首页 > 最新文献

Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)最新文献

英文 中文
Previsão da duração de carregamentos de embarcações PLSV 预测船舶装载时间PLSV
Rachel Martins Ventriglia, L. Bastos, Karla Figueiredo, Marley Vallasco
As embarcações Pipe-laying Support Vessel (PLSV) realizam tarefas de interligação submarinas, que necessitam de diversos recursos materiais. Estes recursos são carregados nos navios, e atualmente o planejamento dos carregamentos é resolvido de forma heurística, com taxas de erros altas, em torno de 84%. Com o objetivo de auxiliar neste planejamento operacional, este trabalho propôs a investigação e seleção de diversos modelos de aprendizado de máquina para prever a duração dos carregamentos. Os modelos que apresentaram melhor desempenho na base de teste foram o Gradient Boosting, Regressão Linear e o Stacking Regressor, com um erro percentual médio absoluto de no máximo 36% nos dados de teste.
管道铺设支撑船(PLSV)执行海底互连任务,需要多种物质资源。这些资源被装载到船舶上,目前的装载规划是启发式解决的,错误率很高,约84%。为了协助这一操作规划,本工作提出了研究和选择几种机器学习模型来预测负载持续时间。在测试基础上表现最好的模型是梯度增强、线性回归和叠加回归,测试数据的平均绝对百分比误差不超过36%。
{"title":"Previsão da duração de carregamentos de embarcações PLSV","authors":"Rachel Martins Ventriglia, L. Bastos, Karla Figueiredo, Marley Vallasco","doi":"10.5753/eniac.2022.227313","DOIUrl":"https://doi.org/10.5753/eniac.2022.227313","url":null,"abstract":"As embarcações Pipe-laying Support Vessel (PLSV) realizam tarefas de interligação submarinas, que necessitam de diversos recursos materiais. Estes recursos são carregados nos navios, e atualmente o planejamento dos carregamentos é resolvido de forma heurística, com taxas de erros altas, em torno de 84%. Com o objetivo de auxiliar neste planejamento operacional, este trabalho propôs a investigação e seleção de diversos modelos de aprendizado de máquina para prever a duração dos carregamentos. Os modelos que apresentaram melhor desempenho na base de teste foram o Gradient Boosting, Regressão Linear e o Stacking Regressor, com um erro percentual médio absoluto de no máximo 36% nos dados de teste.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129028942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Deep Learning Models for Aircraft Maintenance 深度学习模型在飞机维修中的应用
Humberto Hayashi Sano, Lilian Berton
Neural networks provide useful approaches for determining solutions to complex nonlinear problems. The use of these models offers a feasible approach to help aircraft maintenance, especially health monitoring and fault detection. The technical complexity of aircraft systems poses many challenges for maintenance lines that need to optimize time, efficiency, and consistency. In this work, we first employ Convolutional Neural Networks (CNN), and Multi-Layer Perceptron (MLP) for the classification of aircraft Pressure Regulated Shutoff Valves (PRSOV). We classify a wide range of defects such as Friction, Charge and Discharge faults considering single and multi-failures. As a result of this work, we observed a significant improvement in the classification accuracy in the case of applying neural networks such as MLP (0.9962) and CNN (0.9937) when compared to a baseline KNN (0.8788).
