Pub Date : 2012-01-01Epub Date: 2012-10-24DOI: 10.1155/2012/748913
Maureen McKeague, Maria C Derosa
Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.
{"title":"Challenges and opportunities for small molecule aptamer development.","authors":"Maureen McKeague, Maria C Derosa","doi":"10.1155/2012/748913","DOIUrl":"https://doi.org/10.1155/2012/748913","url":null,"abstract":"<p><p>Aptamers are single-stranded oligonucleotides that bind to targets with high affinity and selectivity. Their use as molecular recognition elements has emerged as a viable approach for biosensing, diagnostics, and therapeutics. Despite this potential, relatively few aptamers exist that bind to small molecules. Small molecules are important targets for investigation due to their diverse biological functions as well as their clinical and commercial uses. Novel, effective molecular recognition probes for these compounds are therefore of great interest. This paper will highlight the technical challenges of aptamer development for small molecule targets, as well as the opportunities that exist for their application in biosensing and chemical biology.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"748913"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/748913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31047774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-05-13DOI: 10.1155/2012/196845
Sharmin Taherpour, Tuomas Lönnberg
A 2,6-bis(3,5-dimethylpyrazol-1-yl)purine ribonucleoside has been prepared and incorporated as a conventionally protected phosphoramidite into a 9-mer 2'-O-methyl oligoribonucleotide. According to 1H NMR spectroscopic studies, this nucleoside forms with Pd(2+) and uridine a ternary complex that is stable at a micromolar concentration range. CD spectroscopic studies on oligonucleotide hybridization, in turn, suggest that the Pd(2+) chelate of this artificial nucleoside, when incorporated in a 2'-O-methyl-RNA oligomer, is able to recognize thymine within an otherwise complementary DNA strand. The duplex containing thymidine opposite to the artificial nucleoside turned out to be somewhat more resistant to heating than its counterpart containing 2'-deoxycytidine in place of thymidine, but only in the presence of Pd(2+). According to UV-melting measurements, replacement of 2'-O-methyladenosine with the artificial nucleoside markedly enhances hybridization with a DNA target, irrespective of the identity of the opposite base and the presence of Pd(2+). With the thymidine containing DNA target, the T(m) value is 2-4°C higher than with targets containing any other nucleoside opposite to the artificial nucleoside, but the dependence on Pd(2+) is much less clear than in the case of the CD studies.
制备了2,6-二(3,5-二甲基吡唑-1-酰基)嘌呤核糖核苷,并将其作为常规保护的磷酸酰胺纳入9-聚2'- o -甲基寡核苷酸中。根据1H核磁共振光谱研究,该核苷与Pd(2+)和尿苷形成在微摩尔浓度范围内稳定的三元配合物。反过来,寡核苷酸杂交的CD光谱研究表明,当与2'- o -甲基rna低聚物结合时,这种人工核苷的Pd(2+)螯合物能够识别其他互补DNA链中的胸腺嘧啶。结果表明,与人工核苷相对的含有胸腺嘧啶的双相体比含有2'-脱氧胞苷代替胸腺嘧啶的双相体在一定程度上更耐加热,但仅在Pd(2+)存在的情况下。根据紫外熔化测量,用人工核苷取代2'- o -甲基腺苷显著增强了与DNA靶标的杂交,而不考虑相反碱基的身份和Pd(2+)的存在。对于含有DNA靶标的胸腺嘧啶,T(m)值比含有与人工核苷相反的任何其他核苷的靶标高2-4°C,但对Pd(2+)的依赖性远不如CD研究的情况清楚。
{"title":"Metal Ion Chelates as Surrogates of Nucleobases for the Recognition of Nucleic Acid Sequences: The Pd(2+) Complex of 2,6-Bis(3,5-dimethylpyrazol-1-yl)purine Riboside.","authors":"Sharmin Taherpour, Tuomas Lönnberg","doi":"10.1155/2012/196845","DOIUrl":"https://doi.org/10.1155/2012/196845","url":null,"abstract":"<p><p>A 2,6-bis(3,5-dimethylpyrazol-1-yl)purine ribonucleoside has been prepared and incorporated as a conventionally protected phosphoramidite into a 9-mer 2'-O-methyl oligoribonucleotide. According to 1H NMR spectroscopic studies, this nucleoside forms with Pd(2+) and uridine a