Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8353-1
Anne Hansen, Barbara S Zielinski
In this study we use a taxon-based approach to examine previous, as well as new findings on several topics pertaining to the peripheral olfactory components in teleost fishes. These topics comprise (1) the gross anatomy of the peripheral olfactory organ, including olfactory sensory neuron subtypes and their functional parameters, (2) the ultrastructure of the olfactory epithelium, and (3) recent findings regarding the development of the nasal cavity and the olfactory epithelium. The teleosts are living ray-finned fish, and include descendants of early-diverging orders (e.g., salmon), specialized descendants (e.g., goldfish and zebrafish), as well as the Acanthopterygii, numerous species with sharp bony rays, including perch, stickleback, bass and tuna. Our survey reveals that the olfactory epithelium lines a multi-lamellar olfactory rosette in many teleosts. In Acanthopterygii, there are also examples of flat, single, double or triple folded olfactory epithelia. Diverse species ventilate the olfactory chamber with a single accessory nasal sac, whereas the presence of two sacs is confined to species within the Acanthopterygii. Recent studies in salmonids and cyprinids have shown that both ciliated olfactory sensory neurons (OSNs) and microvillous OSNs respond to amino acid odorants. Bile acids stimulate ciliated OSNs, and nucleotides activate microvillous OSNs. G-protein coupled odorant receptor molecules (OR-, V1R-, and V2R-types) have been identified in several teleost species. Ciliated OSNs express the G-protein subunit G(alphaolf/s), which activates cyclic AMP during transduction. Localization of G protein subunits G(alpha0) and G(alphaq/11) to microvillous or crypt OSNs, varies among different species. All teleost species appear to have microvillous and ciliated OSNs. The recently discovered crypt OSN is likewise found broadly. There is surprising diversity during ontogeny. In some species, OSNs and supporting cells derive from placodal cells; in others, supporting cells develop from epithelial (skin) cells. In some, epithelial cells covering the developing olfactory epithelium degenerate, in others, these retract. Likewise, there are different mechanisms for nostril formation. We conclude that there is considerable diversity in gross anatomy and development of the peripheral olfactory organ in teleosts, yet conservation of olfactory sensory neuron morphology. There is not sufficient information to draw conclusions regarding the diversity of teleost olfactory receptors or transduction cascades.
{"title":"Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components.","authors":"Anne Hansen, Barbara S Zielinski","doi":"10.1007/s11068-005-8353-1","DOIUrl":"https://doi.org/10.1007/s11068-005-8353-1","url":null,"abstract":"<p><p>In this study we use a taxon-based approach to examine previous, as well as new findings on several topics pertaining to the peripheral olfactory components in teleost fishes. These topics comprise (1) the gross anatomy of the peripheral olfactory organ, including olfactory sensory neuron subtypes and their functional parameters, (2) the ultrastructure of the olfactory epithelium, and (3) recent findings regarding the development of the nasal cavity and the olfactory epithelium. The teleosts are living ray-finned fish, and include descendants of early-diverging orders (e.g., salmon), specialized descendants (e.g., goldfish and zebrafish), as well as the Acanthopterygii, numerous species with sharp bony rays, including perch, stickleback, bass and tuna. Our survey reveals that the olfactory epithelium lines a multi-lamellar olfactory rosette in many teleosts. In Acanthopterygii, there are also examples of flat, single, double or triple folded olfactory epithelia. Diverse species ventilate the olfactory chamber with a single accessory nasal sac, whereas the presence of two sacs is confined to species within the Acanthopterygii. Recent studies in salmonids and cyprinids have shown that both ciliated olfactory sensory neurons (OSNs) and microvillous OSNs respond to amino acid odorants. Bile acids stimulate ciliated OSNs, and nucleotides activate microvillous OSNs. G-protein coupled odorant receptor molecules (OR-, V1R-, and V2R-types) have been identified in several teleost species. Ciliated OSNs express the G-protein subunit G(alphaolf/s), which activates cyclic AMP during transduction. Localization of G protein subunits G(alpha0) and G(alphaq/11) to microvillous or crypt OSNs, varies among different species. All teleost species appear to have microvillous and ciliated OSNs. The recently discovered crypt OSN is likewise found broadly. There is surprising diversity during ontogeny. In some species, OSNs and supporting cells derive from placodal cells; in others, supporting cells develop from epithelial (skin) cells. In some, epithelial cells covering the developing olfactory epithelium degenerate, in others, these retract. Likewise, there are different mechanisms for nostril formation. We conclude that there is considerable diversity in gross anatomy and development of the peripheral olfactory organ in teleosts, yet conservation of olfactory sensory neuron morphology. There is not sufficient information to draw conclusions regarding the diversity of teleost olfactory receptors or transduction cascades.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"183-208"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8353-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8357-x
