Pub Date : 2023-10-01Epub Date: 2023-09-05DOI: 10.1007/s12275-023-00070-4
Moonil Son, Sia Han, Seyeon Lee
Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.
{"title":"Prions in Microbes: The Least in the Most.","authors":"Moonil Son, Sia Han, Seyeon Lee","doi":"10.1007/s12275-023-00070-4","DOIUrl":"10.1007/s12275-023-00070-4","url":null,"abstract":"<p><p>Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10508820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-11-27DOI: 10.1007/s12275-023-00088-8
Mingeun Sagong, Yong-Myung Kang, Na Yeong Kim, Eun Bi Noh, Gyeong-Beom Heo, Se-Hee An, Youn-Jeong Lee, Young Ki Choi, Kwang-Nyeong Lee
Since the 2000s, the Y439 lineage of H9N2 avian influenza virus (AIV) has been the predominant strain circulating in poultry in Korea; however, in 2020, the Y280 lineage emerged and spread rapidly nationwide, causing large economic losses. To prevent further spread and circulation of such viruses, rapid detection and diagnosis through active surveillance programs are crucial. Here, we developed a novel H9 rRT-PCR assay that can detect a broad range of H9Nx viruses in situations in which multiple lineages of H9 AIVs are co-circulating. We then evaluated its efficacy using a large number of clinical samples. The assay, named the Uni Kor-H9 assay, showed high sensitivity for Y280 lineage viruses, as well as for the Y439 lineage originating in Korean poultry and wild birds. In addition, the assay showed no cross-reactivity with other subtypes of AIV or other avian pathogens. Furthermore, the Uni Kor-H9 assay was more sensitive, and had higher detection rates, than reference H9 rRT-PCR methods when tested against a panel of domestically isolated H9 AIVs. In conclusion, the novel Uni Kor-H9 assay enables more rapid and efficient diagnosis than the "traditional" method of virus isolation followed by subtyping RT-PCR. Application of the new H9 rRT-PCR assay to AI active surveillance programs will help to control and manage Korean H9 AIVs more efficiently.
{"title":"Development of a Novel Korean H9-Specific rRT-PCR Assay and Its Application for Avian Influenza Virus Surveillance in Korea.","authors":"Mingeun Sagong, Yong-Myung Kang, Na Yeong Kim, Eun Bi Noh, Gyeong-Beom Heo, Se-Hee An, Youn-Jeong Lee, Young Ki Choi, Kwang-Nyeong Lee","doi":"10.1007/s12275-023-00088-8","DOIUrl":"10.1007/s12275-023-00088-8","url":null,"abstract":"<p><p>Since the 2000s, the Y439 lineage of H9N2 avian influenza virus (AIV) has been the predominant strain circulating in poultry in Korea; however, in 2020, the Y280 lineage emerged and spread rapidly nationwide, causing large economic losses. To prevent further spread and circulation of such viruses, rapid detection and diagnosis through active surveillance programs are crucial. Here, we developed a novel H9 rRT-PCR assay that can detect a broad range of H9Nx viruses in situations in which multiple lineages of H9 AIVs are co-circulating. We then evaluated its efficacy using a large number of clinical samples. The assay, named the Uni Kor-H9 assay, showed high sensitivity for Y280 lineage viruses, as well as for the Y439 lineage originating in Korean poultry and wild birds. In addition, the assay showed no cross-reactivity with other subtypes of AIV or other avian pathogens. Furthermore, the Uni Kor-H9 assay was more sensitive, and had higher detection rates, than reference H9 rRT-PCR methods when tested against a panel of domestically isolated H9 AIVs. In conclusion, the novel Uni Kor-H9 assay enables more rapid and efficient diagnosis than the \"traditional\" method of virus isolation followed by subtyping RT-PCR. Application of the new H9 rRT-PCR assay to AI active surveillance programs will help to control and manage Korean H9 AIVs more efficiently.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138445007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-10-18DOI: 10.1007/s12275-023-00081-1
Yong-Seok Kim, Eun-Mi Hwang, Chang-Myeong Jeong, Chang-Jun Cha
Two novel bacterial strains CJ74T and CJ75T belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74T was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75T was Gram-stain-negative, aerobic, rod-shaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74T and CJ75T belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14T and Flavobacterium foetidum CJ42T with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). Based on the polyphasic taxonomic study, strains CJ74T and CJ75T represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74T (=KACC 19819T =JCM 32889T) and CJ75T (=KACC 23149T =JCM 36132T).