神经网络为确定复杂非线性问题的解提供了有用的方法。这些模型的使用为飞机维修提供了一种可行的方法,特别是健康监测和故障检测。飞机系统的技术复杂性给需要优化时间、效率和一致性的维修线路带来了许多挑战。在这项工作中,我们首先使用卷积神经网络(CNN)和多层感知器(MLP)对飞机压力调节关闭阀(PRSOV)进行分类。我们将摩擦故障、充放电故障、单故障和多故障进行了分类。作为这项工作的结果,我们观察到与基线KNN(0.8788)相比,在应用神经网络(如MLP(0.9962)和CNN(0.9937))的情况下,分类精度有了显着提高。
{"title":"Application of Deep Learning Models for Aircraft Maintenance","authors":"Humberto Hayashi Sano, Lilian Berton","doi":"10.5753/eniac.2022.227575","DOIUrl":"https://doi.org/10.5753/eniac.2022.227575","url":null,"abstract":"Neural networks provide useful approaches for determining solutions to complex nonlinear problems. The use of these models offers a feasible approach to help aircraft maintenance, especially health monitoring and fault detection. The technical complexity of aircraft systems poses many challenges for maintenance lines that need to optimize time, efficiency, and consistency. In this work, we first employ Convolutional Neural Networks (CNN), and Multi-Layer Perceptron (MLP) for the classification of aircraft Pressure Regulated Shutoff Valves (PRSOV). We classify a wide range of defects such as Friction, Charge and Discharge faults considering single and multi-failures. As a result of this work, we observed a significant improvement in the classification accuracy in the case of applying neural networks such as MLP (0.9962) and CNN (0.9937) when compared to a baseline KNN (0.8788).","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131855425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the evaluation of example-dependent cost-sensitive models for tax debts classification 基于实例的税收债务分类成本敏感模型的评价
H. S. Lima, Damires Fernandes, Thiago J. M. Moura
Example-dependent cost-sensitive classification methods are suitable to many real-world classification problems, where the costs, due to misclassification, vary among every example of a dataset. Tax administration applications are included in this segment of problems, since they deal with different values involved in the tax payments. To help matters, this work presents an experimental evaluation which aims to verify whether cost-sensitive learning algorithms are more cost-effective on average than traditional ones. This task is accomplished in a tax administration application domain, what implies the need of a cost-matrix regarding debt values. The obtained results show that cost-sensitive methods avoid situations like erroneously granting a request with a debt involving millions of reals. Considering the savings score, the cost-sensitive classification methods achieved higher results than their traditional method versions.
依赖于示例的代价敏感分类方法适用于许多现实世界的分类问题,其中由于错误分类而导致的代价在数据集的每个示例中都是不同的。税务管理应用程序包含在这部分问题中,因为它们处理涉及纳税的不同值。为了帮助解决问题,这项工作提出了一个实验评估,旨在验证成本敏感学习算法是否比传统算法平均更具成本效益。这项任务是在税务管理应用程序域中完成的,这意味着需要关于债务值的成本矩阵。获得的结果表明,成本敏感的方法避免了错误地批准涉及数百万雷亚尔债务的请求等情况。考虑到节省分数,成本敏感分类方法比传统方法获得了更高的结果。
{"title":"On the evaluation of example-dependent cost-sensitive models for tax debts classification","authors":"H. S. Lima, Damires Fernandes, Thiago J. M. Moura","doi":"10.5753/eniac.2022.227607","DOIUrl":"https://doi.org/10.5753/eniac.2022.227607","url":null,"abstract":"Example-dependent cost-sensitive classification methods are suitable to many real-world classification problems, where the costs, due to misclassification, vary among every example of a dataset. Tax administration applications are included in this segment of problems, since they deal with different values involved in the tax payments. To help matters, this work presents an experimental evaluation which aims to verify whether cost-sensitive learning algorithms are more cost-effective on average than traditional ones. This task is accomplished in a tax administration application domain, what implies the need of a cost-matrix regarding debt values. The obtained results show that cost-sensitive methods avoid situations like erroneously granting a request with a debt involving millions of reals. Considering the savings score, the cost-sensitive classification methods achieved higher results than their traditional method versions.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127918670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks 学习OWA算子在卷积神经网络池化层和通道聚合层中的应用
Leonam R. S. Miranda, F. G. Guimarães
Promising results have been obtained in recent years when using OWA operators to aggregate data within CNNs pool layers, training their weights, instead of using the more usual operators (max and mean). OWA operators were also used to learn channel wise information from a certain layer, and the newly generated information is used to complement the input data for the following layer. The purpose of this article is to analyze and combine the two mentioned ideas. In addition to using the channel wise information generated by trainable OWA operators to complement the input data, replacement will also be analyzed. Several tests have been done to evaluate the performance change when applying OWA operators to classify images using VGG13 model.
