Pablo Méndez, Rut de la Vega-Ruiz, Alberto Montes-Mellado
Estrogens produced in peripheral tissues and locally in the brain are potent neuromodulators. The function of the hippocampus, a brain region essential for episodic memory and spatial navigation, relies on the activity of ensembles of excitatory neurons whose activity is temporally and spatially coordinated by a wide diversity of inhibitory neurons (INs) types. Over the last years, we have accumulated evidence that indicates that estrogens regulate the function of hippocampal INs through different mechanisms, including transcriptional regulation and rapid nongenomic signaling. Here, we argue that the well-documented influence of estrogens on episodic memory may be related to the actions of local and peripheral estrogens on the heterogenous populations of hippocampal INs. We discuss how physiological changes in peripheral sex hormone levels throughout lifespan may interact with local brain sources to regulate IN function at different stages of life, from early hippocampal development to the aging brain. We conclude that considering INs as mediators of sex hormone actions in the hippocampus across the healthy life span will benefit our understanding of sex-biased neurodevelopmental disorders and physiological aging.
在外周组织和大脑局部产生的雌激素是一种有效的神经调节剂。海马区是记忆和空间导航的重要脑区,其功能依赖于兴奋性神经元集合体的活动,这些神经元集合体的活动在时间和空间上与多种类型的抑制性神经元(INs)相协调。在过去的几年中,我们积累的证据表明,雌激素通过不同的机制调节海马 INs 的功能,包括转录调节和快速的非基因组信号传导。在此,我们认为,雌激素对表观记忆的影响已得到充分证实,这可能与局部和外周雌激素对海马 INs 的异质群的作用有关。我们讨论了外周性激素水平在整个生命周期中的生理变化如何与大脑局部来源相互作用,从而调节从海马早期发育到大脑衰老等不同生命阶段的 IN 功能。我们的结论是,将 INs 视为性激素在整个健康生命周期中作用于海马的介质,将有助于我们理解具有性别偏见的神经发育障碍和生理衰老。
{"title":"Estrogenic regulation of hippocampal inhibitory system across lifespan.","authors":"Pablo Méndez, Rut de la Vega-Ruiz, Alberto Montes-Mellado","doi":"10.1111/jne.13441","DOIUrl":"https://doi.org/10.1111/jne.13441","url":null,"abstract":"<p><p>Estrogens produced in peripheral tissues and locally in the brain are potent neuromodulators. The function of the hippocampus, a brain region essential for episodic memory and spatial navigation, relies on the activity of ensembles of excitatory neurons whose activity is temporally and spatially coordinated by a wide diversity of inhibitory neurons (INs) types. Over the last years, we have accumulated evidence that indicates that estrogens regulate the function of hippocampal INs through different mechanisms, including transcriptional regulation and rapid nongenomic signaling. Here, we argue that the well-documented influence of estrogens on episodic memory may be related to the actions of local and peripheral estrogens on the heterogenous populations of hippocampal INs. We discuss how physiological changes in peripheral sex hormone levels throughout lifespan may interact with local brain sources to regulate IN function at different stages of life, from early hippocampal development to the aging brain. We conclude that considering INs as mediators of sex hormone actions in the hippocampus across the healthy life span will benefit our understanding of sex-biased neurodevelopmental disorders and physiological aging.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cushing's syndrome is characterized by chronic glucocorticoid oversecretion and diverse clinical manifestations. Distinguishing between adrenocorticotropic hormone (ACTH)-independent and ACTH-dependent forms is crucial for determining treatment options. Plasma ACTH levels aid in the differential diagnosis, with undetectable or low levels suggesting ACTH-independent hypercortisolemia. ACTH is derived from pro-opiomelanocortin, and its processing involves prohormone convertase 1/3. High-molecular-weight ACTH is generally found in ACTH-producing pituitary tumors and ectopic ACTH syndrome. The mechanism of negative feedback and the process of high-molecular-weight ACTH alternation during ACTH-independent Cushing's syndrome remain unclear. A 40-year-old woman with hypertension and multiple fractures developed symptoms suggestive of Cushing's syndrome. Computed tomography revealed a left adrenocortical tumor along with atrophy of the right adrenal gland. ACTH levels were undetectable at the previous clinic, indicating ACTH-independent Cushing's syndrome. However, subsequent measurements at our hospital revealed non-suppressed ACTH (18.1 pg/mL), prompting further investigation. Gel exclusion chromatography confirmed the presence of high-molecular-weight ACTH. Metyrapone treatment decreased the cortisol levels. In this situation, in which ACTH levels should be elevated, a decrease in high-molecular-weight ACTH levels was observed. Histological findings revealed cortisol-producing adenoma without ACTH expression. This case highlights the importance of assay differences in evaluating ACTH concentrations and introduces a novel finding of circulating high-molecular-weight ACTH. The observed decline in high-molecular-weight ACTH levels suggests a potential time lag in the negative feedback within the hypothalamic-pituitary-adrenal axis exhibited by glucocorticoids. This temporal aspect of the regulation of ACTH-related molecules warrants further exploration to enhance our understanding of the hypothalamic-pituitary-adrenal axis feedback mechanism.
