The binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements. The reversible denaturation property inherent in aptamers enables the repeated usage of aptamers, which can immensely save the cost of decontamination. Analogous to the point-of-care diagnostics, there is no doubt that aptamers can also be deployed in the point-of-care aptamer-based decontamination assay, whereby decontamination can be performed anywhere and anytime for instantaneous decision-making. It is also prophesied that aptamers can also serve more than as a decontaminant, probably as a tool to capture and kill hazardous elements, particularly pathogenic agents.
{"title":"Aptamers as the Agent in Decontamination Assays (Apta-Decontamination Assays): From the Environment to the Potential Application <i>In Vivo</i>.","authors":"Mawethu Pascoe Bilibana, Marimuthu Citartan, Tzi Shien Yeoh, Timofey S Rozhdestvensky, Thean-Hock Tang","doi":"10.1155/2017/3712070","DOIUrl":"https://doi.org/10.1155/2017/3712070","url":null,"abstract":"<p><p>The binding specificity and affinity of aptamers have long been harnessed as the key elements in the development of aptamer-based assays, particularly aptasensing application. One promising avenue that is currently explored based on the specificity and affinity of aptamers is the application of aptamers in the decontamination assays. Aptamers have been successfully harnessed as the decontamination agents to remove contaminants from the environment and to decontaminate infectious elements. The reversible denaturation property inherent in aptamers enables the repeated usage of aptamers, which can immensely save the cost of decontamination. Analogous to the point-of-care diagnostics, there is no doubt that aptamers can also be deployed in the point-of-care aptamer-based decontamination assay, whereby decontamination can be performed anywhere and anytime for instantaneous decision-making. It is also prophesied that aptamers can also serve more than as a decontaminant, probably as a tool to capture and kill hazardous elements, particularly pathogenic agents.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"3712070"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3712070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35634640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-10-18DOI: 10.1155/2017/6439169
Farhaan A Khan, Syed O Ali
Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.
基因组的完整性不断受到 DNA 损伤源的威胁,无论是内部损伤还是外部损伤。其中最具细胞毒性的病变是 DNA 双链断裂(DSB),它是由双螺旋的两条链裂解引起的。细胞拥有一套相当完善的防御系统来防止和修复这些断裂,而破坏这些过程的药物则是抗癌疗法的一个重要类别。然而,奇怪的是,细胞却利用这种机制有意识地破坏基因组的完整性,在微妙的基因交易中利用具有潜在破坏性的 DSB。在严格的时空调控下,DSB 可作为基因修饰的工具,在细胞生物学中被广泛用于产生各种功能,从 DNA 复制、转录和染色质景观的基本维护,到免疫和种系的多样化。越来越多的证据表明,DSB 生理学异常在人类疾病中扮演着重要角色,了解这些过程既能为设计新的治疗策略提供信息,也能减少现有药物的脱靶效应。在这里,我们回顾了生理学 DSB 的广泛作用及其多边调控的新兴网络,以探讨细胞如何利用 DNA 断裂作为一种重要的生化工具。
{"title":"Physiological Roles of DNA Double-Strand Breaks.","authors":"Farhaan A Khan, Syed O Ali","doi":"10.1155/2017/6439169","DOIUrl":"10.1155/2017/6439169","url":null,"abstract":"<p><p>Genomic integrity is constantly threatened by sources of DNA damage, internal and external alike. Among the most cytotoxic lesions is the DNA double-strand break (DSB) which arises from the cleavage of both strands of the double helix. Cells boast a considerable set of defences to both prevent and repair these breaks and drugs which derail these processes represent an important category of anticancer therapeutics. And yet, bizarrely, cells deploy this very machinery for the intentional and calculated disruption of genomic integrity, harnessing potentially destructive DSBs in delicate genetic transactions. Under tight spatiotemporal regulation, DSBs serve as a tool for genetic modification, widely used across cellular biology to generate diverse functionalities, ranging from the fundamental upkeep of DNA replication, transcription, and the chromatin landscape to the diversification of immunity and the germline. Growing evidence points to a role of aberrant DSB physiology in human disease and an understanding of these processes may both inform the design of new therapeutic strategies and reduce off-target effects of existing drugs. Here, we review the wide-ranging roles of physiological DSBs and the emerging network of their multilateral regulation to consider how the cell is able to harness DNA breaks as a critical biochemical tool.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"6439169"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35643797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-01-23DOI: 10.1155/2017/6590902
