p>Dish sponges are known to support the proliferation of human bacterial pathogens, yet they are commonly used by consumers. Exposure to foodborne pathogens via sponge use may lead to illness, a serious concern among susceptible populations. The extent of exposure risks from sponge use has been limited by constraints associated with culture-independent or dependent methods for bacterial community characterization. Therefore, five used dish sponges were characterized to evaluate the presence of viable bacterial foodborne pathogens using the novel application of propidium monoazide (PMA) treatment and targeted 16S rRNA gene amplicon sequencing. Select pathogen viability was confirmed using targeted selective enrichment. The taxonomic abundance profiles of total and viable sponge microbiomes did not vary significantly. The numbers of unique bacterial species (<i>p</i> = 0.0465) and foodborne pathogens (<i>p</i> = 0.0102) identified were significantly lower in viable sponge microbiomes. Twenty unique bacterial foodborne pathogens were detected across total and viable sponge microbiomes, and three to six viable foodborne pathogens were identified in each sponge. <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> were identified in each viable sponge microbiome, and viable <i>E. coli</i> were recovered from two sponges via targeted selective enrichment. These findings suggest that sponge-associated bacterial communities are primarily viable and contain multiple viable bacterial foodborne pathogens.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497490/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of Streptomyces, Bacillus, Mycobacterium or Agromyces. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.
为了发展更可持续的农业,人们倾向于使用磷矿石(RP)代替可溶性磷肥。然而,高浓度磷酸盐对细菌和真菌群落的影响仍鲜有记载。因此,我们利用下一代测序技术,分析了在一个自我恢复的生态系统中自然生长的四种植物的土壤和根系中的细菌和真菌群落的特征,该生态系统位于以前的露天磷矿上,过去的开采造成当地土壤中磷酸盐大量富集。我们的研究结果表明,细菌群落以放线菌门和变形菌门为主,而真菌群落则以子囊菌门和担子菌门为主。细菌和真菌群落的α和β多样性在根区和土壤区之间有显著差异,但受 RP 输入的影响不大。不过,已经发现了表明土壤中富含 RP 的扩增子序列变异(ASV),其中包括链霉菌、芽孢杆菌、分枝杆菌或农杆菌的代表细菌。这些结果的影响开辟了新的思考途径,有助于了解微生物在添加可再生原料和长期土壤修复后的反应,以及基于更适应高浓度可再生原料的微生物,为可持续农业应用配制基于微生物的生物絮凝剂。
{"title":"How do high phosphate concentrations affect soil microbial communities after a century of ecosystem self-reclamation?","authors":"Amandine Ducousso-Détrez, Simon Morvan, Joël Fontaine, Mohamed Hijri, Anissa Lounès-Hadj Sahraoui","doi":"10.1111/1758-2229.70003","DOIUrl":"10.1111/1758-2229.70003","url":null,"abstract":"<p>The use of rock phosphate (RP) instead of soluble phosphate fertilizers is preferred for the development of more sustainable agriculture. However, the impact of high concentrations in RP on bacterial and fungal communities remains poorly documented. Thus, next-generation sequencing was used to characterize bacterial and fungal communities in the soils and roots of four plant species growing naturally in a self-restored ecosystem, on former open-pit phosphate mines where past exploitation generated locally a substantial phosphate enrichment of the soil. Our results show that bacterial communities are dominated by Actinobacteria and Proteobacteria phyla, while the Ascomycota and Basidiomycota phyla predominate in the fungal community. The alpha and beta diversities of both bacterial and fungal communities differ significantly between the root and soil compartments but are not significantly affected by RP inputs. However, Amplicon Sequence Variants (ASVs) indicative of RP-enriched soils have been identified; among them are bacteria representative of <i>Streptomyces</i>, <i>Bacillus</i>, <i>Mycobacterium</i> or <i>Agromyces</i>. Implications of these results open new ways of reflection to understand the microbial response following RP-inputs and long-term soil restoration, as well as to formulate microbial-based bioinoculants for sustainable agriculture applications based on microorganisms better adapted to high concentrations of RP.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mirosław Słowakiewicz, Weronika Goraj, Tomasz Segit, Katarzyna Wątor, Dariusz Dobrzyński
Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO4 contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO4 and Cl/HCO3 ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.
