Nouf O. Alafaleq, Ghaida I. Alruwaished, Mohd Shahnawaz Khan, Samia T. Al-Shouli, Ahmed H. Mujamammi, Essa M. Sabi, Khalid M. Sumaily, Mohammed Almansour, Majed S. Alokail
Glycation of biomolecules results in the formation of advanced glycation end products (AGEs). Immunoglobulin G (IgG) has been implicated in the progression of various diseases, including diabetes and cancer. This study purified three IgG subclasses (IgG1, IgG2, and IgG3) from Camelus dromedarius colostrum using ammonium sulfate fractionation and chromatographic procedures. SDS-PAGE was performed to confirm the purity and molecular weight of the IgG subclasses. Several biochemical and biophysical techniques were employed to study the effect of glycation on camel IgG using methylglyoxal (MGO), a dicarbonyl sugar. Early glycation measurement showed an increase in the fructosamine content by ~four-fold in IgG2, ~two-fold in IgG3, and a slight rise in IgG1. AGEs were observed in all classes of IgGs with maximum hyperchromicity (96.6%) in IgG2. Furthermore, glycation-induced oxidation of IgGs led to an increase in carbonyl content and loss of -SH groups. Among subclass, IgG2 showed the highest (39.7%) increase in carbonyl content accompanied by 82.5% decrease in -SH groups. Far UV-CD analysis illustrated perturbation of β-sheet structure during glycation reaction with MGO. Moreover, glycation of IgG proceeds to various conformational states like aggregation and increased hydrophobicity. In addition, the cytotoxicity assay (MTT) illustrated the proliferation of breast cancer cells (MCF-7) with IgG2 treatment.
{"title":"Non-enzymatic glycation and aggregation of camel immunoglobulins induce breast cancer cell proliferation","authors":"Nouf O. Alafaleq, Ghaida I. Alruwaished, Mohd Shahnawaz Khan, Samia T. Al-Shouli, Ahmed H. Mujamammi, Essa M. Sabi, Khalid M. Sumaily, Mohammed Almansour, Majed S. Alokail","doi":"10.1002/jmr.3062","DOIUrl":"10.1002/jmr.3062","url":null,"abstract":"<p>Glycation of biomolecules results in the formation of advanced glycation end products (AGEs). Immunoglobulin G (IgG) has been implicated in the progression of various diseases, including diabetes and cancer. This study purified three IgG subclasses (IgG1, IgG2, and IgG3) from <i>Camelus dromedarius</i> colostrum using ammonium sulfate fractionation and chromatographic procedures. SDS-PAGE was performed to confirm the purity and molecular weight of the IgG subclasses. Several biochemical and biophysical techniques were employed to study the effect of glycation on camel IgG using methylglyoxal (MGO), a dicarbonyl sugar. Early glycation measurement showed an increase in the fructosamine content by ~four-fold in IgG2, ~two-fold in IgG3, and a slight rise in IgG1. AGEs were observed in all classes of IgGs with maximum hyperchromicity (96.6%) in IgG2. Furthermore, glycation-induced oxidation of IgGs led to an increase in carbonyl content and loss of -SH groups. Among subclass, IgG2 showed the highest (39.7%) increase in carbonyl content accompanied by 82.5% decrease in -SH groups. Far UV-CD analysis illustrated perturbation of β-sheet structure during glycation reaction with MGO. Moreover, glycation of IgG proceeds to various conformational states like aggregation and increased hydrophobicity. In addition, the cytotoxicity assay (MTT) illustrated the proliferation of breast cancer cells (MCF-7) with IgG2 treatment.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (hCA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within hCA I and II isoforms' active sites. The hCA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with KIs spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, KI of 0.19 ± 0.01 μM). Moreover, hCA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with KIs in the range of 0.64 ± 0.08–5.80 ± 0.64 μM compared with AAZ (KI of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and hCAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug–drug interactions unexpectedly when used in combination with other agents.