近年来,使用OWA算子来聚合cnn池层内的数据,训练它们的权值,而不是使用更常用的算子(max和mean),已经获得了很好的结果。OWA操作符还用于从某一层学习信道信息,新生成的信息用于补充下一层的输入数据。本文的目的是对上述两种思想进行分析和结合。除了使用可训练的OWA操作员生成的通道明智信息来补充输入数据外,还将分析替换情况。为了评估使用VGG13模型应用OWA操作符对图像进行分类时的性能变化,已经进行了一些测试。
{"title":"Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks","authors":"Leonam R. S. Miranda, F. G. Guimarães","doi":"10.5753/eniac.2022.227310","DOIUrl":"https://doi.org/10.5753/eniac.2022.227310","url":null,"abstract":"Promising results have been obtained in recent years when using OWA operators to aggregate data within CNNs pool layers, training their weights, instead of using the more usual operators (max and mean). OWA operators were also used to learn channel wise information from a certain layer, and the newly generated information is used to complement the input data for the following layer. The purpose of this article is to analyze and combine the two mentioned ideas. In addition to using the channel wise information generated by trainable OWA operators to complement the input data, replacement will also be analyzed. Several tests have been done to evaluate the performance change when applying OWA operators to classify images using VGG13 model.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114156941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
K-Nearest Neighbors based on the Nk Interaction Graph 基于 Nk 交互图的 K 最近邻图
Gustavo F. C. de Castro, R. Tinós
The K-Nearest Neighbors (KNN) is a simple and intuitive nonparametric classification algorithm. In KNN, the K nearest neighbors are determined according to the distance to the example to be classified. Generally, the Euclidean distance is used, which facilitates the formation of hyper-ellipsoid clusters. In this work, we propose using the Nk interaction graph to return the K-nearest neighbors in KNN. The Nk interaction graph, originally used in clustering, is built based on the distance between examples and spatial density in small groups formed by k examples of the training dataset. By using the distance combined with the spatial density, it is possible to form clusters with arbitrary shapes. We propose two variations of the KNN based on the Nk interaction graph. They differ in the way in which the vertices associated with the N examples of the training dataset are visited. The two proposed algorithms are compared to the original KNN in experiments with datasets with different properties.
K-Nearest Neighbors(KNN)是一种简单直观的非参数分类算法。在 KNN 中,K 个近邻是根据与待分类实例的距离确定的。一般情况下,使用欧氏距离,这有利于形成超椭圆形聚类。在这项工作中,我们建议使用 Nk 交互图来返回 KNN 中的 K 近邻。Nk 交互图最初用于聚类,它是根据实例之间的距离和由训练数据集的 k 个实例形成的小群的空间密度建立的。通过使用距离和空间密度,可以形成任意形状的聚类。我们提出了两种基于 Nk 交互图的 KNN 变体。它们的不同之处在于访问与训练数据集 N 个示例相关的顶点的方式。在使用具有不同属性的数据集进行的实验中,我们将这两种算法与原始 KNN 进行了比较。
{"title":"K-Nearest Neighbors based on the Nk Interaction Graph","authors":"Gustavo F. C. de Castro, R. Tinós","doi":"10.5753/eniac.2022.227174","DOIUrl":"https://doi.org/10.5753/eniac.2022.227174","url":null,"abstract":"The K-Nearest Neighbors (KNN) is a simple and intuitive nonparametric classification algorithm. In KNN, the K nearest neighbors are determined according to the distance to the example to be classified. Generally, the Euclidean distance is used, which facilitates the formation of hyper-ellipsoid clusters. In this work, we propose using the Nk interaction graph to return the K-nearest neighbors in KNN. The Nk interaction graph, originally used in clustering, is built based on the distance between examples and spatial density in small groups formed by k examples of the training dataset. By using the distance combined with the spatial density, it is possible to form clusters with arbitrary shapes. We propose two variations of the KNN based on the Nk interaction graph. They differ in the way in which the vertices associated with the N examples of the training dataset are visited. The two proposed algorithms are compared to the original KNN in experiments with datasets with different properties.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126420953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Potential of Federated Learning for Maize Leaf Disease Prediction 评价联邦学习在玉米叶片病害预测中的潜力
Thalita Mendonça Antico, L. F. R. Moreira, Rodrigo Moreira
