Offline attacks on passwords are increasingly commonplace and dangerous. An offline adversary is limited only by the amount of computational resources he or she is willing to invest to crack a user's password. The danger is compounded by the existence of authentication servers who fail to adopt proper password storage practices like key-stretching. Password managers can help mitigate these risks by adopting key stretching procedures like hash iteration or memory hard functions to derive site specific passwords from the user's master password on the client-side. While key stretching can reduce the offline adversary's success rate, these procedures also increase computational costs for a legitimate user. Motivated by the observation that most of the password guesses of the offline adversary will be incorrect, we propose a client side cost asymmetric secure hashing scheme (clientcash). clientcash~randomizes the runtime of client-side key stretching procedure in a way that the expected computational cost of our key derivation function is greater when run with an incorrect master password. We make several contributions. First, we show how to introduce randomness into a client-side key stretching algorithms through the use of halting predicates which are selected randomly at the time of account creation. Second, we formalize the problem of finding the optimal running time distribution subject to certain cost constraints for the client and certain security constrains on the halting predicates. Finally, we demonstrate that Client-CASH can reduce the adversary's success rate by up to 21%. These results demonstrate the promise of the Client-CASH mechanism.
{"title":"Client-CASH: Protecting Master Passwords against Offline Attacks","authors":"Jeremiah Blocki, Anirudh Sridhar","doi":"10.1145/2897845.2897876","DOIUrl":"https://doi.org/10.1145/2897845.2897876","url":null,"abstract":"Offline attacks on passwords are increasingly commonplace and dangerous. An offline adversary is limited only by the amount of computational resources he or she is willing to invest to crack a user's password. The danger is compounded by the existence of authentication servers who fail to adopt proper password storage practices like key-stretching. Password managers can help mitigate these risks by adopting key stretching procedures like hash iteration or memory hard functions to derive site specific passwords from the user's master password on the client-side. While key stretching can reduce the offline adversary's success rate, these procedures also increase computational costs for a legitimate user. Motivated by the observation that most of the password guesses of the offline adversary will be incorrect, we propose a client side cost asymmetric secure hashing scheme (clientcash). clientcash~randomizes the runtime of client-side key stretching procedure in a way that the expected computational cost of our key derivation function is greater when run with an incorrect master password. We make several contributions. First, we show how to introduce randomness into a client-side key stretching algorithms through the use of halting predicates which are selected randomly at the time of account creation. Second, we formalize the problem of finding the optimal running time distribution subject to certain cost constraints for the client and certain security constrains on the halting predicates. Finally, we demonstrate that Client-CASH can reduce the adversary's success rate by up to 21%. These results demonstrate the promise of the Client-CASH mechanism.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"123 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131215764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrei Costin, Apostolis Zarras, Aurélien Francillon
Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that embedded devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Web security is still difficult and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the devices' vendor, type, or architecture. To reach this goal, we perform full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we automatically analyze the web interfaces within the firmware using both static and dynamic analysis tools. We also present some interesting case-studies and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale.
{"title":"Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces","authors":"Andrei Costin, Apostolis Zarras, Aurélien Francillon","doi":"10.1145/2897845.2897900","DOIUrl":"https://doi.org/10.1145/2897845.2897900","url":null,"abstract":"Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that embedded devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Web security is still difficult and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the devices' vendor, type, or architecture. To reach this goal, we perform full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we automatically analyze the web interfaces within the firmware using both static and dynamic analysis tools. We also present some interesting case-studies and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"73 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124639348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random "secret". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.
{"title":"Forgery-Resistant Touch-based Authentication on Mobile Devices","authors":"N. Gong, Mathias Payer, R. Moazzezi, Mario Frank","doi":"10.1145/2897845.2897908","DOIUrl":"https://doi.org/10.1145/2897845.2897908","url":null,"abstract":"Mobile devices store a diverse set of private user data and have gradually become a hub to control users' other personal Internet-of-Things devices. Access control on mobile devices is therefore highly important. The widely accepted solution is to protect access by asking for a password. However, password authentication is tedious, e.g., a user needs to input a password every time she wants to use the device. Moreover, existing biometrics such as face, fingerprint, and touch behaviors are vulnerable to forgery attacks. We propose a new touch-based biometric authentication system that is passive and secure against forgery attacks. In our touch-based authentication, a user's touch behaviors are a function of some random \"secret\". The user can subconsciously know the secret while touching the device's screen. However, an attacker cannot know the secret at the time of attack, which makes it challenging to perform forgery attacks even if the attacker has already obtained the user's touch behaviors. We evaluate our touch-based authentication system by collecting data from 25 subjects. Results are promising: the random secrets do not influence user experience and, for targeted forgery attacks, our system achieves 0.18 smaller Equal Error Rates (EERs) than previous touch-based authentication.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130723061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}