{"title":"Understanding negative feedback: Changes in high-molecular-weight adrenocorticotropic hormone in adrenocorticotropic hormone-independent Cushing's syndrome.","authors":"Yuto Ichinose, Mei Nakatsuji, Hironori Bando, Masaaki Yamamoto, Maki Kanzawa, Kei Yoshino, Hidenori Fukuoka, Wataru Ogawa","doi":"10.1111/jne.13438","DOIUrl":"https://doi.org/10.1111/jne.13438","url":null,"abstract":"<p><p>Cushing's syndrome is characterized by chronic glucocorticoid oversecretion and diverse clinical manifestations. Distinguishing between adrenocorticotropic hormone (ACTH)-independent and ACTH-dependent forms is crucial for determining treatment options. Plasma ACTH levels aid in the differential diagnosis, with undetectable or low levels suggesting ACTH-independent hypercortisolemia. ACTH is derived from pro-opiomelanocortin, and its processing involves prohormone convertase 1/3. High-molecular-weight ACTH is generally found in ACTH-producing pituitary tumors and ectopic ACTH syndrome. The mechanism of negative feedback and the process of high-molecular-weight ACTH alternation during ACTH-independent Cushing's syndrome remain unclear. A 40-year-old woman with hypertension and multiple fractures developed symptoms suggestive of Cushing's syndrome. Computed tomography revealed a left adrenocortical tumor along with atrophy of the right adrenal gland. ACTH levels were undetectable at the previous clinic, indicating ACTH-independent Cushing's syndrome. However, subsequent measurements at our hospital revealed non-suppressed ACTH (18.1 pg/mL), prompting further investigation. Gel exclusion chromatography confirmed the presence of high-molecular-weight ACTH. Metyrapone treatment decreased the cortisol levels. In this situation, in which ACTH levels should be elevated, a decrease in high-molecular-weight ACTH levels was observed. Histological findings revealed cortisol-producing adenoma without ACTH expression. This case highlights the importance of assay differences in evaluating ACTH concentrations and introduces a novel finding of circulating high-molecular-weight ACTH. The observed decline in high-molecular-weight ACTH levels suggests a potential time lag in the negative feedback within the hypothalamic-pituitary-adrenal axis exhibited by glucocorticoids. This temporal aspect of the regulation of ACTH-related molecules warrants further exploration to enhance our understanding of the hypothalamic-pituitary-adrenal axis feedback mechanism.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunus Soleymani, Seyed Amir Hossein Batouli, Amin Akbari Ahangar, Ata Pourabbasi
Optimal glucose control is crucial for maintaining brain health and preventing metabolic and cognitive disorders in the general population. Glycosylated hemoglobin (HbA1c) serves as a key marker for assessing glucose intolerance and its impact on brain structure and function in healthy individuals. However, existing literature presents conflicting findings, necessitating a systematic review to consolidate current knowledge in this domain. This systematic review examines 26 English-language studies involving participants aged 15 years and above, investigating the relationship between HbA1c levels and brain health. Studies focusing on normal/general populations and utilizing magnetic resonance imaging (MRI) as the imaging modality were included. Exclusion criteria encompassed review articles, abstracts, letters, animal studies, and research involving neuropsychiatric or metabolic diseases. Data were gathered from PubMed, Scopus, and Web of Science databases up to November 2023. Analysis reveals significant associations between HbA1c levels and various brain metrics, including volume, cortical thickness, fractional anisotropy, mean diffusivity, activity, and connectivity. However, findings exhibit inconsistency, likely attributed to disparities in sample characteristics and study sizes. Notably, hippocampal volume, white matter hyperintensity, and ventral attention network connectivity emerge as frequently affected structures and functions, mirroring trends observed in diabetic populations. Despite inconclusive evidence, glucose intolerance appears to exert considerable influence on select brain structures and functions in individuals without diagnosed metabolic disorders. Understanding these associations is critical for mitigating the risk of cognitive decline and dementia in healthy populations. Future investigations should aim to elucidate the intricate relationship between HbA1c concentrations and brain health parameters in normoglycemic individuals.