P Pahn Pataramekin, Esmail Meisami
We used cytochrome oxidase (CytOx) staining intensity, which is correlated with neuronal functional activity, to evaluate maturity and functionality of newborn rat olfactory epithelium (OE) and olfactory receptor neurons (ORNs). Nasal olfactory tissue of neonatal rats was stained with CytOx and analyzed qualitatively and quantitatively. Results revealed that newborn OE shows six differentially stained horizontal bands. Bands run parallel to the OE surface and were categorized as very light, medium or darkly stained. A narrow and pale Band 1 overlapped with horizontal basal cells. Next, a wide and lightly stained Band 2 was observed that coincides with the globose basal cell layer and immature ORNs, deep in OE. Next apically, a medium-staining Band 3 overlapped with ORN perikarya. Closer to the surface, a medium to light Band 4 was discerned where dendrites of mature ORNs normally occur. This band was interrupted with lighter areas due to the presence of supporting cells nuclei. Next, a superficial but dark Band 5 occurred, populated by the apical portions of ORN dendrites and their ciliated knobs and by supporting cell apices; mitochondria in apices of supporting cells contribute predominantly to dense staining of this Band 5. Apical to Band 5, a thin and fairly light Band 6 was observed which overlaps with the mucus layer that contains part of the ORN knobs, their cilia and supporting cell microvilli. Along the length of ORN dendrites, apical segments just below the ORN knobs, and wide basal segments showed a darker staining than the middle segments implying "microzones" of higher neural activity within the most apical and basal regions of dendrites. Our findings agree with ultrastructural studies showing a presence of mitochondria in knobs, basal portions of ORN dendrites and in OE supporting cell apices, suggesting that apical regions of both olfactory and supporting cells near the surfaces are metabolically most active, in odorant detection, signal processing, and detoxification, the latter for supporting cells.
{"title":"Cytochrome oxidase staining reveals functionally important activity bands in the olfactory epithelium of newborn rat.","authors":"P Pahn Pataramekin, Esmail Meisami","doi":"10.1007/s11068-005-8357-x","DOIUrl":"https://doi.org/10.1007/s11068-005-8357-x","url":null,"abstract":"<p><p>We used cytochrome oxidase (CytOx) staining intensity, which is correlated with neuronal functional activity, to evaluate maturity and functionality of newborn rat olfactory epithelium (OE) and olfactory receptor neurons (ORNs). Nasal olfactory tissue of neonatal rats was stained with CytOx and analyzed qualitatively and quantitatively. Results revealed that newborn OE shows six differentially stained horizontal bands. Bands run parallel to the OE surface and were categorized as very light, medium or darkly stained. A narrow and pale Band 1 overlapped with horizontal basal cells. Next, a wide and lightly stained Band 2 was observed that coincides with the globose basal cell layer and immature ORNs, deep in OE. Next apically, a medium-staining Band 3 overlapped with ORN perikarya. Closer to the surface, a medium to light Band 4 was discerned where dendrites of mature ORNs normally occur. This band was interrupted with lighter areas due to the presence of supporting cells nuclei. Next, a superficial but dark Band 5 occurred, populated by the apical portions of ORN dendrites and their ciliated knobs and by supporting cell apices; mitochondria in apices of supporting cells contribute predominantly to dense staining of this Band 5. Apical to Band 5, a thin and fairly light Band 6 was observed which overlaps with the mucus layer that contains part of the ORN knobs, their cilia and supporting cell microvilli. Along the length of ORN dendrites, apical segments just below the ORN knobs, and wide basal segments showed a darker staining than the middle segments implying \"microzones\" of higher neural activity within the most apical and basal regions of dendrites. Our findings agree with ultrastructural studies showing a presence of mitochondria in knobs, basal portions of ORN dendrites and in OE supporting cell apices, suggesting that apical regions of both olfactory and supporting cells near the surfaces are metabolically most active, in odorant detection, signal processing, and detoxification, the latter for supporting cells.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"257-68"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8357-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8361-1
Ying Li, Daqing Li, Geoffrey Raisman
Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.