ternary complex that is stable at a micromolar concentration range. CD spectroscopic studies on oligonucleotide hybridization, in turn, suggest that the Pd(2+) chelate of this artificial nucleoside, when incorporated in a 2'-O-methyl-RNA oligomer, is able to recognize thymine within an otherwise complementary DNA strand. The duplex containing thymidine opposite to the artificial nucleoside turned out to be somewhat more resistant to heating than its counterpart containing 2'-deoxycytidine in place of thymidine, but only in the presence of Pd(2+). According to UV-melting measurements, replacement of 2'-O-methyladenosine with the artificial nucleoside markedly enhances hybridization with a DNA target, irrespective of the identity of the opposite base and the presence of Pd(2+). With the thymidine containing DNA target, the T(m) value is 2-4°C higher than with targets containing any other nucleoside opposite to the artificial nucleoside, but the dependence on Pd(2+) is much less clear than in the case of the CD studies.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"196845"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/196845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30659900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Directed evolution of proteins is a technique used to modify protein functions through "Darwinian selection." In vitro compartmentalization (IVC) is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype) and the protein translated from the information (phenotype), which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE) system and a fluorescence-activated cell sorter (FACS) used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.
{"title":"Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes.","authors":"Takehiro Nishikawa, Takeshi Sunami, Tomoaki Matsuura, Tetsuya Yomo","doi":"10.1155/2012/923214","DOIUrl":"https://doi.org/10.1155/2012/923214","url":null,"abstract":"<p><p>Directed evolution of proteins is a technique used to modify protein functions through \"Darwinian selection.\" In vitro compartmentalization (IVC) is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype) and the protein translated from the information (phenotype), which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE) system and a fluorescence-activated cell sorter (FACS) used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"923214"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/923214","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30887857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-06-20DOI: 10.1155/2012/360358
Fanglei Zhuang, Ryan T Fuchs, G Brett Robb
Eukaryotic regulatory small RNAs (sRNAs) play significant roles in many fundamental cellular processes. As such, they have emerged as useful biomarkers for diseases and cell differentiation states. sRNA-based biomarkers outperform traditional messenger RNA-based biomarkers by testing fewer targets with greater accuracy and providing earlier detection for disease states. Therefore, expression profiling of sRNAs is fundamentally important to further advance the understanding of biological processes, as well as diagnosis and treatment of diseases. High-throughput sequencing (HTS) is a powerful approach for both sRNA discovery and expression profiling. Here, we discuss the general considerations for sRNA-based HTS profiling methods from RNA preparation to sequencing library construction, with a focus on the causes of systematic error. By examining the enzymatic manipulation steps of sRNA expression profiling, this paper aims to demystify current HTS-based sRNA profiling approaches and to aid researchers in the informed design and interpretation of profiling experiments.