最佳的血糖控制对于维持大脑健康、预防代谢和认知障碍至关重要。糖化血红蛋白(HbA1c)是评估葡萄糖不耐受及其对健康人大脑结构和功能影响的关键指标。然而,现有文献的研究结果相互矛盾,因此有必要进行系统综述,以巩固该领域的现有知识。本系统综述研究了 26 项涉及 15 岁及以上参与者的英语研究,调查 HbA1c 水平与大脑健康之间的关系。研究对象为正常/普通人群,采用磁共振成像(MRI)作为成像模式。排除标准包括综述文章、摘要、信件、动物实验以及涉及神经精神或代谢疾病的研究。数据收集自 PubMed、Scopus 和 Web of Science 数据库,截止日期为 2023 年 11 月。分析表明,HbA1c 水平与各种大脑指标(包括体积、皮质厚度、分数各向异性、平均扩散性、活动性和连接性)之间存在重大关联。然而,研究结果并不一致,这可能是由于样本特征和研究规模的差异造成的。值得注意的是,海马体积、白质高密度和腹侧注意网络连通性是经常受到影响的结构和功能,这与在糖尿病人群中观察到的趋势一致。尽管尚无定论,但葡萄糖不耐受似乎对未确诊代谢紊乱的个体的特定大脑结构和功能产生了相当大的影响。了解这些关联对于降低健康人群认知能力下降和痴呆症的风险至关重要。未来的研究应旨在阐明血糖正常者的 HbA1c 浓度与大脑健康参数之间错综复杂的关系。
{"title":"Association of glycosylated hemoglobin concentrations with structural and functional brain changes in the normoglycemic population: A systematic review.","authors":"Yunus Soleymani, Seyed Amir Hossein Batouli, Amin Akbari Ahangar, Ata Pourabbasi","doi":"10.1111/jne.13437","DOIUrl":"https://doi.org/10.1111/jne.13437","url":null,"abstract":"<p><p>Optimal glucose control is crucial for maintaining brain health and preventing metabolic and cognitive disorders in the general population. Glycosylated hemoglobin (HbA1c) serves as a key marker for assessing glucose intolerance and its impact on brain structure and function in healthy individuals. However, existing literature presents conflicting findings, necessitating a systematic review to consolidate current knowledge in this domain. This systematic review examines 26 English-language studies involving participants aged 15 years and above, investigating the relationship between HbA1c levels and brain health. Studies focusing on normal/general populations and utilizing magnetic resonance imaging (MRI) as the imaging modality were included. Exclusion criteria encompassed review articles, abstracts, letters, animal studies, and research involving neuropsychiatric or metabolic diseases. Data were gathered from PubMed, Scopus, and Web of Science databases up to November 2023. Analysis reveals significant associations between HbA1c levels and various brain metrics, including volume, cortical thickness, fractional anisotropy, mean diffusivity, activity, and connectivity. However, findings exhibit inconsistency, likely attributed to disparities in sample characteristics and study sizes. Notably, hippocampal volume, white matter hyperintensity, and ventral attention network connectivity emerge as frequently affected structures and functions, mirroring trends observed in diabetic populations. Despite inconclusive evidence, glucose intolerance appears to exert considerable influence on select brain structures and functions in individuals without diagnosed metabolic disorders. Understanding these associations is critical for mitigating the risk of cognitive decline and dementia in healthy populations. Future investigations should aim to elucidate the intricate relationship between HbA1c concentrations and brain health parameters in normoglycemic individuals.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141889496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
α-Melanocyte stimulating hormone (α-MSH) is a peptide hormone released from the intermediate lobe of the pituitary which regulates body pigmentation. In addition to the pituitary, α-MSH is also produced in the midbrain, and exerts both anorexigenic and an anxiogenic actions. Acyl ghrelin and cholecystokinin are peripheral hormones derived from the digestive tract which affect the brain to control food intake and feeding behavior in vertebrates. In the present study, hypothesizing that plasma α-MSH may also stimulate the brain and exert central effects, we examined whether peripherally administered α-MSH affects food intake and psychomotor activity using a goldfish model. Intraperitoneal (IP) administration of α-MSH at 100 pmol g-1 body weight (BW) reduced food consumption and enhanced thigmotaxis. These α-MSH-induced actions were blocked by intracerebroventricular administration of HS024, an antagonist of the melanocortin 4 receptor (MC4R), at 50 pmol g-1 BW, whereas these actions were not attenuated by pretreatment with an IP-injected excess amount of capsaicin, a neurotoxin that destroys primary sensory (vagal and splanchnic) afferents, at 160 nmol g-1 BW. Transcripts for the MC4R showed higher expression in the diencephalon in other regions of the brain. These results suggest that, in goldfish, IP administered α-MSH is taken up by the brain, and also acts as anorexigenic and anxiogenic factor via the MC4R signaling pathway.