{"title":"Carbonic anhydrase inhibition by antiviral drugs in vitro and in silico","authors":"Cüneyt Türkeş","doi":"10.1002/jmr.3063","DOIUrl":"10.1002/jmr.3063","url":null,"abstract":"<p>Enzyme inhibition is a commonly utilized method for controlling enzymatic activity in various physiologically relevant biological systems. Herein, the selected five active antiviral drugs, abacavir, emtricitabine, lamivudine, ribavirin, and ritonavir, were assayed as inhibitors of two human isoforms of the metalloenzyme carbonic anhydrase (<i>h</i>CA, EC 4.2.1.1) involved in various physiological/pathological conditions. For this aim, in vitro and in silico studies were performed to gain insights into the plausible binding interactions and affinities for the antiviral drugs within <i>h</i>CA I and II isoforms' active sites. The <i>h</i>CA I, an isoform involved in some pathological conditions such as retinal or cerebral edema, was moderately inhibited by these five drugs at micromolar concentrations with <i>K</i><sub>I</sub>s spanning from 0.49 ± 0.05 to 3.51 ± 0.37 μM compared with the reference drug acetazolamide (AAZ, <i>K</i><sub>I</sub> of 0.19 ± 0.01 μM). Moreover, <i>h</i>CA II, a promising target for edema, glaucoma, epilepsy, and altitude sickness, was a reasonably inhibited isoform by these agents, with <i>K</i><sub>I</sub>s in the range of 0.64 ± 0.08–5.80 ± 0.64 μM compared with AAZ (<i>K</i><sub>I</sub> of 0.17 ± 0.01 μM). Both in vitro and in silico results demonstrated significant interactions between these five drugs and <i>h</i>CAs and that they can support therapeutic targets against the above-mentioned pathological conditions. Additionally, the results obtained will help optimize the clinical dosage regimens of these drugs and avoid drug–drug interactions unexpectedly when used in combination with other agents.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41128523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gel-forming mucin MUC5B is significantly deregulated in lung adenocarcinoma (LUAD), however, its role in tumor progression is not yet clearly understood. Here, we used an integrated computational-pipeline-initiated with gene expression analysis followed by network, functional-enrichment, O-linked glycosylation analyses, mutational profiling, and immune cell infiltration estimation to functionally characterize MUC5B gene in LUAD. Thereafter, clinical biomarker validation was supported by the overall survival (OA) and comparative expression profiling across clinical stages using computational algorithms. The gene expression profile of LUAD identified MUC5B to be significantly up-regulated (logFC: 2.36; p-value: 0.01). Network analysis on LUAD interactome screened MUC5B-related genes, having key enrichment in immune suppression and O-linked glycosylation with serine–threonine-rich tandem repeats being highly glycosylated. Furthermore, positive correlation of mutant MUC5B with immune cells in tumor microenvironment (TME) such as cancer-associated fibroblasts and myeloid-derived suppressor cells indicates TME-mediated tumor progression. The positive correlation with immune inhibitors suggested the enhanced tumor proliferation mediated by MUC5B. Structural stability due to genetic alterations identified overall rigid N–H-backbone dynamics (S2: 0.756), indicating an overall stable mutant protein. Moreover, the low median OA (<50 months) with a hazard ratio of 1.4 and clinical profile of MUC5B gene showed high median expression corresponding to lymph node (N2) and tumor (T3) stages. Our study concludes by highlighting the functional role of O-glycosylated and mutant MUC5B in promoting LUAD by immune suppression. Further, clinical gene expression validation of MUC5B suggests its potential role as a diagnostic biomarker for LUAD metastasis.