{"title":"Interaction of olfactory ensheathing cells with astrocytes may be the key to repair of tract injuries in the spinal cord: the 'pathway hypothesis'.","authors":"Ying Li, Daqing Li, Geoffrey Raisman","doi":"10.1007/s11068-005-8361-1","DOIUrl":"https://doi.org/10.1007/s11068-005-8361-1","url":null,"abstract":"<p><p>Transplantation of cultured adult olfactory ensheathing cells has been shown to induce anatomical and functional repair of lesions of the adult rat spinal cord and spinal roots. Histological analysis of olfactory ensheathing cells, both in their normal location in the olfactory nerves and also after transplantation into spinal cord lesions, shows that they provide channels for the growth of regenerating nerve fibres. These channels have an outer, basal lamina-lined surface apposed by fibroblasts, and an inner, naked surface in contact with the nerve fibres. A crucial property of olfactory ensheathing cells, in which they differ from Schwann cells, is their superior ability to interact with astrocytes. When confronted with olfactory ensheathing cells the superficial astrocytic processes, which form the glial scar after lesions, change their configuration so that their outer pial surfaces are reflected in continuity with the outer surfaces of the olfactory ensheathing cells. The effect is to open a door into the central nervous system. We propose that this formation of a bridging pathway may be the crucial event by which transplanted olfactory ensheathing cells allow the innate growth capacity of severed adult axons to be translated into regeneration across a lesion so that functionally valuable connections can be established.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"343-51"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8361-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8358-9
Virginia McMillan Carr
Heat shock, or stress, proteins (HSPs) are cellular proteins induced in response to conditions that cause protein denaturation, and their induction is essential for survival of such conditions. In the olfactory system we have found intense HSP expression occurs during normal processing of environmental odorants/inhalants as well as following hyperthermia and drug exposure. The HSPs involved include ubiquitin, HSP70, HSC70, and HSP25. Responses are both cell type- and stress-specific, occurring primarily in olfactory supporting cells and to some extent in Bowman's gland acinar cells. Responses to these stresses are not seen in olfactory sensory neurons. This article reviews those studies and the significance of their findings. It also discusses a distinct subpopulation of rat olfactory sensory neurons (OSNs), the 2A4(+)OSNs, found to be constitutively reactive with HSP70, the predominantly stress-inducible isoform of the 70 kD HSP family. Their high HSP70 expression appears to confer on the 2A4(+)OSNs an enhanced ability to survive damage-induced OSN turnover. New findings are also presented on HSP25-specific changes following olfactory bulbectomy. All data are discussed in the context of the overall olfactory and bioprotective functions of the olfactory mucosa.
{"title":"Induced and constitutive heat shock protein expression in the olfactory system--a review, new findings, and some perspectives.","authors":"Virginia McMillan Carr","doi":"10.1007/s11068-005-8358-9","DOIUrl":"https://doi.org/10.1007/s11068-005-8358-9","url":null,"abstract":"<p><p>Heat shock, or stress, proteins (HSPs) are cellular proteins induced in response to conditions that cause protein denaturation, and their induction is essential for survival of such conditions. In the olfactory system we have found intense HSP expression occurs during normal processing of environmental odorants/inhalants as well as following hyperthermia and drug exposure. The HSPs involved include ubiquitin, HSP70, HSC70, and HSP25. Responses are both cell type- and stress-specific, occurring primarily in olfactory supporting cells and to some extent in Bowman's gland acinar cells. Responses to these stresses are not seen in olfactory sensory neurons. This article reviews those studies and the significance of their findings. It also discusses a distinct subpopulation of rat olfactory sensory neurons (OSNs), the 2A4(+)OSNs, found to be constitutively reactive with HSP70, the predominantly stress-inducible isoform of the 70 kD HSP family. Their high HSP70 expression appears to confer on the 2A4(+)OSNs an enhanced ability to survive damage-induced OSN turnover. New findings are also presented on HSP25-specific changes following olfactory bulbectomy. All data are discussed in the context of the overall olfactory and bioprotective functions of the olfactory mucosa.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"269-93"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8358-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8359-8
Giri Venkatraman, Maik Behrens, Martina Pyrski, Frank L Margolis
Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.