{"title":"Intraperitoneal administration of α-melanocyte stimulating hormone (α-MSH) suppresses food intake and induces anxiety-like behavior via the brain MC4 receptor-signaling pathway in goldfish.","authors":"Keisuke Watanabe, Norifumi Konno, Tomoya Nakamachi, Kouhei Matsuda","doi":"10.1111/jne.13435","DOIUrl":"https://doi.org/10.1111/jne.13435","url":null,"abstract":"<p><p>α-Melanocyte stimulating hormone (α-MSH) is a peptide hormone released from the intermediate lobe of the pituitary which regulates body pigmentation. In addition to the pituitary, α-MSH is also produced in the midbrain, and exerts both anorexigenic and an anxiogenic actions. Acyl ghrelin and cholecystokinin are peripheral hormones derived from the digestive tract which affect the brain to control food intake and feeding behavior in vertebrates. In the present study, hypothesizing that plasma α-MSH may also stimulate the brain and exert central effects, we examined whether peripherally administered α-MSH affects food intake and psychomotor activity using a goldfish model. Intraperitoneal (IP) administration of α-MSH at 100 pmol g<sup>-1</sup> body weight (BW) reduced food consumption and enhanced thigmotaxis. These α-MSH-induced actions were blocked by intracerebroventricular administration of HS024, an antagonist of the melanocortin 4 receptor (MC4R), at 50 pmol g<sup>-1</sup> BW, whereas these actions were not attenuated by pretreatment with an IP-injected excess amount of capsaicin, a neurotoxin that destroys primary sensory (vagal and splanchnic) afferents, at 160 nmol g<sup>-1</sup> BW. Transcripts for the MC4R showed higher expression in the diencephalon in other regions of the brain. These results suggest that, in goldfish, IP administered α-MSH is taken up by the brain, and also acts as anorexigenic and anxiogenic factor via the MC4R signaling pathway.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141875139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Announcement: Gregory F. Ball wins the 2024 Donald S. Farner Medal for Excellence in Research in the Field of Avian Endocrinology.","authors":"Jacques Balthazart","doi":"10.1111/jne.13436","DOIUrl":"https://doi.org/10.1111/jne.13436","url":null,"abstract":"","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ivana Kraljevic, Mirsala Solak, Diana Kovac, Tanja Skoric Polovina, Karin Zibar Tomsic, Annemarie Balasko, Tina Dusek, Darko Kastelan
Growth hormone (GH) has a short half-life and declines abruptly following somatotropinoma surgery, enabling its prompt measurement as an indicator of surgical success. This study assesses the predictive value of early postoperative GH levels for 3-month and >1-year remission of acromegaly. We conducted a retrospective search in our database of patients who had undergone transsphenoidal surgery of GH-secreting pituitary adenoma from January 2011 to June 2022. Only the patients who underwent the first pituitary surgery and had GH measurements on the fifth postoperative day were included. The 3-month and >1-year remission of acromegaly was defined as achieving the GH nadir of <0.4 μg/L during an oral glucose tolerance test and maintaining normal insulin-like growth factor 1 levels at the initial follow-up visit 3 months after surgery and throughout at least the first year postoperation. We included 63 patients in the analysis, with a median follow-up of 51.8 (13-155) months. The 3-month remission was achieved in 42 (66.7%) patients, and >1-year remission without additional therapy in 38 (60.3%) patients. Those who achieved >1-year remission had significantly lower fifth-day postoperative GH levels (0.59 [0.09-8.92] vs. 2.63 [0.25-24.64] μg/L, p < .001). Receiver-operating characteristic analysis revealed a significant value of fifth-day postoperative GH levels regarding the prediction of 3-month (area under the curve [AUC], 0.834; p < .0001) and >1-year (AUC, 0.783; p < .0001) acromegaly remission. The GH threshold of ≤1.57 μg/L yielded a sensitivity of 90.5% and a specificity of 71.4% at 3 months and 89.5% sensitivity and 60% specificity at the >1-year remission, respectively. Notably, all patients with fifth-day postoperative GH levels ≤0.23 μg/L exhibited remission of acromegaly throughout the follow-up period. Early postoperative GH measurement could be a reliable predictor of both 3-month and >1-year remission of acromegaly.