Benjun Hou, Suping Feng, Yaoting Wu
This research aimed to systematically identify and preliminarily validate the Hevea brasiliensis expressed sequence tag (EST) information using Simple Sequence Repeat (SSR) and provide evidence for further development of SSR molecular marker. The definition of general SSR features of Hevea EST splicing sequences and development of SSR primers founded the basis of diversity analysis and variety identification for Hevea tree resource. 1134 SSR loci were identified in the EST splicing sequence and distributed in 840 Unigene. The occurrence rate of SSR loci was 23.9%, and the average distribution distance of EST-SSR was 2.59 kb. The major repeat type was mononucleotide repeat motif, which accounted for 38.89%, while the corresponding value was 36.95% for dinucleotide repeat motif and 18.17% for trinucleotide repeat motif; the proportion of other motifs was only 5.99%. The superior repeat motifs for mononucleotide, dinucleotide, and trinucleotide were A/T, AG/CT, and AAG/CTT, respectively. 739 pair of primers were designed for 1134 SSR loci. PCR amplification was performed on Hevea Reyan5-11, Reyan87-6-47, and PR107, and 180 pairs of primers were selected which were able to amplify polymorphism bands.
{"title":"Systemic Identification of <i>Hevea brasiliensis</i> EST-SSR Markers and Primer Screening.","authors":"Benjun Hou, Suping Feng, Yaoting Wu","doi":"10.1155/2017/6590902","DOIUrl":"https://doi.org/10.1155/2017/6590902","url":null,"abstract":"<p><p>This research aimed to systematically identify and preliminarily validate the <i>Hevea brasiliensis</i> expressed sequence tag (EST) information using Simple Sequence Repeat (SSR) and provide evidence for further development of SSR molecular marker. The definition of general SSR features of <i>Hevea</i> EST splicing sequences and development of SSR primers founded the basis of diversity analysis and variety identification for <i>Hevea</i> tree resource. 1134 SSR loci were identified in the EST splicing sequence and distributed in 840 Unigene. The occurrence rate of SSR loci was 23.9%, and the average distribution distance of EST-SSR was 2.59 kb. The major repeat type was mononucleotide repeat motif, which accounted for 38.89%, while the corresponding value was 36.95% for dinucleotide repeat motif and 18.17% for trinucleotide repeat motif; the proportion of other motifs was only 5.99%. The superior repeat motifs for mononucleotide, dinucleotide, and trinucleotide were A/T, AG/CT, and AAG/CTT, respectively. 739 pair of primers were designed for 1134 SSR loci. PCR amplification was performed on <i>Hevea</i> Reyan5-11, Reyan87-6-47, and PR107, and 180 pairs of primers were selected which were able to amplify polymorphism bands.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"6590902"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6590902","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34760158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-11-09DOI: 10.1155/2017/9675348
Ewan K S McRae, Evan P Booy, Gay Pauline Padilla-Meier, Sean A McKenna
Guanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners. This review focuses on the recognition of G4s by proteins and small peptides, comparing the modes of recognition that have thus far been observed. Emphasis will be placed on the information that has been gained through high-resolution crystallographic and NMR structures of G4/peptide complexes as well as biochemical investigations of binding specificity. By understanding the molecular features that lead to specificity of G4 binding by native proteins, we will be better equipped to target protein/G4 interactions for therapeutic purposes.
