Fibropolycystic diseases of the liver comprise a spectrum of disorders affecting bile ducts of various sizes and arise due to an underlying ductal plate malformation (DPM). We encountered a previously unreported variant of DPM, the hilar fibropolycystic disease which we diagnosed in the explant liver. A 2-year-old boy was referred for liver transplantation with a diagnosis of biliary atresia (BA) and failed Kasai portoenterostomy (KPE). He had cirrhosis with portal hypertension along with synthetic failure indicated by coagulopathy and hypoalbuminemia. The child underwent liver transplant successfully. The explant liver had fibropolycystic disease confined to the perihilar liver and hilum. No pathogenic mutation was detected by whole exome sequencing. Fibropolycystic liver disease may represent a peculiar anatomical variant, which can be diagnosed by careful pathological examination of the explant liver. The neonatal presentation of hilar fibropolycystic liver disease can be misdiagnosed as BA.
{"title":"Hilar Fibropolycystic Liver Disease of Unknown Etiology: A Revelation from the Explant Liver.","authors":"Jagadeesh Menon, Mukul Vij, Naresh Shanmugam, Abdul Hakeem, Mettu Srinivas Reddy, Ilankumaran Kaliamoorthy, Mohamed Rela","doi":"10.1055/s-0040-1716829","DOIUrl":"https://doi.org/10.1055/s-0040-1716829","url":null,"abstract":"<p><p>Fibropolycystic diseases of the liver comprise a spectrum of disorders affecting bile ducts of various sizes and arise due to an underlying ductal plate malformation (DPM). We encountered a previously unreported variant of DPM, the hilar fibropolycystic disease which we diagnosed in the explant liver. A 2-year-old boy was referred for liver transplantation with a diagnosis of biliary atresia (BA) and failed Kasai portoenterostomy (KPE). He had cirrhosis with portal hypertension along with synthetic failure indicated by coagulopathy and hypoalbuminemia. The child underwent liver transplant successfully. The explant liver had fibropolycystic disease confined to the perihilar liver and hilum. No pathogenic mutation was detected by whole exome sequencing. Fibropolycystic liver disease may represent a peculiar anatomical variant, which can be diagnosed by careful pathological examination of the explant liver. The neonatal presentation of hilar fibropolycystic liver disease can be misdiagnosed as BA.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"11 2","pages":"165-170"},"PeriodicalIF":0.4,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9236736/pdf/10-1055-s-0040-1716829.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10486030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Congenital nonsyndromic hearing loss (NSHL) has been considered as one of the most prevalent chronic disorder in children. It affects the physical and mental conditions of a large children population worldwide. Because of the genetic heterogeneity, the identification of target gene is very challenging. However, gap junction β-2 ( GJB2 ) is taken as the key gene for hearing loss, as its involvement has been reported frequently in NSHL cases. This study aimed to identify the association of GJB2 mutants in different Indian populations based on published studies in Indian population. This will provide clear genetic fundamental of NSHL in Indian biogeography, which would be helpful in the diagnosis process.
{"title":"Genetics Landscape of Nonsyndromic Hearing Loss in Indian Populations.","authors":"Manisha Ray, Saurav Sarkar, Mukund Namdev Sable","doi":"10.1055/s-0041-1740532","DOIUrl":"https://doi.org/10.1055/s-0041-1740532","url":null,"abstract":"<p><p>Congenital nonsyndromic hearing loss (NSHL) has been considered as one of the most prevalent chronic disorder in children. It affects the physical and mental conditions of a large children population worldwide. Because of the genetic heterogeneity, the identification of target gene is very challenging. However, gap junction β-2 ( <i>GJB2</i> ) is taken as the key gene for hearing loss, as its involvement has been reported frequently in NSHL cases. This study aimed to identify the association of <i>GJB2</i> mutants in different Indian populations based on published studies in Indian population. This will provide clear genetic fundamental of NSHL in Indian biogeography, which would be helpful in the diagnosis process.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"11 1","pages":"5-14"},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847051/pdf/10-1055-s-0041-1740532.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10340043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contributing Reviewers of 2021.","authors":"","doi":"10.1055/s-0042-1744018","DOIUrl":"https://doi.org/10.1055/s-0042-1744018","url":null,"abstract":"","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"11 1","pages":"i-iv"},"PeriodicalIF":0.4,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8847057/pdf/10-1055-s-0042-1744018.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10738783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The 4q deletion syndrome is an uncommon condition manifesting with broad clinical expression and phenotypic variability. We report a 5-year-old boy affected by 4q deletion syndrome who showed minor craniofacial features, growth failure, mild developmental delay, severe speech delay, and marked irascibility and aggressivity. Moreover, he showed precocious and crowded primary dentition, digital hyperlaxity, and congenital bilateral adducted thumbs, signs which were previously unreported in the syndrome. The array comparative genomic hybridization analysis revealed a 4q partial terminal deletion of ∼329.6 kb extending from 164.703.186 to 165.032.803 nt, which includes part of MARCH1 (membrane associated ring-CH-type finger 1) gene (OMIM#613331). Same rearrangement was found in his healthy mother. Clinical phenotype of the child and its relationship to the deleted region is presented with a revision of the cases having the same copy number losses from the literature and genomic variant databases.