{"title":"Hydrochemical gradients driving extremophile distribution in saline and brine groundwater of southern Poland","authors":"Mirosław Słowakiewicz, Weronika Goraj, Tomasz Segit, Katarzyna Wątor, Dariusz Dobrzyński","doi":"10.1111/1758-2229.70030","DOIUrl":"10.1111/1758-2229.70030","url":null,"abstract":"<p>Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO<sub>4</sub> contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO<sub>4</sub> and Cl/HCO<sub>3</sub> ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana C. Mogrovejo-Arias, Melanie C. Hay, Arwyn Edwards, Andrew C. Mitchell, Jörg Steinmann, Florian H. H. Brill, Bernd Neumann
Microorganisms inhabiting hostile Arctic environments express a variety of functional phenotypes, some of clinical interest, such as haemolytic ability and antimicrobial resistance. We studied haemolytic bacterial isolates from Arctic habitats, assessing their minimum inhibitory concentration (MIC) against antimicrobials. We then performed whole genome sequencing and analysed them for features conferring antimicrobial resistance. MIC data showed that Micromonospora spp. belong to 33% non-wild type (NWT) for erythromycin and penicillin and 22% NWT for tetracycline. Both Pseudomonas spp. belong to 43% NWT for nalidixic acid and streptomycin and 29% NWT for colistin. Finally, the Pedobacter isolate was in 80% NWT for antimicrobials tested. Whole-genome sequencing analyses revealed that fluoroquinolones, tetracyclines, macrolides and penams were the most frequent drug classes against which genotypic resistance was found. Additionally, resistance genes to heavy metals and disinfectants were identified. Our research demonstrates the presence of antimicrobial resistance in bacteria from Arctic habitats and highlights the importance of conservation efforts in these environments, where anthropogenic influence is becoming more evident. Furthermore, our data suggest the possible presence of novel resistance mechanisms, which could pose a threat if the responsible genes are transferable between species or become widespread due to environmental stress and alterations brought about by climate change.
{"title":"Investigating the resistome of haemolytic bacteria in Arctic soils","authors":"Diana C. Mogrovejo-Arias, Melanie C. Hay, Arwyn Edwards, Andrew C. Mitchell, Jörg Steinmann, Florian H. H. Brill, Bernd Neumann","doi":"10.1111/1758-2229.70028","DOIUrl":"10.1111/1758-2229.70028","url":null,"abstract":"<p>Microorganisms inhabiting hostile Arctic environments express a variety of functional phenotypes, some of clinical interest, such as haemolytic ability and antimicrobial resistance. We studied haemolytic bacterial isolates from Arctic habitats, assessing their minimum inhibitory concentration (MIC) against antimicrobials. We then performed whole genome sequencing and analysed them for features conferring antimicrobial resistance. MIC data showed that <i>Micromonospora</i> spp. belong to 33% non-wild type (NWT) for erythromycin and penicillin and 22% NWT for tetracycline. Both <i>Pseudomonas</i> spp. belong to 43% NWT for nalidixic acid and streptomycin and 29% NWT for colistin. Finally, the <i>Pedobacter</i> isolate was in 80% NWT for antimicrobials tested. Whole-genome sequencing analyses revealed that fluoroquinolones, tetracyclines, macrolides and penams were the most frequent drug classes against which genotypic resistance was found. Additionally, resistance genes to heavy metals and disinfectants were identified. Our research demonstrates the presence of antimicrobial resistance in bacteria from Arctic habitats and highlights the importance of conservation efforts in these environments, where anthropogenic influence is becoming more evident. Furthermore, our data suggest the possible presence of novel resistance mechanisms, which could pose a threat if the responsible genes are transferable between species or become widespread due to environmental stress and alterations brought about by climate change.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}