{"title":"Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation.","authors":"Fanglei Zhuang, Ryan T Fuchs, G Brett Robb","doi":"10.1155/2012/360358","DOIUrl":"https://doi.org/10.1155/2012/360358","url":null,"abstract":"<p><p>Eukaryotic regulatory small RNAs (sRNAs) play significant roles in many fundamental cellular processes. As such, they have emerged as useful biomarkers for diseases and cell differentiation states. sRNA-based biomarkers outperform traditional messenger RNA-based biomarkers by testing fewer targets with greater accuracy and providing earlier detection for disease states. Therefore, expression profiling of sRNAs is fundamentally important to further advance the understanding of biological processes, as well as diagnosis and treatment of diseases. High-throughput sequencing (HTS) is a powerful approach for both sRNA discovery and expression profiling. Here, we discuss the general considerations for sRNA-based HTS profiling methods from RNA preparation to sequencing library construction, with a focus on the causes of systematic error. By examining the enzymatic manipulation steps of sRNA expression profiling, this paper aims to demystify current HTS-based sRNA profiling approaches and to aid researchers in the informed design and interpretation of profiling experiments.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"360358"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/360358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30750045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the site-specific labeling and modification of RNA by genetic alphabet expansion, we developed a PCR and transcription system using two hydrophobic unnatural base pairs: 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) as a third pair for PCR amplification and Ds and pyrrole-2-carbaldehyde (Pa) for the incorporation of functional components as modified Pa bases into RNA by T7 transcription. To prepare Ds-containing DNA templates with long chains, the Ds-Px pair was utilized in a fusion PCR method, by which we demonstrated the synthesis of 282-bp DNA templates containing Ds at specific positions. Using these Ds-containing DNA templates and a biotin-linked Pa substrate (Biotin-PaTP) as a modified Pa base, 260-mer RNA transcripts containing Biotin-Pa at a specific position were generated by T7 RNA polymerase. This two-unnatural-base-pair system, combining the Ds-Px and Ds-Pa pairs with modified Pa substrates, provides a powerful tool for the site-specific labeling and modification of desired positions in large RNA molecules.
{"title":"PCR amplification and transcription for site-specific labeling of large RNA molecules by a two-unnatural-base-pair system.","authors":"Michiko Kimoto, Rie Yamashige, Shigeyuki Yokoyama, Ichiro Hirao","doi":"10.1155/2012/230943","DOIUrl":"https://doi.org/10.1155/2012/230943","url":null,"abstract":"<p><p>For the site-specific labeling and modification of RNA by genetic alphabet expansion, we developed a PCR and transcription system using two hydrophobic unnatural base pairs: 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) as a third pair for PCR amplification and Ds and pyrrole-2-carbaldehyde (Pa) for the incorporation of functional components as modified Pa bases into RNA by T7 transcription. To prepare Ds-containing DNA templates with long chains, the Ds-Px pair was utilized in a fusion PCR method, by which we demonstrated the synthesis of 282-bp DNA templates containing Ds at specific positions. Using these Ds-containing DNA templates and a biotin-linked Pa substrate (Biotin-PaTP) as a modified Pa base, 260-mer RNA transcripts containing Biotin-Pa at a specific position were generated by T7 RNA polymerase. This two-unnatural-base-pair system, combining the Ds-Px and Ds-Pa pairs with modified Pa substrates, provides a powerful tool for the site-specific labeling and modification of desired positions in large RNA molecules.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"230943"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/230943","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30760822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-09-26DOI: 10.1155/2012/962652
Zhenghui Wang, Ke Zhang, Karen L Wooley, John-Stephen Taylor
Probes for monitoring mRNA expression in vivo are of great interest for the study of biological and biomedical problems, but progress has been hampered by poor signal to noise and effective means for delivering the probes into live cells. Herein we report a PNA·DNA strand displacement-activated fluorescent probe that can image the expression of iNOS (inducible nitric oxide synthase) mRNA, a marker of inflammation. The probe consists of a fluorescein labeled antisense PNA annealed to a shorter DABCYL(plus)-labeled DNA which quenches the fluorescence, but when the quencher strand is displaced by the target mRNA the fluorescence is restored. DNA was used for the quencher strand to facilitate electrostatic binding of the otherwise netural PNA strand to a cationic shell crosslinked knedel-like (cSCK) nanoparticle which can deliver the PNA·DNA duplex probe into cells with less toxicity and greater efficiency than other transfection agents. RAW 264.7 mouse macrophage cells transfected with the iNOS PNA·DNA probe via the cSCK showed a 16 to 54-fold increase in average fluorescence per cell upon iNOS stimulation. The increase was 4 to 7-fold higher than that for a non-complementary probe, thereby validating the ability of a PNA·DNA strand displacement-activated probe to image mRNA expression in vivo.