{"title":"Elucidating the molecular role of MUC5B in progressive lung adenocarcinoma: Prospects for early diagnosis","authors":"Gayathri Ashok, Abirami Soundararajan, Anand Anbarasu, Sudha Ramaiah","doi":"10.1002/jmr.3064","DOIUrl":"10.1002/jmr.3064","url":null,"abstract":"<p>Gel-forming mucin MUC5B is significantly deregulated in lung adenocarcinoma (LUAD), however, its role in tumor progression is not yet clearly understood. Here, we used an integrated computational-pipeline-initiated with gene expression analysis followed by network, functional-enrichment, O-linked glycosylation analyses, mutational profiling, and immune cell infiltration estimation to functionally characterize MUC5B gene in LUAD. Thereafter, clinical biomarker validation was supported by the overall survival (OA) and comparative expression profiling across clinical stages using computational algorithms. The gene expression profile of LUAD identified MUC5B to be significantly up-regulated (logFC: 2.36; <i>p</i>-value: 0.01). Network analysis on LUAD interactome screened MUC5B-related genes, having key enrichment in immune suppression and O-linked glycosylation with serine–threonine-rich tandem repeats being highly glycosylated. Furthermore, positive correlation of mutant MUC5B with immune cells in tumor microenvironment (TME) such as cancer-associated fibroblasts and myeloid-derived suppressor cells indicates TME-mediated tumor progression. The positive correlation with immune inhibitors suggested the enhanced tumor proliferation mediated by MUC5B. Structural stability due to genetic alterations identified overall rigid N–H-backbone dynamics (S<sup>2</sup>: 0.756), indicating an overall stable mutant protein. Moreover, the low median OA (<50 months) with a hazard ratio of 1.4 and clinical profile of MUC5B gene showed high median expression corresponding to lymph node (N2) and tumor (T3) stages. Our study concludes by highlighting the functional role of O-glycosylated and mutant MUC5B in promoting LUAD by immune suppression. Further, clinical gene expression validation of MUC5B suggests its potential role as a diagnostic biomarker for LUAD metastasis.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetes mellitus is one of the most critical health problems affecting the quality of life of people worldwide, especially in developing countries. According to the World Health Organization reports, the number of patients with diabetes is approximately 420 million, and this number is estimated to be 642 million in 2040. There are 2 main types of diabetes: Type 1 (T1DM), where the body cannot produce enough insulin, and Type 2 (T2DM), where the body cannot use insulin properly. Patients with T1DM are treated with insulin injections while oral glucose-lowering drugs are used for patients with T2DM. Oral antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus have different mechanisms. Among these, α-Glucosidase and α-amylase inhibitors are one of the most important inhibitors. The antidiabetic effect of the chalcones, which show rich activity, draws attention. This research aims to synthesize chalcone derivatives that could show potential antidiabetic activity. In this study, the inhibitory activity of the chalcone compounds (4a-4g, 5a-5g) was tested against α-glucosidase and α-amylase enzymes. Besides, molecular modeling was utilized to predict potential interactions of the synthesized compounds that exhibit inhibitory effects. In both in vitro and in silico studies, the analyses revealed that compound 5e exhibits strong inhibitory effects against α-glucosidase enzymes (Binding energy: −7.75 kcal/mol, IC50: 28.88 μM). Additionally, compound 4f demonstrates encouraging inhibitory effects against α-Amylase (Binding energy: −11.08 kcal/mol, IC50: 46. 21 μM).
{"title":"Investigation of α-glucosidase and α-amylase inhibitory effects of phenoxy chalcones and molecular modeling studies","authors":"Bedriye Seda Kurşun-Aktar, Şevki Adem, Gizem Tatar-Yilmaz, Zeyad Adıl Hameed Hameed, Emine Elçin Oruç-Emre","doi":"10.1002/jmr.3061","DOIUrl":"10.1002/jmr.3061","url":null,"abstract":"<p>Diabetes mellitus is one of the most critical health problems affecting the quality of life of people worldwide, especially in developing countries. According to the World Health Organization reports, the number of patients with diabetes is approximately 420 million, and this number is estimated to be 642 million in 2040. There are 2 main types of diabetes: Type 1 (T1DM), where the body cannot produce enough insulin, and Type 2 (T2DM), where the body cannot use insulin properly. Patients with T1DM are treated with insulin injections while oral glucose-lowering drugs are used for patients with T2DM. Oral antihyperglycemic drugs used in the treatment of type 2 diabetes mellitus have different mechanisms. Among these, α-Glucosidase and α-amylase inhibitors are one of the most important inhibitors. The antidiabetic effect of the chalcones, which show rich activity, draws attention. This research aims to synthesize chalcone derivatives that could show potential antidiabetic activity. In this study, the inhibitory activity of the chalcone compounds (<b>4a</b>-<b>4g, 5a-5g</b>) was tested against α-glucosidase and α-amylase enzymes. Besides, molecular modeling was utilized to predict potential interactions of the synthesized compounds that exhibit inhibitory effects. In both in vitro and in silico studies, the analyses revealed that compound <b>5e</b> exhibits strong inhibitory effects against α-glucosidase enzymes (Binding energy: −7.75 kcal/mol, IC<sub>50</sub>: 28.88 μM). Additionally, compound <b>4f</b> demonstrates encouraging inhibitory effects against α-Amylase (Binding energy: −11.08 kcal/mol, IC<sub>50</sub>: 46. 