{"title":"On Characterizing the Interactions between Proteins and Guanine Quadruplex Structures of Nucleic Acids.","authors":"Ewan K S McRae, Evan P Booy, Gay Pauline Padilla-Meier, Sean A McKenna","doi":"10.1155/2017/9675348","DOIUrl":"10.1155/2017/9675348","url":null,"abstract":"<p><p>Guanine quadruplexes (G4s) are four-stranded secondary structures of nucleic acids which are stabilized by noncanonical hydrogen bonding systems between the nitrogenous bases as well as extensive base stacking, or pi-pi, interactions. Formation of these structures in either genomic DNA or cellular RNA has the potential to affect cell biology in many facets including telomere maintenance, transcription, alternate splicing, and translation. Consequently, G4s have become therapeutic targets and several small molecule compounds have been developed which can bind such structures, yet little is known about how G4s interact with their native protein binding partners. This review focuses on the recognition of G4s by proteins and small peptides, comparing the modes of recognition that have thus far been observed. Emphasis will be placed on the information that has been gained through high-resolution crystallographic and NMR structures of G4/peptide complexes as well as biochemical investigations of binding specificity. By understanding the molecular features that lead to specificity of G4 binding by native proteins, we will be better equipped to target protein/G4 interactions for therapeutic purposes.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"9675348"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9675348","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35664421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Genetic factors including the level of expression of the fingerprint of genes involved in the development of bones and cartilage such as GDF-5 or ESR-α or CALM-1 are known to be strong determinants of the osteoarthritis (OA) in Caucasian and Oriental populations. Because of high prevalence of OA in Indian population and availability of limited genetic data, we determined whether similar genetic factors are involved in Indians as well.
Methods: A case control study was carried out involving 500 patients of knee OA and equal number of healthy controls. Genotyping analyses in whole blood, mRNA, and protein expressions in peripheral blood lymphocytes (PBLs) were performed using established protocols.
Results: Our results showed a significantly decreased level of mRNA and protein expressions for GDF-5, ESR-α, and CALM-1 genes in PBLs of OA cases when compared to healthy controls. The frequency of variant genotypes of these genes was also increased significantly in cases of OA compared to controls.
Conclusion: Our results demonstrated that the decrease in expression of GDF-5, ESR-α, and CALM-1 in PBLs and association of polymorphism in these genes may be important in predicting the severity and thereby the progression of OA in Indian population.
{"title":"Expression of Genes and Their Polymorphism Influences the Risk of Knee Osteoarthritis.","authors":"Abhishek Mishra, Rajeshwar Nath Srivastava, Sachin Awasthi, Devendra Parmar, Priya Mishra","doi":"10.1155/2017/3138254","DOIUrl":"https://doi.org/10.1155/2017/3138254","url":null,"abstract":"<p><strong>Introduction: </strong>Genetic factors including the level of expression of the fingerprint of genes involved in the development of bones and cartilage such as GDF-5 or ESR-<i>α</i> or CALM-1 are known to be strong determinants of the osteoarthritis (OA) in Caucasian and Oriental populations. Because of high prevalence of OA in Indian population and availability of limited genetic data, we determined whether similar genetic factors are involved in Indians as well.</p><p><strong>Methods: </strong>A case control study was carried out involving 500 patients of knee OA and equal number of healthy controls. Genotyping analyses in whole blood, mRNA, and protein expressions in peripheral blood lymphocytes (PBLs) were performed using established protocols.</p><p><strong>Results: </strong>Our results showed a significantly decreased level of mRNA and protein expressions for GDF-5, ESR-<i>α</i>, and CALM-1 genes in PBLs of OA cases when compared to healthy controls. The frequency of variant genotypes of these genes was also increased significantly in cases of OA compared to controls.</p><p><strong>Conclusion: </strong>Our results demonstrated that the decrease in expression of GDF-5, ESR-<i>α</i>, and CALM-1 in PBLs and association of polymorphism in these genes may be important in predicting the severity and thereby the progression of OA in Indian population.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"3138254"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/3138254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35247370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-10-18DOI: 10.1155/2017/1641845
Janos Sagi
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
天然核苷酸的合成类似物长期以来被用于规范和非规范核酸的结构研究,包括广泛研究的多态g -四plex (GQs)。最近的一些研究综述了基因折叠景观对序列和核苷酸修饰的依赖性。本文综述了改性GQ折叠的热力学稳定性,以及70多种合成和天然核苷酸衍生物取代天然核苷酸的立体化学偏好如何决定其稳定性和构象。核苷酸类似物只稳定或不稳定GQ,而大多数类似物以两种方式改变GQ的稳定性。这取决于修饰的构建块的首选syn或anti - n -糖苷键,取代的位置和天然GQ的折叠结构。到目前为止,对GQ的自然碱基损伤和表观遗传修饰也能稳定或破坏GQ组装。了解合成核苷酸类似物对GQ稳定性的影响有助于构建所需的稳定GQ拓扑结构,探索单个和集群天然碱基损伤对GQ结构的体外作用可能为细胞事件提供指示。