{"title":"Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov., Isolated from Freshwater and Soil.","authors":"Yong-Seok Kim, Eun-Mi Hwang, Chang-Myeong Jeong, Chang-Jun Cha","doi":"10.1007/s12275-023-00081-1","DOIUrl":"10.1007/s12275-023-00081-1","url":null,"abstract":"<p><p>Two novel bacterial strains CJ74<sup>T</sup> and CJ75<sup>T</sup> belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74<sup>T</sup> was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75<sup>T</sup> was Gram-stain-negative, aerobic, rod-shaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74<sup>T</sup> and CJ75<sup>T</sup> belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14<sup>T</sup> and Flavobacterium foetidum CJ42<sup>T</sup> with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C<sub>15:0</sub> and summed feature 3 (C<sub>16:1</sub> ω7c and/or C<sub>16:1</sub> ω6c). Based on the polyphasic taxonomic study, strains CJ74<sup>T</sup> and CJ75<sup>T</sup> represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74<sup>T</sup> (=KACC 19819<sup>T</sup> =JCM 32889<sup>T</sup>) and CJ75<sup>T</sup> (=KACC 23149<sup>T</sup> =JCM 36132<sup>T</sup>).</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1007/s12275-023-00074-0
Jihyeon Kim, Seong-In Na, Dongwook Kim, Jongsik Chun
{"title":"Erratum to: UBCG2: Up-to-Date Bacterial Core Genes and Pipeline for Phylogenomic Analysis.","authors":"Jihyeon Kim, Seong-In Na, Dongwook Kim, Jongsik Chun","doi":"10.1007/s12275-023-00074-0","DOIUrl":"10.1007/s12275-023-00074-0","url":null,"abstract":"","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41135810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-11-23DOI: 10.1007/s12275-023-00085-x
Salman Khan, Chun Han, Awais Iqbal, Chao Guan, Changming Zhao
Elevation gradients, often regarded as "natural experiments or laboratories", can be used to study changes in the distribution of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We obtained bacterial sequences using MiSeq sequencing and clustered them into operational taxonomic units (OTUs). The total number of reads obtained by the bacterial 16S rRNA sequencing analysis was 1,090,555, with an average of approximately 45,439 reads per sample collected from various elevations. The current study observed inconsistent bacterial diversity patterns in samples from the lowest to highest elevations. 983 OTUs were found common among all the elevations. The most unique OTUs were found in the soil sample from elevation_2, followed by elevation_1. Soil sample collected at elevation_6 had the least unique OTUs. Actinobacteria, Protobacteria, Chloroflexi were found most abundant bacterial phyla in current study. Ammonium nitrogen (NH4+-N), and total phosphate (TP) are the main factors influencing bacterial diversity at elevations_1. pH was the main factor influencing the bacterial diversity at elevations_2, elevation_3 and elevation_4. Our results provide new visions on forming and maintaining soil microbial diversity along an elevational gradient and have implications for microbial responses to environmental change in semiarid mountain ecosystems.