{"title":"Early postoperative growth hormone measurement as a predictive marker for acromegaly remission.","authors":"Ivana Kraljevic, Mirsala Solak, Diana Kovac, Tanja Skoric Polovina, Karin Zibar Tomsic, Annemarie Balasko, Tina Dusek, Darko Kastelan","doi":"10.1111/jne.13434","DOIUrl":"https://doi.org/10.1111/jne.13434","url":null,"abstract":"<p><p>Growth hormone (GH) has a short half-life and declines abruptly following somatotropinoma surgery, enabling its prompt measurement as an indicator of surgical success. This study assesses the predictive value of early postoperative GH levels for 3-month and >1-year remission of acromegaly. We conducted a retrospective search in our database of patients who had undergone transsphenoidal surgery of GH-secreting pituitary adenoma from January 2011 to June 2022. Only the patients who underwent the first pituitary surgery and had GH measurements on the fifth postoperative day were included. The 3-month and >1-year remission of acromegaly was defined as achieving the GH nadir of <0.4 μg/L during an oral glucose tolerance test and maintaining normal insulin-like growth factor 1 levels at the initial follow-up visit 3 months after surgery and throughout at least the first year postoperation. We included 63 patients in the analysis, with a median follow-up of 51.8 (13-155) months. The 3-month remission was achieved in 42 (66.7%) patients, and >1-year remission without additional therapy in 38 (60.3%) patients. Those who achieved >1-year remission had significantly lower fifth-day postoperative GH levels (0.59 [0.09-8.92] vs. 2.63 [0.25-24.64] μg/L, p < .001). Receiver-operating characteristic analysis revealed a significant value of fifth-day postoperative GH levels regarding the prediction of 3-month (area under the curve [AUC], 0.834; p < .0001) and >1-year (AUC, 0.783; p < .0001) acromegaly remission. The GH threshold of ≤1.57 μg/L yielded a sensitivity of 90.5% and a specificity of 71.4% at 3 months and 89.5% sensitivity and 60% specificity at the >1-year remission, respectively. Notably, all patients with fifth-day postoperative GH levels ≤0.23 μg/L exhibited remission of acromegaly throughout the follow-up period. Early postoperative GH measurement could be a reliable predictor of both 3-month and >1-year remission of acromegaly.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The prolactin receptor (Prlr) is widely expressed in the brain, particularly in the hypothalamus. Prolactin also has an increasing range of well-characterised effects on central nervous system function. Because of this, over many years, there has been interest in whether the hormone itself is also expressed within the brain, perhaps acting as a neuropeptide to regulate brain function via its receptor in neurons. The aim of this invited review is to critically evaluate the evidence for brain production of prolactin. Unlike the evidence for the Prlr, evidence for brain prolactin is inconsistent and variable. A range of different antibodies have been used, each characterising a different distribution of prolactin-like immunoreactivity. Prolactin mRNA has been detected in the brain, but only at levels markedly lower than seen in the pituitary gland. Importantly, it has largely only been detected by highly sensitive amplification-based techniques, and the extreme sensitivity means there is a risk of false-positive data. Modern in situ hybridisation methods and single-cell RNA sequencing have not provided supporting evidence, but it is hard to prove a negative! Finally, I acknowledge and discuss the possibility that prolactin might be produced in the brain under specific circumstances, such as to promote a neuroprotective response to cell damage. Collectively, however, based on this analysis, I have formed the opinion that brain production of prolactin is unlikely, and even if occurs, it is of little physiological consequence. Most, if not all of the brain actions of prolactin can be explained by pituitary prolactin gaining access to the brain.