{"title":"Imaging mRNA Expression in Live Cells via PNA·DNA Strand Displacement-Activated Probes.","authors":"Zhenghui Wang, Ke Zhang, Karen L Wooley, John-Stephen Taylor","doi":"10.1155/2012/962652","DOIUrl":"10.1155/2012/962652","url":null,"abstract":"<p><p>Probes for monitoring mRNA expression in vivo are of great interest for the study of biological and biomedical problems, but progress has been hampered by poor signal to noise and effective means for delivering the probes into live cells. Herein we report a PNA·DNA strand displacement-activated fluorescent probe that can image the expression of iNOS (inducible nitric oxide synthase) mRNA, a marker of inflammation. The probe consists of a fluorescein labeled antisense PNA annealed to a shorter DABCYL(plus)-labeled DNA which quenches the fluorescence, but when the quencher strand is displaced by the target mRNA the fluorescence is restored. DNA was used for the quencher strand to facilitate electrostatic binding of the otherwise netural PNA strand to a cationic shell crosslinked knedel-like (cSCK) nanoparticle which can deliver the PNA·DNA duplex probe into cells with less toxicity and greater efficiency than other transfection agents. RAW 264.7 mouse macrophage cells transfected with the iNOS PNA·DNA probe via the cSCK showed a 16 to 54-fold increase in average fluorescence per cell upon iNOS stimulation. The increase was 4 to 7-fold higher than that for a non-complementary probe, thereby validating the ability of a PNA·DNA strand displacement-activated probe to image mRNA expression in vivo.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"962652"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30969650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-10-10DOI: 10.1155/2012/740982
Teruhiko Matsubara
Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase. However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These peptides are known as "carbohydrate-mimetic peptides (CMPs)" because they mimic carbohydrate structures. Compared to carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes that are conjugated with adjuvant for vaccination.
{"title":"Potential of peptides as inhibitors and mimotopes: selection of carbohydrate-mimetic peptides from phage display libraries.","authors":"Teruhiko Matsubara","doi":"10.1155/2012/740982","DOIUrl":"https://doi.org/10.1155/2012/740982","url":null,"abstract":"<p><p>Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase. However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These peptides are known as \"carbohydrate-mimetic peptides (CMPs)\" because they mimic carbohydrate structures. Compared to carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes that are conjugated with adjuvant for vaccination.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"740982"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/740982","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31000344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-11-07DOI: 10.1155/2012/652979
Philip H Williams, Rod Eyles, Georg Weiller
MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA(∗) duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.
{"title":"Plant MicroRNA Prediction by Supervised Machine Learning Using C5.0 Decision Trees.","authors":"Philip H Williams, Rod Eyles, Georg Weiller","doi":"10.1155/2012/652979","DOIUrl":"10.1155/2012/652979","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require \"read count\" to be included with the input sequences, which restricts their use to deep-sequencing data. Our aim was to train a predictor using a cross-section of different species to accurately predict miRNAs outside the training set. We wanted a system that did not require read-count for prediction and could therefore be applied to short sequences extracted from genomic, EST, or RNA-seq sources. A miRNA-predictive decision-tree model has been developed by supervised machine learning. It only requires that the corresponding genome or transcriptome is available within a sequence window that includes the precursor candidate so that the required sequence features can be collected. Some of the most critical features for training the predictor are the miRNA:miRNA(∗) duplex energy and the number of mismatches in the duplex. We present a cross-species plant miRNA predictor with 84.08% sensitivity and 98.53% specificity based on rigorous testing by leave-one-out validation.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"652979"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31097705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2012-01-01Epub Date: 2012-11-08DOI: 10.1155/2012/958683
Kha Tram, Pushpinder Kanda, Yingfu Li
The development of the in vitro selection technique has allowed the isolation of functional nucleic acids, including catalytic DNA molecules (DNAzymes), from random-sequence pools. The first-ever catalytic DNA obtained by this technique in 1994 is a DNAzyme that cleaves RNA. Since then, many other RNase-like DNAzymes have been reported from multiple in vitro selection studies. The discovery of various RNase DNAzymes has in turn stimulated the exploration of these enzymatic species for innovative applications in many different areas of research, including therapeutics, biosensing, and DNA nanotechnology. One particular research topic that has received considerable attention for the past decade is the development of RNase DNAzymes into fluorescent reporters for biosensing applications. This paper provides a concise survey of the most significant achievements within this research topic.