{"title":"Impact of Elevational Gradients and Chemical Parameters on Changes in Soil Bacterial Diversity Under Semiarid Mountain Region.","authors":"Salman Khan, Chun Han, Awais Iqbal, Chao Guan, Changming Zhao","doi":"10.1007/s12275-023-00085-x","DOIUrl":"10.1007/s12275-023-00085-x","url":null,"abstract":"<p><p>Elevation gradients, often regarded as \"natural experiments or laboratories\", can be used to study changes in the distribution of microbial diversity related to changes in environmental conditions that typically occur over small geographical scales. We obtained bacterial sequences using MiSeq sequencing and clustered them into operational taxonomic units (OTUs). The total number of reads obtained by the bacterial 16S rRNA sequencing analysis was 1,090,555, with an average of approximately 45,439 reads per sample collected from various elevations. The current study observed inconsistent bacterial diversity patterns in samples from the lowest to highest elevations. 983 OTUs were found common among all the elevations. The most unique OTUs were found in the soil sample from elevation_2, followed by elevation_1. Soil sample collected at elevation_6 had the least unique OTUs. Actinobacteria, Protobacteria, Chloroflexi were found most abundant bacterial phyla in current study. Ammonium nitrogen (NH<sub>4</sub><sup>+</sup>-N), and total phosphate (TP) are the main factors influencing bacterial diversity at elevations_1. pH was the main factor influencing the bacterial diversity at elevations_2, elevation_3 and elevation_4. Our results provide new visions on forming and maintaining soil microbial diversity along an elevational gradient and have implications for microbial responses to environmental change in semiarid mountain ecosystems.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product's optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.
{"title":"Development of a Novel D-Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746.","authors":"Kitisak Sansatchanon, Pipat Sudying, Peerada Promdonkoy, Yutthana Kingcha, Wonnop Visessanguan, Sutipa Tanapongpipat, Weerawat Runguphan, Kanokarn Kocharin","doi":"10.1007/s12275-023-00077-x","DOIUrl":"10.1007/s12275-023-00077-x","url":null,"abstract":"<p><p>D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product's optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10231071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-10-12DOI: 10.1007/s12275-023-00079-9
Jing Zhou, Xuemei Qiu, Xuejing Chen, Sihan Ma, Zhaoyang Chen, Ruzhe Wang, Ying Tian, Yufan Jiang, Li Fan, Jingjie Wang
Polycystic ovary syndrome (PCOS) is a common disease of endocrine-metabolic disorder, and its etiology remains largely unknown. The gut microbiota is possibly involved in PCOS, while the association remains unclear. The comprehensive analysis combining gut microbiota with PCOS typical symptoms was performed to analyze the role of gut microbiota in PCOS in this study. The clinical patients and letrozole-induced animal models were determined on PCOS indexes and gut microbiota, and fecal microbiota transplantation (FMT) was conducted. Results indicated that the animal models displayed typical PCOS symptoms, including disordered estrous cycles, elevated testosterone levels, and ovarian morphological change; meanwhile, the symptoms were improved after FMT. Furthermore, the microbial diversity exhibited disordered, and the abundance of the genus Ruminococcus and Lactobacillus showed a consistent trend in PCOS rats and patients. The microbiota diversity and several key genera were restored subjected to FMT, and correlation analysis also supported relevant conclusions. Moreover, LEfSe analysis showed that Gemmiger, Flexispira, and Eubacterium were overrepresented in PCOS groups. Overall, the results indicate the involvement of gut microbiota in PCOS and its possible alleviation of endocrinal and reproductive dysfunctions through several special bacteria taxa, which can function as the biomarker or potential target for diagnosis and treatment. These results can provide the new insights for treatment and prevention strategies of PCOS.