{"title":"Does the brain make prolactin?","authors":"David R. Grattan","doi":"10.1111/jne.13432","DOIUrl":"10.1111/jne.13432","url":null,"abstract":"<p>The prolactin receptor (Prlr) is widely expressed in the brain, particularly in the hypothalamus. Prolactin also has an increasing range of well-characterised effects on central nervous system function. Because of this, over many years, there has been interest in whether the hormone itself is also expressed within the brain, perhaps acting as a neuropeptide to regulate brain function via its receptor in neurons. The aim of this invited review is to critically evaluate the evidence for brain production of prolactin. Unlike the evidence for the Prlr, evidence for brain prolactin is inconsistent and variable. A range of different antibodies have been used, each characterising a different distribution of prolactin-like immunoreactivity. Prolactin mRNA has been detected in the brain, but only at levels markedly lower than seen in the pituitary gland. Importantly, it has largely only been detected by highly sensitive amplification-based techniques, and the extreme sensitivity means there is a risk of false-positive data. Modern in situ hybridisation methods and single-cell RNA sequencing have not provided supporting evidence, but it is hard to prove a negative! Finally, I acknowledge and discuss the possibility that prolactin might be produced in the brain under specific circumstances, such as to promote a neuroprotective response to cell damage. Collectively, however, based on this analysis, I have formed the opinion that brain production of prolactin is unlikely, and even if occurs, it is of little physiological consequence. Most, if not all of the brain actions of prolactin can be explained by pituitary prolactin gaining access to the brain.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The type II gonadotropin-releasing hormone (GnRH-II) was first discovered in chicken (Gallus gallus) brain and then shown to be present in many vertebrates. Indeed, its structure is conserved unchanged throughout vertebrate evolution from teleost fish through to mammals suggesting a crucial function. Yet the functional significance has been largely unexplored. Studies in comparative endocrinology show that the GnRH-II system is differentially functional in mammalian species. Intact GnRH-II neuropeptide and receptor genes (GnRH2 and GnRH receptor 2 GnRHR2) occur in marmoset monkeys (Callithrix jacchus), musk shrews (Suncus murinus) and pigs (Sus scrofa). However, one or other or both of these genes are inactivated in other species, where mutations or remnants affecting GnRH2 neuropeptide and/or type II GnRHR exons are retained in conserved genomic loci. New data from DNA sequencing projects facilitate extensive analysis of species-specific variation in these genes. Here, we describe GnRH2 and GnRHR2 genes spanning a collection of 21 taxonomic orders, encompassing around 140 species from Primates, Scandentia, Eulipotyphla, Rodentia, Lagomorpha, Artiodactyla, Carnivora, Perissodactyls, Pholidota, Chiroptera, Afrotheria, Xenarthra and Marsupialia. Intact coding exons for both GnRH2 and GnRHR2 occur in monkeys, tree shrews, shrews, moles, hedgehogs, several rodents (degu, kangaroo-rat, pocket mouse), pig, pecarry and warthog, camels and alpaca, bears, Weddell seal, hyena, elephant, aardvark and marsupials. Inactivating mutations affecting GnRH2 and GnRHR2, some located at conserved sites within exons, occur in species of primates, most rodents, lagomorphs, bovidae, cetaceans, felidae, canidae and other carnivora, pangolins, most bats, armadillo, brushtail and echidna. A functional GnRH-II system appears retained within several taxonomic families of mammals, but intact retention does not extend to whole taxonomic orders. Defining how endogenous GnRH-II neuropeptide operates in different mammals may afford functional insight into its actions in the brain, especially as, unlike the type I GnRH system, it is expressed in the mid brain and not the hypothalamus.