21 μM).</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41203555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Donepezil is one of the most used drugs in the treatment of Alzheimer's disease. Its activity as an AChE inhibitor makes new studies with these enzyme inhibitors attractive. For this purpose, in this study, 12 compounds including thiosemicarbazone pharmacophore, have been synthesized for the treatment of the Alzheimer's disease. 3,4-Dimethoxybenzene or 1,3-benzodioxolone rings were used for the PAS region. The substituted piperazine benzene structure is preferred for the CAS region. At the same time, the thiosemicarbazone pharmacophore structure with known ChE enzyme inhibition potential was used as a bridge connecting the CAS and PAS regions. Structure determination of compounds 3a–3l were revealed using 13C-NMR, 1H-NMR, and HRMS spectroscopic methods. The inhibition profile of obtained compounds (3a–3l) against ChE was evaluated using in vitro modified Ellman method. Compounds 3a, 3b, 3f, 3g and 3i exhibited inhibitory activity against the AChE enzyme. Compound 3a showed the highest inhibitory potential with an IC50 = 0.030 ± 0.001 μM. As a result of molecular docking studies, compound 3a displayed important interactions compared to other active derivatives. Molecular dynamics studies are important to see the stability of the complex formed by ligand and protein. RMSD, RMSF ang Rg parameters were calculated via dynamic studies. In conclusion, compound 3a may be a potential AChE enzyme inhibitor with its strong inhibitory potential and behavior in silico.
{"title":"Design, synthesis, biological activities, and evaluation of molecular docking-dynamics studies of new thiosemicarbazones that may be effective against Alzheimer's disease","authors":"Neslihan Conger, Derya Osmaniye, Begüm Nurpelin Sağlık, Serkan Levent, Yusuf Ozkay, Zafer Asım Kaplancıklı","doi":"10.1002/jmr.3059","DOIUrl":"10.1002/jmr.3059","url":null,"abstract":"<p>Donepezil is one of the most used drugs in the treatment of Alzheimer's disease. Its activity as an AChE inhibitor makes new studies with these enzyme inhibitors attractive. For this purpose, in this study, 12 compounds including thiosemicarbazone pharmacophore, have been synthesized for the treatment of the Alzheimer's disease. 3,4-Dimethoxybenzene or 1,3-benzodioxolone rings were used for the PAS region. The substituted piperazine benzene structure is preferred for the CAS region. At the same time, the thiosemicarbazone pharmacophore structure with known ChE enzyme inhibition potential was used as a bridge connecting the CAS and PAS regions. Structure determination of compounds <b>3a–3l</b> were revealed using <sup>13</sup>C-NMR, <sup>1</sup>H-NMR, and HRMS spectroscopic methods. The inhibition profile of obtained compounds (<b>3a–3l</b>) against ChE was evaluated using in vitro modified Ellman method. Compounds <b>3a</b>, <b>3b</b>, <b>3f</b>, <b>3g</b> and <b>3i</b> exhibited inhibitory activity against the AChE enzyme. Compound <b>3a</b> showed the highest inhibitory potential with an IC<sub>50</sub> = 0.030 ± 0.001 μM. As a result of molecular docking studies, compound <b>3a</b> displayed important interactions compared to other active derivatives. Molecular dynamics studies are important to see the stability of the complex formed by ligand and protein. RMSD, RMSF ang Rg parameters were calculated via dynamic studies. In conclusion, compound <b>3a</b> may be a potential AChE enzyme inhibitor with its strong inhibitory potential and behavior in silico.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10312585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Temozolomide (TMZ) is a common alkylating chemotherapeutic agent used to treat brain tumors such as glioblastoma multiforme (GBM) and anaplastic astrocytoma. GBM patients develop resistance to this drug, which has an unclear and complicated molecular mechanism. The competing endogenous RNAs (ceRNAs) play critical roles in tumorigenesis, drug resistance, and tumor recurrence in cancers. This study aims to predict ceRNAs, their possible involvement, and underlying molecular mechanisms in TMZ resistance. Therefore, we analyzed coding and non-coding RNA expression levels in TMZ-resistant GBM samples compared to sensitive GBM samples and performed pathway analysis of mRNAs differentially expressed (DE) in TMZ-resistant samples. We next applied a mathematical model on 950 DE long non-coding RNAs (lncRNAs), 116 microRNAs (miRNAs), and 7977 mRNAs and obtained 10 lncRNA-associated ceRNAs that may be regulating potential target genes involved in cancer-related pathways by sponging 25 miRNAs in TMZ-resistant GBM. Among these, two lncRNAs named ARFRP1 and RUSC2 regulate five target genes (IRS1, FOXG1, GNG2, RUNX2, and CACNA1E) involved in AMPK, AKT, mTOR, and TGF-β signaling pathways that activate or inhibit autophagy causing TMZ resistance. The novel lncRNA-associated ceRNA network predicted in GBM offers a fresh viewpoint on TMZ resistance, which might contribute to treating this malignancy.