{"title":"Comprehensive Analysis of Gut Microbiota Alteration in the Patients and Animal Models with Polycystic Ovary Syndrome.","authors":"Jing Zhou, Xuemei Qiu, Xuejing Chen, Sihan Ma, Zhaoyang Chen, Ruzhe Wang, Ying Tian, Yufan Jiang, Li Fan, Jingjie Wang","doi":"10.1007/s12275-023-00079-9","DOIUrl":"10.1007/s12275-023-00079-9","url":null,"abstract":"<p><p>Polycystic ovary syndrome (PCOS) is a common disease of endocrine-metabolic disorder, and its etiology remains largely unknown. The gut microbiota is possibly involved in PCOS, while the association remains unclear. The comprehensive analysis combining gut microbiota with PCOS typical symptoms was performed to analyze the role of gut microbiota in PCOS in this study. The clinical patients and letrozole-induced animal models were determined on PCOS indexes and gut microbiota, and fecal microbiota transplantation (FMT) was conducted. Results indicated that the animal models displayed typical PCOS symptoms, including disordered estrous cycles, elevated testosterone levels, and ovarian morphological change; meanwhile, the symptoms were improved after FMT. Furthermore, the microbial diversity exhibited disordered, and the abundance of the genus Ruminococcus and Lactobacillus showed a consistent trend in PCOS rats and patients. The microbiota diversity and several key genera were restored subjected to FMT, and correlation analysis also supported relevant conclusions. Moreover, LEfSe analysis showed that Gemmiger, Flexispira, and Eubacterium were overrepresented in PCOS groups. Overall, the results indicate the involvement of gut microbiota in PCOS and its possible alleviation of endocrinal and reproductive dysfunctions through several special bacteria taxa, which can function as the biomarker or potential target for diagnosis and treatment. These results can provide the new insights for treatment and prevention strategies of PCOS.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41203563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-08-18DOI: 10.1007/s12275-023-00067-z
Sua Lee, Min Cho, Michael J Sadowsky, Jeonghwan Jang
Nitrate (NO3-) is highly water-soluble and considered to be the main nitrogen pollutants leached from agricultural soils. Its presence in aquatic ecosystems is reported to cause various environmental and public health problems. Bioreactors containing microbes capable of transforming NO3- have been proposed as a means to remediate contaminated waters. Woodchip bioreactors (WBRs) are continuous flow, reactor systems located below or above ground. Below ground systems are comprised of a trench filled with woodchips, or other support matrices. The nitrate present in agricultural drainage wastewater passing through the bioreactor is converted to harmless dinitrogen gas (N2) via the action of several bacteria species. The WBR has been suggested as one of the most cost-effective NO3--removing strategy among several edge-of-field practices, and has been shown to successfully remove NO3- in several field studies. NO3- removal in the WBR primarily occurs via the activity of denitrifying microorganisms via enzymatic reactions sequentially reducing NO3- to N2. While previous woodchip bioreactor studies have focused extensively on its engineering and hydrological aspects, relatively fewer studies have dealt with the microorganisms playing key roles in the technology. This review discusses NO3- pollution cases originating from intensive farming practices and N-cycling microbial metabolisms which is one biological solution to remove NO3- from agricultural wastewater. Moreover, here we review the current knowledge on the physicochemical and operational factors affecting microbial metabolisms resulting in removal of NO3- in WBR, and perspectives to enhance WBR performance in the future.