{"title":"Genome sequencing projects reveal new insights into the mammalian Gonadotropin-releasing Hormone II system","authors":"Kevin Morgan, Robert P. Millar","doi":"10.1111/jne.13431","DOIUrl":"10.1111/jne.13431","url":null,"abstract":"<p>The type II gonadotropin-releasing hormone (GnRH-II) was first discovered in chicken (<i>Gallus gallus</i>) brain and then shown to be present in many vertebrates. Indeed, its structure is conserved unchanged throughout vertebrate evolution from teleost fish through to mammals suggesting a crucial function. Yet the functional significance has been largely unexplored. Studies in comparative endocrinology show that the GnRH-II system is differentially functional in mammalian species. Intact GnRH-II neuropeptide and receptor genes (<i>GnRH2</i> and GnRH receptor 2 <i>GnRHR2</i>) occur in marmoset monkeys (<i>Callithrix jacchus</i>), musk shrews (<i>Suncus murinus</i>) and pigs (<i>Sus scrofa</i>). However, one or other or both of these genes are inactivated in other species, where mutations or remnants affecting <i>GnRH</i>2 neuropeptide and/or type II <i>GnRHR</i> exons are retained in conserved genomic loci. New data from DNA sequencing projects facilitate extensive analysis of species-specific variation in these genes. Here, we describe <i>GnRH2</i> and <i>GnRHR2</i> genes spanning a collection of 21 taxonomic orders, encompassing around 140 species from Primates, Scandentia, Eulipotyphla, Rodentia, Lagomorpha, Artiodactyla, Carnivora, Perissodactyls, Pholidota, Chiroptera, Afrotheria, Xenarthra and Marsupialia. Intact coding exons for both <i>GnRH2</i> and <i>GnRHR2</i> occur in monkeys, tree shrews, shrews, moles, hedgehogs, several rodents (degu, kangaroo-rat, pocket mouse), pig, pecarry and warthog, camels and alpaca, bears, Weddell seal, hyena, elephant, aardvark and marsupials. Inactivating mutations affecting <i>GnRH2</i> and <i>GnRHR2</i>, some located at conserved sites within exons, occur in species of primates, most rodents, lagomorphs, bovidae, cetaceans, felidae, canidae and other carnivora, pangolins, most bats, armadillo, brushtail and echidna. A functional GnRH-II system appears retained within several taxonomic families of mammals, but intact retention does not extend to whole taxonomic orders. Defining how endogenous GnRH-II neuropeptide operates in different mammals may afford functional insight into its actions in the brain, especially as, unlike the type I GnRH system, it is expressed in the mid brain and not the hypothalamus.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inmaculada Velasco, Silvia Daza-Dueñas, Encarnación Torres, Francisco Ruiz-Pino, María J. Vázquez, Manuel Tena-Sempere
Kisspeptins are essential regulators of the reproductive axis, with capacity to potently activate gonadotropin-releasing hormone neurons, acting also as central conduits for the metabolic regulation of fertility. Recent evidence suggests that kisspeptins per se may also modulate several metabolic parameters, including body weight, food intake or energy expenditure, but their actual roles and site(s) of action remain unclear. We present herein a series of studies addressing the metabolic effects of central and peripheral administration of kisspeptin-10 (Kp-10; 1 nmol and 3 nmol daily, respectively) for 11 days in mice of both sexes. To assess direct metabolic actions of Kp-10 versus those derived indirectly from its capacity to modulate gonadal hormone secretion, kisspeptin effects were tested in adult male and female mice gonadectomized and supplemented with fixed, physiological doses of testosterone or 17β-estradiol, respectively. Central administration of Kp-10 decreased food intake in male mice, especially during the dark phase (~50%), which was accompanied by a reduction in total and nocturnal energy expenditure (~16%) and locomotor activity (~70%). In contrast, opposite patterns were detected in female mice, with an increase in total and nocturnal locomotor activity (>65%), despite no changes in food intake or energy expenditure. These changes were independent of body weight, as no differences were detected in mice of both sexes at the end of Kp-10 treatments. Peripheral administration of Kp-10 failed to alter any of the metabolic parameters analyzed, except for a decrease in locomotor activity in male mice and a subtle increase in 24 h food intake in female mice, denoting a predominant central role of kisspeptins in the control of energy metabolism. Finally, glucose tolerance and insulin sensitivity were not significantly affected by central or peripheral treatment with Kp-10. In conclusion, our data reveal a potential role of kisspeptins in the control of key metabolic parameters, including food intake, energy expenditure and locomotor activity, with a preferential action at central level, which is sex steroid-independent but sexually dimorphic.