{"title":"Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system.","authors":"Giri Venkatraman, Maik Behrens, Martina Pyrski, Frank L Margolis","doi":"10.1007/s11068-005-8359-8","DOIUrl":"https://doi.org/10.1007/s11068-005-8359-8","url":null,"abstract":"<p><p>Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"295-305"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8359-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8352-2
Gabriella Sekerková, David Freeman, Enrico Mugnaini, James R Bartles
Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste buds contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of taste buds. In confocal images of rat circumvallate taste buds, we counted 21.5 +/- 0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7 +/- 1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP(3)R(3))(,) alpha-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP(3)R(3), PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP(3)R(3), alpha-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of approximately 3 mum-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10-12 mum into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells.
{"title":"Espin cytoskeletal proteins in the sensory cells of rodent taste buds.","authors":"Gabriella Sekerková, David Freeman, Enrico Mugnaini, James R Bartles","doi":"10.1007/s11068-005-8352-2","DOIUrl":"https://doi.org/10.1007/s11068-005-8352-2","url":null,"abstract":"<p><p>Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste buds contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of taste buds. In confocal images of rat circumvallate taste buds, we counted 21.5 +/- 0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7 +/- 1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP(3)R(3))(,) alpha-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP(3)R(3), PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP(3)R(3), alpha-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a collection of approximately 3 mum-long microvilli occupying the taste pore, was separated by an espin-depleted zone from a second espin-positive zone situated lower within the taste pit. This latter zone included espin-positive rod-like structures that occasionally extended basally to a depth of 10-12 mum into the cytoplasm of taste cells. We propose that the espin-positive zone in the taste pit coincides with actin bundles in association with the microvilli of type II taste cells, whereas the espin-positive microvilli in the taste pore are the single microvilli of type III taste cells.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"171-82"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8352-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8360-2
John E Rash, Kimberly G V Davidson, Naomi Kamasawa, Thomas Yasumura, Masami Kamasawa, Chunbo Zhang, Robin Michaels, Diego Restrepo, Ole P Ottersen, Carl O Olson, James I Nagy
Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at "mixed" glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3'-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli.
{"title":"Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb.","authors":"John E Rash, Kimberly G V Davidson, Naomi Kamasawa, Thomas Yasumura, Masami Kamasawa, Chunbo Zhang, Robin Michaels, Diego Restrepo, Ole P Ottersen, Carl O Olson, James I Nagy","doi":"10.1007/s11068-005-8360-2","DOIUrl":"10.1007/s11068-005-8360-2","url":null,"abstract":"<p><p>Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at \"mixed\" glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3'-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"307-41"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8360-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8356-y
Heike Maroldt, Tala Kaplinovsky, Anne M Cunningham
The glial cell line-derived (GDNF) family of trophic factors, GDNF, neurturin, persephin and artemin, are known to support the survival and regulate differentiation of many neuronal populations, including peripheral autonomic, enteric and sensory neurons. Members of this family of related ligands bind to specific GDNF family receptor (GFR) proteins, which complex and signal through the Ret receptor tyrosine kinase. We showed previously that GDNF protein was detectable in olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ON). In this immunohistochemical study, we localized GDNF, neurturin, GFRalpha1, GFRalpha2 and Ret in the adult rat ON and olfactory bulb. We found that GDNF and Ret were widely expressed by immature and mature OSNs, while neurturin was selectively expressed in a subpopulation of OSNs zonally restricted in the ON. The GFRs had differential expression, with mature OSNs and their axons preferentially expressing GFRalpha1, whereas progenitors and immature neurons more avidly expressed GFRalpha2. In the bulb, GDNF was highly expressed by the mitral and tufted cells, and by periglomerular cells, and its distribution generally resembled that of Ret, with the exception that Ret was far more predominant on fibers than cell bodies. Neurturin, in contrast, was present at lower levels and was more restricted in its expression to the axonal compartment. GFRalpha2 appeared to be the dominant accessory protein in the bulb. These data are supportive of two members of this neurotrophic family, GDNF and neurturin, playing different physiological roles in the olfactory neuronal system.