{"title":"LncRNA-associated competing endogenous RNA network analysis uncovered key lncRNAs involved in temozolomide resistance and tumor recurrence of glioblastoma","authors":"Rojalin Nayak, Bibekanand Mallick","doi":"10.1002/jmr.3060","DOIUrl":"10.1002/jmr.3060","url":null,"abstract":"<p>Temozolomide (TMZ) is a common alkylating chemotherapeutic agent used to treat brain tumors such as glioblastoma multiforme (GBM) and anaplastic astrocytoma. GBM patients develop resistance to this drug, which has an unclear and complicated molecular mechanism. The competing endogenous RNAs (ceRNAs) play critical roles in tumorigenesis, drug resistance, and tumor recurrence in cancers. This study aims to predict ceRNAs, their possible involvement, and underlying molecular mechanisms in TMZ resistance. Therefore, we analyzed coding and non-coding RNA expression levels in TMZ-resistant GBM samples compared to sensitive GBM samples and performed pathway analysis of mRNAs differentially expressed (DE) in TMZ-resistant samples. We next applied a mathematical model on 950 DE long non-coding RNAs (lncRNAs), 116 microRNAs (miRNAs), and 7977 mRNAs and obtained 10 lncRNA-associated ceRNAs that may be regulating potential target genes involved in cancer-related pathways by sponging 25 miRNAs in TMZ-resistant GBM. Among these, two lncRNAs named ARFRP1 and RUSC2 regulate five target genes (IRS1, FOXG1, GNG2, RUNX2, and CACNA1E) involved in AMPK, AKT, mTOR, and TGF-β signaling pathways that activate or inhibit autophagy causing TMZ resistance. The novel lncRNA-associated ceRNA network predicted in GBM offers a fresh viewpoint on TMZ resistance, which might contribute to treating this malignancy.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10340091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1β, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.
{"title":"Gossypin mitigates oxidative damage by downregulating the molecular signaling pathway in oleic acid-induced acute lung injury","authors":"Busra Dincer, Irfan Cinar, Huseyin Serkan Erol, Beste Demirci, Funda Terzi","doi":"10.1002/jmr.3058","DOIUrl":"10.1002/jmr.3058","url":null,"abstract":"<p>One of the leading causes of acute lung injury, which is linked to a high death rate, is pulmonary fat embolism. Increases in proinflammatory cytokines and the production of free radicals are related to the pathophysiology of acute lung injury. Antioxidants that scavenge free radicals play a protective role against acute lung injury. Gossypin has been proven to have antioxidant, antimicrobial, and anti-inflammatory properties. In this study, we compared the role of Gossypin with the therapeutically used drug Dexamethasone in the acute lung injury model caused by oleic acid in rats. Thirty rats were divided into five groups; Sham, Oleic acid model, Oleic acid+Dexamethasone (0.1 mg/kg), Oleic acid+Gossypin (10 and 20 mg/kg). Two hours after pretreatment with Dexamethasone or Gossypin, the acute lung injury model was created by injecting 1 g/kg oleic acid into the femoral vein. Three hours following the oleic acid injection, rats were decapitated. Lung tissues were extracted for histological, immunohistochemical, biochemical, PCR, and SEM imaging assessment. The oleic acid injection caused an increase in lipid peroxidation and catalase activity, pathological changes in lung tissue, decreased superoxide dismutase activity, and glutathione level, and increased TNF-α, IL-1β, IL-6, and IL-8 expression. However, these changes were attenuated after treatment with Gossypin and Dexamethasone. By reducing the expression of proinflammatory cytokines and attenuating oxidative stress, Gossypin pretreatment provides a new target that is equally effective as dexamethasone in the treatment of oleic acid-induced acute lung injury.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10210637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mallappa Mahanthappa, Mohammed Azharuddin Savanur, Jagadish Ramu, Asma Tatagar
Ingenious nanomaterials with improved biocompatibility and multifunctional properties are gaining vital significance in biomedical applications, including advanced drug delivery and nanotheranostics. In a biological system, these nanoparticles interact with serum proteins forming a dynamic corona that affects their biological or toxicological properties producing undesirable effects. Thus, the current study focuses on the synthesis of sulphur-doped zinc oxide nanoparticles (ZnO/S NPs) and characterizing their mechanism of interaction with serum proteins using multispectroscopic approach. ZnO/S NPs were synthesized by employing a co-precipitation approach and characterized using various analytical techniques. The results of interaction studies demonstrated that ZnO/S NPs interact with serum albumins via the static quenching process. Analysis of thermodynamic parameters (ΔG, ΔH and ΔS) revealed that the binding process is spontaneous, exothermic and van der Waals force or hydrogen bonding plays a major role. The interaction of ZnO/S NPs with tyrosine residue in bovine serum albumin was established by synchronous fluorescence spectroscopy. In addition, the results of UV–visible, circular dichroism, Fourier transform infrared, Forster's resonance energy transfer theory and dynamic light scattering spectroscopic studies revealed that the ZnO/S NPs interact with albumin by inducing the conformational changes in secondary structure and reducing the α-helix content.