{"title":"In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids?","authors":"Janos Sagi","doi":"10.1155/2017/1641845","DOIUrl":"10.1155/2017/1641845","url":null,"abstract":"<p><p>Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred <i>syn</i> or <i>anti</i> N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the <i>in vitro</i> action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"1641845"},"PeriodicalIF":1.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664352/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35643795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-02-09DOI: 10.1155/2017/9879135
Delia J Scoville, Tae Kyu Brian Uhm, Jamie A Shallcross, Rebecca J Whelan
CA125 is a mucin glycoprotein whose concentration in serum correlates with a woman's risk of developing ovarian cancer and also indicates response to therapy in diagnosed patients. Accurate detection of this large, complex protein in patient samples is of great clinical relevance. We suggest that powerful new diagnostic tools may be enabled by the development of nucleic acid aptamers with affinity for CA125. Here, we report on our use of One-Pot SELEX to isolate single-stranded DNA aptamers with affinity for CA125, followed by high-throughput sequencing of the selected oligonucleotides. This data-rich approach, combined with bioinformatics tools, enabled the entire selection process to be characterized. Using fluorescence anisotropy and affinity probe capillary electrophoresis, the binding affinities of four aptamer candidates were evaluated. Two aptamers, CA125_1 and CA125_12, both without primers, were found to bind to clinically relevant concentrations of the protein target. Binding was differently influenced by the presence of Mg2+ ions, being required for binding of CA125_1 and abrogating binding of CA125_12. In conclusion, One-Pot SELEX was found to be a promising selection method that yielded DNA aptamers to a clinically important protein target.
{"title":"Selection of DNA Aptamers for Ovarian Cancer Biomarker CA125 Using One-Pot SELEX and High-Throughput Sequencing.","authors":"Delia J Scoville, Tae Kyu Brian Uhm, Jamie A Shallcross, Rebecca J Whelan","doi":"10.1155/2017/9879135","DOIUrl":"https://doi.org/10.1155/2017/9879135","url":null,"abstract":"<p><p>CA125 is a mucin glycoprotein whose concentration in serum correlates with a woman's risk of developing ovarian cancer and also indicates response to therapy in diagnosed patients. Accurate detection of this large, complex protein in patient samples is of great clinical relevance. We suggest that powerful new diagnostic tools may be enabled by the development of nucleic acid aptamers with affinity for CA125. Here, we report on our use of One-Pot SELEX to isolate single-stranded DNA aptamers with affinity for CA125, followed by high-throughput sequencing of the selected oligonucleotides. This data-rich approach, combined with bioinformatics tools, enabled the entire selection process to be characterized. Using fluorescence anisotropy and affinity probe capillary electrophoresis, the binding affinities of four aptamer candidates were evaluated. Two aptamers, CA125_1 and CA125_12, both without primers, were found to bind to clinically relevant concentrations of the protein target. Binding was differently influenced by the presence of Mg<sup>2+</sup> ions, being required for binding of CA125_1 and abrogating binding of CA125_12. In conclusion, One-Pot SELEX was found to be a promising selection method that yielded DNA aptamers to a clinically important protein target.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"9879135"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9879135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34800867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-10-24DOI: 10.1155/2017/7876832
Philip H Williams, Rodney P Eyles, Georg Weiller
[This corrects the article DOI: 10.1155/2012/652979.].
[这更正了文章DOI: 10.1155/2012/652979.]。
{"title":"Corrigendum to \"Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees\".","authors":"Philip H Williams, Rodney P Eyles, Georg Weiller","doi":"10.1155/2017/7876832","DOIUrl":"https://doi.org/10.1155/2017/7876832","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1155/2012/652979.].</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"7876832"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7876832","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35219385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-06-18DOI: 10.1155/2017/6067345
W-Matthias Leeder, Stephan Voskuhl, H Ulrich Göringer
Mitochondrial transcript maturation in African trypanosomes requires RNA editing to convert sequence-deficient pre-mRNAs into translatable mRNAs. The different pre-mRNAs have been shown to adopt highly stable 2D folds; however, it is not known whether these structures resemble the in vivo folds given the extreme "crowding" conditions within the mitochondrion. Here, we analyze the effects of macromolecular crowding on the structure of the mitochondrial RPS12 pre-mRNA. We use high molecular mass polyethylene glycol as a macromolecular cosolute and monitor the structure of the RNA globally and with nucleotide resolution. We demonstrate that crowding has no impact on the 2D fold and we conclude that the MFE structure in dilute solvent conditions represents a good proxy for the folding of the pre-mRNA in its mitochondrial solvent context.