{"title":"Immunohistochemical expression of two members of the GDNF family of growth factors and their receptors in the olfactory system.","authors":"Heike Maroldt, Tala Kaplinovsky, Anne M Cunningham","doi":"10.1007/s11068-005-8356-y","DOIUrl":"https://doi.org/10.1007/s11068-005-8356-y","url":null,"abstract":"<p><p>The glial cell line-derived (GDNF) family of trophic factors, GDNF, neurturin, persephin and artemin, are known to support the survival and regulate differentiation of many neuronal populations, including peripheral autonomic, enteric and sensory neurons. Members of this family of related ligands bind to specific GDNF family receptor (GFR) proteins, which complex and signal through the Ret receptor tyrosine kinase. We showed previously that GDNF protein was detectable in olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ON). In this immunohistochemical study, we localized GDNF, neurturin, GFRalpha1, GFRalpha2 and Ret in the adult rat ON and olfactory bulb. We found that GDNF and Ret were widely expressed by immature and mature OSNs, while neurturin was selectively expressed in a subpopulation of OSNs zonally restricted in the ON. The GFRs had differential expression, with mature OSNs and their axons preferentially expressing GFRalpha1, whereas progenitors and immature neurons more avidly expressed GFRalpha2. In the bulb, GDNF was highly expressed by the mitral and tufted cells, and by periglomerular cells, and its distribution generally resembled that of Ret, with the exception that Ret was far more predominant on fibers than cell bodies. Neurturin, in contrast, was present at lower levels and was more restricted in its expression to the axonal compartment. GFRalpha2 appeared to be the dominant accessory protein in the bulb. These data are supportive of two members of this neurotrophic family, GDNF and neurturin, playing different physiological roles in the olfactory neuronal system.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"241-55"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8356-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8354-0
Barbara S Zielinski, Kim Fredricks, Rod McDonald, Aliya U Zaidi
This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage.
{"title":"Morphological and electrophysiological examination of olfactory sensory neurons during the early developmental prolarval stage of the sea lamprey Petromyzon marinus L.","authors":"Barbara S Zielinski, Kim Fredricks, Rod McDonald, Aliya U Zaidi","doi":"10.1007/s11068-005-8354-0","DOIUrl":"https://doi.org/10.1007/s11068-005-8354-0","url":null,"abstract":"<p><p>This study examined olfactory sensory neuron morphology and physiological responsiveness in newly hatched sea lamprey, Petromyzon marinus L. These prolarvae hatch shortly after neural tube formation, and stay within nests for approximately 18 days, before moving downstream to silty areas where they burrow, feed and pass to the larval stage. To explore the possibility that the olfactory system is functioning during this prolarval stage, morphological and physiological development of olfactory sensory neurons was examined. The nasal cavity contained an olfactory epithelium with ciliated olfactory sensory neurons. Axons formed aggregates in the basal portion of the olfactory epithelium and spanned the narrow distance between the olfactory epithelium and the brain. The presence of asymmetric synapses with agranular vesicles within fibers in the brain, adjacent to the olfactory epithelium suggests that there was synaptic connectivity between olfactory sensory axons and the brain. Neural recordings from the surface of the olfactory epithelium showed responses following the application of L-arginine, taurocholic acid, petromyzonol sulfate (a lamprey migratory pheromone), and water conditioned by conspecifics. These results suggest that lampreys may respond to olfactory sensory input during the prolarval stage.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"209-16"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8354-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-09-01Epub Date: 2006-07-13DOI: 10.1007/s11068-005-8355-z
Elke Weiler, Alia Benali