{"title":"Lighting Up RNA-Cleaving DNAzymes for Biosensing.","authors":"Kha Tram, Pushpinder Kanda, Yingfu Li","doi":"10.1155/2012/958683","DOIUrl":"https://doi.org/10.1155/2012/958683","url":null,"abstract":"<p><p>The development of the in vitro selection technique has allowed the isolation of functional nucleic acids, including catalytic DNA molecules (DNAzymes), from random-sequence pools. The first-ever catalytic DNA obtained by this technique in 1994 is a DNAzyme that cleaves RNA. Since then, many other RNase-like DNAzymes have been reported from multiple in vitro selection studies. The discovery of various RNase DNAzymes has in turn stimulated the exploration of these enzymatic species for innovative applications in many different areas of research, including therapeutics, biosensing, and DNA nanotechnology. One particular research topic that has received considerable attention for the past decade is the development of RNase DNAzymes into fluorescent reporters for biosensing applications. This paper provides a concise survey of the most significant achievements within this research topic.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"958683"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/958683","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"31097706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue, 2',4'-BNA(NC) antisense oligonucleotides (AONs) ranging from 10- to 20-nt-long, targeted apolipoprotein B. 2',4'-BNA(NC) was directly compared to its conventional bridged (or locked) nucleic acid (2',4'-BNA/LNA)-based counterparts. Melting temperatures of duplexes formed between 2',4'-BNA(NC)-based antisense oligonucleotides and the target mRNA surpassed those of 2',4'-BNA/LNA-based counterparts at all lengths. An in vitro transfection study revealed that when compared to the identical length 2',4'-BNA/LNA-based counterpart, the corresponding 2',4'-BNA(NC)-based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer) oligonucleotides. On the other hand, the 2',4'-BNA(NC)-based 20-mer AON exhibited the highest affinity but the worst IC(50) value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that 2',4'-BNA(NC) may be a better alternative to conventional 2',4'-BNA/LNA, even for "short" antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production.
{"title":"Superior Silencing by 2',4'-BNA(NC)-Based Short Antisense Oligonucleotides Compared to 2',4'-BNA/LNA-Based Apolipoprotein B Antisense Inhibitors.","authors":"Tsuyoshi Yamamoto, Hidenori Yasuhara, Fumito Wada, Mariko Harada-Shiba, Takeshi Imanishi, Satoshi Obika","doi":"10.1155/2012/707323","DOIUrl":"https://doi.org/10.1155/2012/707323","url":null,"abstract":"<p><p>The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue, 2',4'-BNA(NC) antisense oligonucleotides (AONs) ranging from 10- to 20-nt-long, targeted apolipoprotein B. 2',4'-BNA(NC) was directly compared to its conventional bridged (or locked) nucleic acid (2',4'-BNA/LNA)-based counterparts. Melting temperatures of duplexes formed between 2',4'-BNA(NC)-based antisense oligonucleotides and the target mRNA surpassed those of 2',4'-BNA/LNA-based counterparts at all lengths. An in vitro transfection study revealed that when compared to the identical length 2',4'-BNA/LNA-based counterpart, the corresponding 2',4'-BNA(NC)-based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer) oligonucleotides. On the other hand, the 2',4'-BNA(NC)-based 20-mer AON exhibited the highest affinity but the worst IC(50) value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that 2',4'-BNA(NC) may be a better alternative to conventional 2',4'-BNA/LNA, even for \"short\" antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production.</p>","PeriodicalId":16575,"journal":{"name":"Journal of Nucleic Acids","volume":"2012 ","pages":"707323"},"PeriodicalIF":2.3,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2012/707323","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30969649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}