The diagnosis of diseases in food crops based on machine learning seemed satisfactory and suitable for use on a large scale. The Convolutional Neural Networks (CNNs) perform accurately in the disease prediction considering the image capture of the crop leaf, being extensively enhanced in the literature. These machine learning techniques fall short in data privacy, as they require sharing the data in the training process with a central server, disregarding competitive or regulatory concerns. Thus, Federated Learning (FL) aims to support distributed training to address recognized gaps in centralized training. As far as we know, this paper inaugurates the use and evaluation of FL applied in maize leaf diseases. We evaluated the performance of five CNNs trained under the distributed paradigm and measured their training time compared to the classification performance. In addition, we consider the suitability of distributed training considering the volume of network traffic and the number of parameters of each CNN. Our results indicate that FL potentially enhances data privacy in heterogeneous domains.
基于机器学习的粮食作物疾病诊断似乎令人满意,适合大规模使用。卷积神经网络(cnn)在考虑作物叶片图像捕获的疾病预测中表现准确,在文献中得到了广泛的增强。这些机器学习技术在数据隐私方面存在不足,因为它们需要在训练过程中与中央服务器共享数据,而不考虑竞争或监管问题。因此,联邦学习(FL)旨在支持分布式训练,以解决集中式训练中公认的差距。就目前所知,本文是FL在玉米叶片病害防治中的首次应用和评价。我们评估了在分布式范式下训练的五个cnn的性能,并将其训练时间与分类性能进行了比较。此外,我们还考虑了网络流量和每个CNN的参数数量来考虑分布式训练的适用性。我们的研究结果表明,FL有可能增强异构领域的数据隐私。
{"title":"Evaluating the Potential of Federated Learning for Maize Leaf Disease Prediction","authors":"Thalita Mendonça Antico, L. F. R. Moreira, Rodrigo Moreira","doi":"10.5753/eniac.2022.227293","DOIUrl":"https://doi.org/10.5753/eniac.2022.227293","url":null,"abstract":"The diagnosis of diseases in food crops based on machine learning seemed satisfactory and suitable for use on a large scale. The Convolutional Neural Networks (CNNs) perform accurately in the disease prediction considering the image capture of the crop leaf, being extensively enhanced in the literature. These machine learning techniques fall short in data privacy, as they require sharing the data in the training process with a central server, disregarding competitive or regulatory concerns. Thus, Federated Learning (FL) aims to support distributed training to address recognized gaps in centralized training. As far as we know, this paper inaugurates the use and evaluation of FL applied in maize leaf diseases. We evaluated the performance of five CNNs trained under the distributed paradigm and measured their training time compared to the classification performance. In addition, we consider the suitability of distributed training considering the volume of network traffic and the number of parameters of each CNN. Our results indicate that FL potentially enhances data privacy in heterogeneous domains.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121141537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Algoritmo de Ensemble para Classificação em Fluxo de Dados com Classes Desbalanceadas e Mudanças de Conceito 用于不平衡类和概念变化的数据流分类的集合算法
Douglas Amorim de Oliveira, Karina Valdivia Delgado, M. Lauretto
Com o crescimento exponencial na geração de dados observado nas últimas décadas, a realização de tarefas de classificação sobre esses dados apresenta diversos desafios. Estes conjuntos de dados, por vezes, não são balanceadas quanto às suas classes e podem ocorrer alterações da formação das classes ao longo do tempo, chamadas de mudança de conceito. Dentre os algoritmos que visam solucionar esses problemas, o Kappa Updated Ensemble (KUE) tem apresentado bom desempenho em fluxo de dados com mudança de conceito. Como sua formulação original não é projetada para classes desbalanceadas, neste trabalho foram realizadas modificações no KUE afim de torná-lo mais robusto e aderente ao cenário de desbalanceamento nas bases de dados. Em experimentos realizados sobre oito conjuntos de dados com diferentes taxas de desbalanceamentos, o KUE modificado superou a versão original em cinco conjuntos de dados e produziu desempenho estatisticamente equivalente nos três restantes. Estes resultados são promissores e motivam novos desenvolvimentos para esta abordagem.