{"title":"Denitrifying Woodchip Bioreactors: A Microbial Solution for Nitrate in Agricultural Wastewater-A Review.","authors":"Sua Lee, Min Cho, Michael J Sadowsky, Jeonghwan Jang","doi":"10.1007/s12275-023-00067-z","DOIUrl":"10.1007/s12275-023-00067-z","url":null,"abstract":"<p><p>Nitrate (NO<sub>3</sub><sup>-</sup>) is highly water-soluble and considered to be the main nitrogen pollutants leached from agricultural soils. Its presence in aquatic ecosystems is reported to cause various environmental and public health problems. Bioreactors containing microbes capable of transforming NO<sub>3</sub><sup>-</sup> have been proposed as a means to remediate contaminated waters. Woodchip bioreactors (WBRs) are continuous flow, reactor systems located below or above ground. Below ground systems are comprised of a trench filled with woodchips, or other support matrices. The nitrate present in agricultural drainage wastewater passing through the bioreactor is converted to harmless dinitrogen gas (N<sub>2</sub>) via the action of several bacteria species. The WBR has been suggested as one of the most cost-effective NO<sub>3</sub><sup>-</sup>-removing strategy among several edge-of-field practices, and has been shown to successfully remove NO<sub>3</sub><sup>-</sup> in several field studies. NO<sub>3</sub><sup>-</sup> removal in the WBR primarily occurs via the activity of denitrifying microorganisms via enzymatic reactions sequentially reducing NO<sub>3</sub><sup>-</sup> to N<sub>2</sub>. While previous woodchip bioreactor studies have focused extensively on its engineering and hydrological aspects, relatively fewer studies have dealt with the microorganisms playing key roles in the technology. This review discusses NO<sub>3</sub><sup>-</sup> pollution cases originating from intensive farming practices and N-cycling microbial metabolisms which is one biological solution to remove NO<sub>3</sub><sup>-</sup> from agricultural wastewater. Moreover, here we review the current knowledge on the physicochemical and operational factors affecting microbial metabolisms resulting in removal of NO<sub>3</sub><sup>-</sup> in WBR, and perspectives to enhance WBR performance in the future.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10012744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-10-18DOI: 10.1007/s12275-023-00082-0
Yerim Park, Wonjae Kim, Minkyung Kim, Woojun Park
Many freshwater cyanobacteria, including Microcystis aeruginosa, lack several known antibiotic resistance genes; however, both axenic and xenic M. aeruginosa strains exhibited high antibiotic resistance against many antibiotics under our tested concentrations, including colistin, trimethoprim, and kanamycin. Interestingly, axenic PCC7806, although not the xenic NIBR18 and NIBR452 strains, displayed susceptibility to ampicillin and amoxicillin, indicating that the associated bacteria in the phycosphere could confer such antibiotic resistance to xenic strains. Fluorescence and scanning electron microscopic observations revealed their tight association, leading to possible community-level β-lactamase activity. Combinatory treatment of ampicillin with a β-lactamase inhibitor, sulbactam, abolished the ampicillin resistance in the xenic stains. The nitrocefin-based assay confirmed the presence of significant community-level β-lactamase activity. Our tested low ampicillin concentration and high β-lactamase activity could potentially balance the competitive advantage of these dominant species and provide opportunities for the less competitive species, thereby resulting in higher bacterial diversity under ampicillin treatment conditions. Non-PCR-based metagenome data from xenic NIBR18 cultures revealed the dominance of blaOXA-related antibiotic resistance genes followed by other class A β-lactamase genes (AST-1 and FAR-1). Alleviation of ampicillin toxicity could be observed only in axenic PCC7806, which had been cocultured with β-lactamase from other freshwater bacteria. Our study suggested M. aeruginosa develops resistance to old-class β-lactam antibiotics through altruism, where associated bacteria protect axenic M. aeruginosa cells.