{"title":"Elucidating the significance of molecular interaction between sulphur doped zinc oxide nanoparticles and serum albumin using multispectroscopic approach","authors":"Mallappa Mahanthappa, Mohammed Azharuddin Savanur, Jagadish Ramu, Asma Tatagar","doi":"10.1002/jmr.3054","DOIUrl":"10.1002/jmr.3054","url":null,"abstract":"<p>Ingenious nanomaterials with improved biocompatibility and multifunctional properties are gaining vital significance in biomedical applications, including advanced drug delivery and nanotheranostics. In a biological system, these nanoparticles interact with serum proteins forming a dynamic corona that affects their biological or toxicological properties producing undesirable effects. Thus, the current study focuses on the synthesis of sulphur-doped zinc oxide nanoparticles (ZnO/S NPs) and characterizing their mechanism of interaction with serum proteins using multispectroscopic approach. ZnO/S NPs were synthesized by employing a co-precipitation approach and characterized using various analytical techniques. The results of interaction studies demonstrated that ZnO/S NPs interact with serum albumins via the static quenching process. Analysis of thermodynamic parameters (Δ<i>G</i>, Δ<i>H</i> and Δ<i>S</i>) revealed that the binding process is spontaneous, exothermic and van der Waals force or hydrogen bonding plays a major role. The interaction of ZnO/S NPs with tyrosine residue in bovine serum albumin was established by synchronous fluorescence spectroscopy. In addition, the results of UV–visible, circular dichroism, Fourier transform infrared, Forster's resonance energy transfer theory and dynamic light scattering spectroscopic studies revealed that the ZnO/S NPs interact with albumin by inducing the conformational changes in secondary structure and reducing the α-helix content.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10213388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thrombosis, or the formation of blood clots, can lead to serious medical conditions such as stroke, heart attack, and deep vein thrombosis. The purinoreceptor P2Y12 plays a critical role in the thrombotic pathway and is targeted for therapy to prevent clot formation. However, it is essential to balance the regulation of thrombosis to avoid adverse situations. This study focuses on the P2Y12 receptor and aims to discern the protein residue network and differentiate residues based on their intramolecular interactions. The study utilized a statistical analysis to characterize the significant residues involved in ligand interaction, which helps to identify critical residues that are essential for the function of the receptor. A parametric analysis of interactions of residues in the intraprotein interaction was conducted, which revealed significant residue-based contacts that facilitate protein interactions. By examining the interactions between residues, the mechanisms underlying protein interactions were studied and the importance of specific residues in facilitating these interactions was determined. This research provides important information on P2Y12, and the findings based on the network based significance of interacting residues may contribute to the development of new therapies that target the receptor to prevent clot formation while maintaining a balance in thrombosis regulation to avoid adverse outcomes. Ultimately, this study could lead to improved treatments for thrombotic disorders and better patient outcomes.