{"title":"The 2D Structure of the <i>T. brucei</i> Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding.","authors":"W-Matthias Leeder, Stephan Voskuhl, H Ulrich Göringer","doi":"10.1155/2017/6067345","DOIUrl":"https://doi.org/10.1155/2017/6067345","url":null,"abstract":"<p><p>Mitochondrial transcript maturation in African trypanosomes requires RNA editing to convert sequence-deficient pre-mRNAs into translatable mRNAs. The different pre-mRNAs have been shown to adopt highly stable 2D folds; however, it is not known whether these structures resemble the in vivo folds given the extreme \"crowding\" conditions within the mitochondrion. Here, we analyze the effects of macromolecular crowding on the structure of the mitochondrial RPS12 pre-mRNA. We use high molecular mass polyethylene glycol as a macromolecular cosolute and monitor the structure of the RNA globally and with nucleotide resolution. We demonstrate that crowding has no impact on the 2D fold and we conclude that the MFE structure in dilute solvent conditions represents a good proxy for the folding of the pre-mRNA in its mitochondrial solvent context.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"6067345"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6067345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35160859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-12-28DOI: 10.1155/2017/9170371
Erika Demkovičová, Ľuboš Bauer, Petra Krafčíková, Katarína Tlučková, Petra Tóthova, Andrea Halaganová, Eva Valušová, Viktor Víglaský
The human telomeric and protozoal telomeric sequences differ only in one purine base in their repeats; TTAGGG in telomeric sequences; and TTGGGG in protozoal sequences. In this study, the relationship between G-quadruplexes formed from these repeats and their derivatives is analyzed and compared. The human telomeric DNA sequence G3(T2AG3)3 and related sequences in which each adenine base has been systematically replaced by a guanine were investigated; the result is Tetrahymena repeats. The substitution does not affect the formation of G-quadruplexes but may cause differences in topology. The results also show that the stability of the substituted derivatives increased in sequences with greater number of substitutions. In addition, most of the sequences containing imperfections in repeats which were analyzed in this study also occur in human and Tetrahymena genomes. Generally, the presence of G-quadruplex structures in any organism is a source of limitations during the life cycle. Therefore, a fuller understanding of the influence of base substitution on the structural variability of G-quadruplexes would be of considerable scientific value.
{"title":"Telomeric G-Quadruplexes: From Human to <i>Tetrahymena</i> Repeats.","authors":"Erika Demkovičová, Ľuboš Bauer, Petra Krafčíková, Katarína Tlučková, Petra Tóthova, Andrea Halaganová, Eva Valušová, Viktor Víglaský","doi":"10.1155/2017/9170371","DOIUrl":"https://doi.org/10.1155/2017/9170371","url":null,"abstract":"<p><p>The human telomeric and protozoal telomeric sequences differ only in one purine base in their repeats; TTAGGG in telomeric sequences; and TTGGGG in protozoal sequences. In this study, the relationship between G-quadruplexes formed from these repeats and their derivatives is analyzed and compared. The human telomeric DNA sequence G<sub>3</sub>(T<sub>2</sub>AG<sub>3</sub>)<sub>3</sub> and related sequences in which each adenine base has been systematically replaced by a guanine were investigated; the result is <i>Tetrahymena</i> repeats. The substitution does not affect the formation of G-quadruplexes but may cause differences in topology. The results also show that the stability of the substituted derivatives increased in sequences with greater number of substitutions. In addition, most of the sequences containing imperfections in repeats which were analyzed in this study also occur in human and <i>Tetrahymena</i> genomes. Generally, the presence of G-quadruplex structures in any organism is a source of limitations during the life cycle. Therefore, a fuller understanding of the influence of base substitution on the structural variability of G-quadruplexes would be of considerable scientific value.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2017 ","pages":"9170371"},"PeriodicalIF":2.3,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/9170371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35831976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}