{"title":"The β-Lactamase Activity at the Community Level Confers β-Lactam Resistance to Bloom-Forming Microcystis aeruginosa Cells.","authors":"Yerim Park, Wonjae Kim, Minkyung Kim, Woojun Park","doi":"10.1007/s12275-023-00082-0","DOIUrl":"10.1007/s12275-023-00082-0","url":null,"abstract":"<p><p>Many freshwater cyanobacteria, including Microcystis aeruginosa, lack several known antibiotic resistance genes; however, both axenic and xenic M. aeruginosa strains exhibited high antibiotic resistance against many antibiotics under our tested concentrations, including colistin, trimethoprim, and kanamycin. Interestingly, axenic PCC7806, although not the xenic NIBR18 and NIBR452 strains, displayed susceptibility to ampicillin and amoxicillin, indicating that the associated bacteria in the phycosphere could confer such antibiotic resistance to xenic strains. Fluorescence and scanning electron microscopic observations revealed their tight association, leading to possible community-level β-lactamase activity. Combinatory treatment of ampicillin with a β-lactamase inhibitor, sulbactam, abolished the ampicillin resistance in the xenic stains. The nitrocefin-based assay confirmed the presence of significant community-level β-lactamase activity. Our tested low ampicillin concentration and high β-lactamase activity could potentially balance the competitive advantage of these dominant species and provide opportunities for the less competitive species, thereby resulting in higher bacterial diversity under ampicillin treatment conditions. Non-PCR-based metagenome data from xenic NIBR18 cultures revealed the dominance of bla<sub>OXA</sub>-related antibiotic resistance genes followed by other class A β-lactamase genes (AST-1 and FAR-1). Alleviation of ampicillin toxicity could be observed only in axenic PCC7806, which had been cocultured with β-lactamase from other freshwater bacteria. Our study suggested M. aeruginosa develops resistance to old-class β-lactam antibiotics through altruism, where associated bacteria protect axenic M. aeruginosa cells.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41236135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01Epub Date: 2023-09-15DOI: 10.1007/s12275-023-00078-w
Yan Wang, Pir Tariq Shah, Yue Liu, Amina Nawal Bahoussi, Li Xing
Echoviruses belong to the genus Enterovirus in the Picornaviridae family, forming a large group of Enterovirus B (EV-B) within the Enteroviruses. Previously, Echoviruses were classified based on the coding sequence of VP1. In this study, we performed a reliable phylogenetic classification of 277 sequences isolated from 1992 to 2019 based on the full-length genomes of Echovirus. In this report, phylogenetic, phylogeographic, recombination, and amino acid variability landscape analyses were performed to reveal the evolutional characteristics of Echovirus worldwide. Echoviruses were clustered into nine major clades, e.g., G1-G9. Phylogeographic analysis showed that branches G2-G9 were linked to common strains, while the branch G1 was only linked to G5. In contrast, strains E12, E14, and E16 clustered separately from their G3 and G7 clades respectively, and became a separate branch. In addition, we identified a total of 93 recombination events, where most of the events occurred within the VP1-VP4 coding regions. Analysis of amino acid variation showed high variability in the a positions of VP2, VP1, and VP3. This study updates the phylogenetic and phylogeographic information of Echovirus and indicates that extensive recombination and significant amino acid variation in the capsid proteins drove the emergence of new strains.
{"title":"Genetic Characteristics and Phylogeographic Dynamics of Echovirus.","authors":"Yan Wang, Pir Tariq Shah, Yue Liu, Amina Nawal Bahoussi, Li Xing","doi":"10.1007/s12275-023-00078-w","DOIUrl":"10.1007/s12275-023-00078-w","url":null,"abstract":"<p><p>Echoviruses belong to the genus Enterovirus in the Picornaviridae family, forming a large group of Enterovirus B (EV-B) within the Enteroviruses. Previously, Echoviruses were classified based on the coding sequence of VP1. In this study, we performed a reliable phylogenetic classification of 277 sequences isolated from 1992 to 2019 based on the full-length genomes of Echovirus. In this report, phylogenetic, phylogeographic, recombination, and amino acid variability landscape analyses were performed to reveal the evolutional characteristics of Echovirus worldwide. Echoviruses were clustered into nine major clades, e.g., G1-G9. Phylogeographic analysis showed that branches G2-G9 were linked to common strains, while the branch G1 was only linked to G5. In contrast, strains E12, E14, and E16 clustered separately from their G3 and G7 clades respectively, and became a separate branch. In addition, we identified a total of 93 recombination events, where most of the events occurred within the VP1-VP4 coding regions. Analysis of amino acid variation showed high variability in the a positions of VP2, VP1, and VP3. This study updates the phylogenetic and phylogeographic information of Echovirus and indicates that extensive recombination and significant amino acid variation in the capsid proteins drove the emergence of new strains.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10246172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}