在过去的几十年里,随着数据生成的指数级增长,对这些数据进行分类的任务提出了几个挑战。这些数据集有时在类之间是不平衡的,随着时间的推移,类的形成可能会发生变化,称为概念变化。在解决这些问题的算法中,Kappa更新集(KUE)在概念变化的数据流中表现出了良好的性能。由于它的原始公式不是为不平衡类设计的,在这项工作中对KUE进行了修改,使其更健壮,并坚持数据库中的不平衡场景。在对8个不同不平衡率的数据集进行的实验中,改进后的KUE在5个数据集上优于原始版本,在其余3个数据集上产生了相同的统计性能。这些结果是有希望的,并推动了该方法的进一步发展。
{"title":"Algoritmo de Ensemble para Classificação em Fluxo de Dados com Classes Desbalanceadas e Mudanças de Conceito","authors":"Douglas Amorim de Oliveira, Karina Valdivia Delgado, M. Lauretto","doi":"10.5753/eniac.2022.227356","DOIUrl":"https://doi.org/10.5753/eniac.2022.227356","url":null,"abstract":"Com o crescimento exponencial na geração de dados observado nas últimas décadas, a realização de tarefas de classificação sobre esses dados apresenta diversos desafios. Estes conjuntos de dados, por vezes, não são balanceadas quanto às suas classes e podem ocorrer alterações da formação das classes ao longo do tempo, chamadas de mudança de conceito. Dentre os algoritmos que visam solucionar esses problemas, o Kappa Updated Ensemble (KUE) tem apresentado bom desempenho em fluxo de dados com mudança de conceito. Como sua formulação original não é projetada para classes desbalanceadas, neste trabalho foram realizadas modificações no KUE afim de torná-lo mais robusto e aderente ao cenário de desbalanceamento nas bases de dados. Em experimentos realizados sobre oito conjuntos de dados com diferentes taxas de desbalanceamentos, o KUE modificado superou a versão original em cinco conjuntos de dados e produziu desempenho estatisticamente equivalente nos três restantes. Estes resultados são promissores e motivam novos desenvolvimentos para esta abordagem.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123345207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning for noisy multivariate time series classification: a comparison and practical evaluation 多变量时间序列分类的机器学习:比较与实用评价
A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa
Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.