{"title":"Kisspeptins centrally modulate food intake and locomotor activity in mice independently of gonadal steroids in a sexually dimorphic manner","authors":"Inmaculada Velasco, Silvia Daza-Dueñas, Encarnación Torres, Francisco Ruiz-Pino, María J. Vázquez, Manuel Tena-Sempere","doi":"10.1111/jne.13433","DOIUrl":"10.1111/jne.13433","url":null,"abstract":"<p>Kisspeptins are essential regulators of the reproductive axis, with capacity to potently activate gonadotropin-releasing hormone neurons, acting also as central conduits for the metabolic regulation of fertility. Recent evidence suggests that kisspeptins per se may also modulate several metabolic parameters, including body weight, food intake or energy expenditure, but their actual roles and site(s) of action remain unclear. We present herein a series of studies addressing the metabolic effects of central and peripheral administration of kisspeptin-10 (Kp-10; 1 nmol and 3 nmol daily, respectively) for 11 days in mice of both sexes. To assess direct metabolic actions of Kp-10 versus those derived indirectly from its capacity to modulate gonadal hormone secretion, kisspeptin effects were tested in adult male and female mice gonadectomized and supplemented with fixed, physiological doses of testosterone or 17β-estradiol, respectively. Central administration of Kp-10 decreased food intake in male mice, especially during the dark phase (~50%), which was accompanied by a reduction in total and nocturnal energy expenditure (~16%) and locomotor activity (~70%). In contrast, opposite patterns were detected in female mice, with an increase in total and nocturnal locomotor activity (>65%), despite no changes in food intake or energy expenditure. These changes were independent of body weight, as no differences were detected in mice of both sexes at the end of Kp-10 treatments. Peripheral administration of Kp-10 failed to alter any of the metabolic parameters analyzed, except for a decrease in locomotor activity in male mice and a subtle increase in 24 h food intake in female mice, denoting a predominant central role of kisspeptins in the control of energy metabolism. Finally, glucose tolerance and insulin sensitivity were not significantly affected by central or peripheral treatment with Kp-10. In conclusion, our data reveal a potential role of kisspeptins in the control of key metabolic parameters, including food intake, energy expenditure and locomotor activity, with a preferential action at central level, which is sex steroid-independent but sexually dimorphic.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here, we reflect on the long career in neuroendocrinology of a single, highly productive scientist (‘Bob’ Millar), by analysing his oeuvre of published papers through the lens of citation metrics. We use citation network analysis in a novel manner to identify the specific topics to which his papers have made a particular contribution, allowing us to compare the citations of his papers with those of contemporary papers on the same topic, rather than on the same broad field as generally used to normalise citations. It appears that citation rates are highest for topics on which Bob has published a relatively large number of papers that have become core to a tightly-knit community of authors that cite each other. This analysis shows that an author's impact depends on the existence of a receptive community that is alert to the potential utility of papers from that author, and which uses, amplifies, extends and qualifies the contents of their papers—activities that entail reciprocal citation between authors. The obvious conclusion is that a scientist's impact depends on the use that his or her contemporaries make of his or her contributions, rather than on the contributions in themselves.
{"title":"A career in numbers: A citation network analysis of the work of RP Millar and his contribution to GnRH research","authors":"Rhodri I. Leng, Gareth Leng","doi":"10.1111/jne.13430","DOIUrl":"10.1111/jne.13430","url":null,"abstract":"<p>Here, we reflect on the long career in neuroendocrinology of a single, highly productive scientist (‘Bob’ Millar), by analysing his oeuvre of published papers through the lens of citation metrics. We use citation network analysis in a novel manner to identify the specific topics to which his papers have made a particular contribution, allowing us to compare the citations of his papers with those of contemporary papers on the same topic, rather than on the same broad field as generally used to normalise citations. It appears that citation rates are highest for topics on which Bob has published a relatively large number of papers that have become core to a tightly-knit community of authors that cite each other. This analysis shows that an author's impact depends on the existence of a receptive community that is alert to the potential utility of papers from that author, and which uses, amplifies, extends and qualifies the contents of their papers—activities that entail reciprocal citation between authors. The obvious conclusion is that a scientist's impact depends on the use that his or her contemporaries make of his or her contributions, rather than on the contributions in themselves.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}