{"title":"P2Y12 receptor residues crucial for thrombosis regulation","authors":"M. Vidhya","doi":"10.1002/jmr.3056","DOIUrl":"10.1002/jmr.3056","url":null,"abstract":"<p>Thrombosis, or the formation of blood clots, can lead to serious medical conditions such as stroke, heart attack, and deep vein thrombosis. The purinoreceptor P2Y12 plays a critical role in the thrombotic pathway and is targeted for therapy to prevent clot formation. However, it is essential to balance the regulation of thrombosis to avoid adverse situations. This study focuses on the P2Y12 receptor and aims to discern the protein residue network and differentiate residues based on their intramolecular interactions. The study utilized a statistical analysis to characterize the significant residues involved in ligand interaction, which helps to identify critical residues that are essential for the function of the receptor. A parametric analysis of interactions of residues in the intraprotein interaction was conducted, which revealed significant residue-based contacts that facilitate protein interactions. By examining the interactions between residues, the mechanisms underlying protein interactions were studied and the importance of specific residues in facilitating these interactions was determined. This research provides important information on P2Y12, and the findings based on the network based significance of interacting residues may contribute to the development of new therapies that target the receptor to prevent clot formation while maintaining a balance in thrombosis regulation to avoid adverse outcomes. Ultimately, this study could lead to improved treatments for thrombotic disorders and better patient outcomes.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10215531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Pushpam, S. Christopher Jeyaseelan, R. Jesintha Rani, Shamima Hussain, A. Milton Franklin Benial
The present work describes the structural and spectral properties of N-(2-benzoylamino) phenyl benzamide (NBPB). The geometrical parameters of NBPB molecule such as bond lengths, bond angles and dihedral angles are calculated and compared with experimental values. The assigned vibrational wave numbers are in good agreement with the experimental FTIR and FT Raman spectra. The vibrational frequency of C=O stretching was downshifted to a lower wave number (red shift) due to mesomeric effect. The UV–Vis spectrum of the title compound was simulated and validated experimentally. The energy gap and charge transfer interaction of the title molecule were studied using frontier molecular orbital analysis. The electrophilic and nucleophilic reactivity sites of NBPB were investigated through the analysis of the molecular electrostatic potential surface and the Fukui function. An assessment of the intramolecular stabilization interactions of the molecule was performed using natural bond orbital analysis. The drug-likeness parameter was calculated. To investigate the inhibitory potential of the molecule, molecular docking analysis was conducted against SARS-CoV-2 proteins, revealing its capability to serve as a novel inhibitor against SARS-CoV-2. The high binding affinity of NBPB molecule was due to the presence of hydrogen bonds along with different hydrophobic interactions between the drug and the SARS-CoV-2 protein receptor. Hence, the title molecule is identified to be a potential candidate for SARS-CoV-2.
{"title":"Spectroscopic, quantum chemical investigation and molecular docking studies on N-(2-benzoylamino) phenyl benzamide: A novel SARS-CoV-2 drug","authors":"S. Pushpam, S. Christopher Jeyaseelan, R. Jesintha Rani, Shamima Hussain, A. Milton Franklin Benial","doi":"10.1002/jmr.3057","DOIUrl":"10.1002/jmr.3057","url":null,"abstract":"<p>The present work describes the structural and spectral properties of N-(2-benzoylamino) phenyl benzamide (NBPB). The geometrical parameters of NBPB molecule such as bond lengths, bond angles and dihedral angles are calculated and compared with experimental values. The assigned vibrational wave numbers are in good agreement with the experimental FTIR and FT Raman spectra. The vibrational frequency of C=O stretching was downshifted to a lower wave number (red shift) due to mesomeric effect. The UV–Vis spectrum of the title compound was simulated and validated experimentally. The energy gap and charge transfer interaction of the title molecule were studied using frontier molecular orbital analysis. The electrophilic and nucleophilic reactivity sites of NBPB were investigated through the analysis of the molecular electrostatic potential surface and the Fukui function. An assessment of the intramolecular stabilization interactions of the molecule was performed using natural bond orbital analysis. The drug-likeness parameter was calculated. To investigate the inhibitory potential of the molecule, molecular docking analysis was conducted against SARS-CoV-2 proteins, revealing its capability to serve as a novel inhibitor against SARS-CoV-2. The high binding affinity of NBPB molecule was due to the presence of hydrogen bonds along with different hydrophobic interactions between the drug and the SARS-CoV-2 protein receptor. Hence, the title molecule is identified to be a potential candidate for SARS-CoV-2.</p>","PeriodicalId":16531,"journal":{"name":"Journal of Molecular Recognition","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10213405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}