多元时间序列分类(MTSC)是一个复杂的问题,近年来由于最先进的机器学习技术的应用而取得了很大的进展。然而,仍然需要对信号噪声对MTSC技术分类性能的影响进行全面的评估。为此,在本文中,我们评估了三种当前有效的MTSC分类器- DDTW, ROCKET和InceptionTime -并提出了它们在现实世界分类问题中的应用:海上平台系泊线故障的检测。我们表明,它们都具有最先进的精度,其中ROCKET呈现出非常好的结果,而InceptionTime略微更准确,对噪声更有弹性。
{"title":"Machine learning for noisy multivariate time series classification: a comparison and practical evaluation","authors":"A. P. S. Silva, Lucas R. Abbade, R. D. S. Cunha, T. M. Suller, Eric O. Gomes, E. Gomi, A. H. R. Costa","doi":"10.5753/eniac.2022.227600","DOIUrl":"https://doi.org/10.5753/eniac.2022.227600","url":null,"abstract":"Multivariate Time Series Classification (MTSC) is a complex problem that has seen great advances in recent years from the application of state-of-the-art machine learning techniques. However, there is still a need for a thorough evaluation of the effect of signal noise in the classification performance of MTSC techniques. To this end, in this paper, we evaluate three current and effective MTSC classifiers – DDTW, ROCKET and InceptionTime – and propose their use in a real-world classification problem: the detection of mooring line failure in offshore platforms. We show that all of them feature state-of-the-art accuracy, with ROCKET presenting very good results, and InceptionTime being marginally more accurate and resilient to noise.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134165928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Level Stacking 多层叠加
Fabiana Coutinho Boldrin, Adriano Henrique Cantão, R. Tinós, J. A. Baranauskas
Stacking é um dos algoritmos que combina os resultados de diferentes classificadores que foram gerados utilizando o mesmo conjunto de treinamento. Com objetivo de explorar alguns aspectos com relação ao algoritmo de stacking como o número de levels (camadas) de aprendizado, o número de classificadores por level e os algoritmos de utilizados, foi proposto o multi-level stacking. Para este trabalho foram feitos experimentos utilizando três tipos diferentes de indutores para diferentes datasets com dois levels de aprendizado.
堆叠是一种算法,它结合了使用相同训练集生成的不同分类器的结果。为了探讨与堆叠算法相关的一些方面,如学习层的数量、每个层的分类器的数量和所使用的算法,提出了多级堆叠。在这项工作中,实验使用三种不同类型的电感器对不同的数据集和两个学习水平。
{"title":"Multi-Level Stacking","authors":"Fabiana Coutinho Boldrin, Adriano Henrique Cantão, R. Tinós, J. A. Baranauskas","doi":"10.5753/eniac.2022.227346","DOIUrl":"https://doi.org/10.5753/eniac.2022.227346","url":null,"abstract":"Stacking é um dos algoritmos que combina os resultados de diferentes classificadores que foram gerados utilizando o mesmo conjunto de treinamento. Com objetivo de explorar alguns aspectos com relação ao algoritmo de stacking como o número de levels (camadas) de aprendizado, o número de classificadores por level e os algoritmos de utilizados, foi proposto o multi-level stacking. Para este trabalho foram feitos experimentos utilizando três tipos diferentes de indutores para diferentes datasets com dois levels de aprendizado.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134362619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Establishing the Parameters of a Decentralized Neural Machine Learning Model 分散神经机器学习模型参数的建立
Aline Ioste, M. Finger
The decentralized machine learning models face a bottleneck of high-cost communication. Trade-offs between communication and accuracy in decentralized learning have been addressed by theoretical approaches. Here we propose a new practical model that performs several local training operations before a communication round, choosing among several options. We show how to determine a configuration that dramatically reduces the communication burden between participant hosts, with a reduction in communication practice showing robust and accurate results both to IID and NON-IID data distributions.
分散的机器学习模型面临着高成本通信的瓶颈。分散学习中沟通和准确性之间的权衡已经通过理论方法得到解决。在这里,我们提出了一个新的实用模型,在一轮通信之前执行几个局部训练操作,从几个选项中进行选择。我们展示了如何确定一种配置,这种配置可以极大地减少参与者主机之间的通信负担,同时减少通信实践,对IID和非IID数据分布都显示出稳健和准确的结果。
{"title":"Establishing the Parameters of a Decentralized Neural Machine Learning Model","authors":"Aline Ioste, M. Finger","doi":"10.5753/eniac.2022.227342","DOIUrl":"https://doi.org/10.5753/eniac.2022.227342","url":null,"abstract":"The decentralized machine learning models face a bottleneck of high-cost communication. Trade-offs between communication and accuracy in decentralized learning have been addressed by theoretical approaches. Here we propose a new practical model that performs several local training operations before a communication round, choosing among several options. We show how to determine a configuration that dramatically reduces the communication burden between participant hosts, with a reduction in communication practice showing robust and accurate results both to IID and NON-IID data distributions.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132555630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1