All three olfactory epithelia, the olfactory epithelium proper (OE), the septal organ of Masera (SO), and the vomeronasal organ of Jacobson (VNO) originate from the olfactory placode. Here, their diverse neurochemical phenotypes were analyzed using the immunohistochemical expression pattern of different neuronal markers. The olfactory bulb (OB) served as neuronal control. Neuronal Nuclei Marker (NeuN) is neither expressed in sensory neurons in any of the three olfactory epithelia, nor in relay neurons (mitral/tufted cells) of the OB. However, OB interneurons (periglomerular/granule cells) labeled, as did supranuclear structures of VNO supporting cells and VNO glands. Protein Gene Product 9.5 (PGP9.5 = C-terminal ubiquitin hydrolase L1 = UCHL1) expression is exactly the opposite: all olfactory sensory neurons express PGP9.5 as do OB mitral/tufted cells but not interneurons. Neuron Specific Enolase (NSE) expression is highest in the most apically located OE and SO sensory neurons and patchy in VNO. In contrast, the cytoplasm of the most basally located neurons of OE and SO immunoreacted for Growth Associated Protein 43 (GAP-43/B50). In VNO neurons GAP-43 labeling is also nuclear. In the cytoplasm, Olfactory Marker Protein (OMP) is most intensely expressed in SO, followed by OE and least in VNO neurons; further, OMP is also expressed in the nucleus of basally located VNO neurons. OB mitral/tufted cells express OMP at low levels. Neurons closer to respiratory epithelium often expressed a higher level of neuronal markers, suggesting a role of those markers for neuronal protection against take-over. Within the VNO the neurons show clear apical-basal expression diversity, as they do for factors of the signal transduction cascade. Overall, expression patterns of the investigated neuronal markers suggest that OE and SO are more similar to each other than to VNO.
{"title":"Olfactory epithelia differentially express neuronal markers.","authors":"Elke Weiler, Alia Benali","doi":"10.1007/s11068-005-8355-z","DOIUrl":"https://doi.org/10.1007/s11068-005-8355-z","url":null,"abstract":"<p><p>All three olfactory epithelia, the olfactory epithelium proper (OE), the septal organ of Masera (SO), and the vomeronasal organ of Jacobson (VNO) originate from the olfactory placode. Here, their diverse neurochemical phenotypes were analyzed using the immunohistochemical expression pattern of different neuronal markers. The olfactory bulb (OB) served as neuronal control. Neuronal Nuclei Marker (NeuN) is neither expressed in sensory neurons in any of the three olfactory epithelia, nor in relay neurons (mitral/tufted cells) of the OB. However, OB interneurons (periglomerular/granule cells) labeled, as did supranuclear structures of VNO supporting cells and VNO glands. Protein Gene Product 9.5 (PGP9.5 = C-terminal ubiquitin hydrolase L1 = UCHL1) expression is exactly the opposite: all olfactory sensory neurons express PGP9.5 as do OB mitral/tufted cells but not interneurons. Neuron Specific Enolase (NSE) expression is highest in the most apically located OE and SO sensory neurons and patchy in VNO. In contrast, the cytoplasm of the most basally located neurons of OE and SO immunoreacted for Growth Associated Protein 43 (GAP-43/B50). In VNO neurons GAP-43 labeling is also nuclear. In the cytoplasm, Olfactory Marker Protein (OMP) is most intensely expressed in SO, followed by OE and least in VNO neurons; further, OMP is also expressed in the nucleus of basally located VNO neurons. OB mitral/tufted cells express OMP at low levels. Neurons closer to respiratory epithelium often expressed a higher level of neuronal markers, suggesting a role of those markers for neuronal protection against take-over. Within the VNO the neurons show clear apical-basal expression diversity, as they do for factors of the signal transduction cascade. Overall, expression patterns of the investigated neuronal markers suggest that OE and SO are more similar to each other than to VNO.</p>","PeriodicalId":16494,"journal":{"name":"Journal of Neurocytology","volume":"34 3-5","pages":"217-40"},"PeriodicalIF":0.0,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11068-005-8355-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26143527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}