{"title":"A Novel 4q32.3 Deletion in a Child: Additional Signs and the Role of <i>MARCH1</i>.","authors":"Xena Giada Pappalardo, Martino Ruggieri, Raffaele Falsaperla, Salvatore Savasta, Umberto Raucci, Piero Pavone","doi":"10.1055/s-0041-1736458","DOIUrl":"https://doi.org/10.1055/s-0041-1736458","url":null,"abstract":"<p><p>The 4q deletion syndrome is an uncommon condition manifesting with broad clinical expression and phenotypic variability. We report a 5-year-old boy affected by 4q deletion syndrome who showed minor craniofacial features, growth failure, mild developmental delay, severe speech delay, and marked irascibility and aggressivity. Moreover, he showed precocious and crowded primary dentition, digital hyperlaxity, and congenital bilateral adducted thumbs, signs which were previously unreported in the syndrome. The array comparative genomic hybridization analysis revealed a 4q partial terminal deletion of ∼329.6 kb extending from 164.703.186 to 165.032.803 nt, which includes part of <i>MARCH1</i> (membrane associated ring-CH-type finger 1) gene (OMIM#613331). Same rearrangement was found in his healthy mother. Clinical phenotype of the child and its relationship to the deleted region is presented with a revision of the cases having the same copy number losses from the literature and genomic variant databases.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"10 4","pages":"259-265"},"PeriodicalIF":0.4,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608485/pdf/10-1055-s-0041-1736458.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39683519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-07-10DOI: 10.1055/s-0041-1731036
Raffaele Falsaperla, Valentina Giacchi, Maria Giovanna Aguglia, Janette Mailo, Maria Grazia Longo, Federica Natacci, Martino Ruggieri
Congenital heart disease (CHD), the most common major congenital anomaly, is associated with a genetic syndrome (chromosomal anomalies, genomic disorders, or monogenic disease) in 30% of patients. The aim of this systematic review was to evaluate if, in the neonatal setting, clinical clues that orient the diagnostic path can be identified. For this purpose, we revised the most frequent dysmorphic features described in newborns with CHD, comparing those associated with monogenic syndromes (MSG) with the ones reported in newborns with genomic disorders. For this systematic review according to PRISMA statement, we used PubMed, Medline, Google Scholar, Scopus database, and search terms related to CHD and syndrome. We found a wide range of dysmorphisms (ocular region, ears, mouth, and/or palate and phalangeal anomalies) detected in more than half of MSGs were found to be associated with CHDs, but those anomalies are also described in genomic rearrangements syndromes with equal prevalence. These findings confirmed that etiological diagnosis in newborns is challenging, and only the prompt and expert recognition of features suggestive of genetic conditions can improve the selection of appropriate, cost-effective diagnostic tests. However, in general practice, it is crucial to recognize clues that can suggest the presence of a genetic syndrome, and neonatologists often have the unique opportunity to be the first to identify abnormalities in the neonate.
先天性心脏病(CHD)是最常见的主要先天性异常,在30%的患者中与遗传综合征(染色体异常、基因组疾病或单基因疾病)相关。本系统综述的目的是评估是否,在新生儿设置,临床线索,定向诊断路径可以确定。为此,我们修订了冠心病新生儿中最常见的畸形特征,将与单基因综合征(MSG)相关的畸形特征与基因组疾病新生儿中报道的畸形特征进行了比较。根据PRISMA声明,我们使用PubMed, Medline, Google Scholar, Scopus数据库,检索与冠心病及其综合征相关的关键词。我们发现,在半数以上的msg中检测到的广泛的畸形(眼区、耳区、嘴区和/或腭区和指骨异常)被发现与冠心病有关,但这些异常也被描述为同样普遍的基因组重排综合征。这些发现证实,新生儿的病因诊断是具有挑战性的,只有及时和专家识别暗示遗传条件的特征,才能改善选择适当的、具有成本效益的诊断测试。然而,在一般实践中,识别遗传综合征存在的线索是至关重要的,新生儿科医生通常有独特的机会第一个发现新生儿的异常。
{"title":"Monogenic Syndromes with Congenital Heart Diseases in Newborns (Diagnostic Clues for Neonatologists): A Critical Analysis with Systematic Literature Review.","authors":"Raffaele Falsaperla, Valentina Giacchi, Maria Giovanna Aguglia, Janette Mailo, Maria Grazia Longo, Federica Natacci, Martino Ruggieri","doi":"10.1055/s-0041-1731036","DOIUrl":"https://doi.org/10.1055/s-0041-1731036","url":null,"abstract":"<p><p>Congenital heart disease (CHD), the most common major congenital anomaly, is associated with a genetic syndrome (chromosomal anomalies, genomic disorders, or monogenic disease) in 30% of patients. The aim of this systematic review was to evaluate if, in the neonatal setting, clinical clues that orient the diagnostic path can be identified. For this purpose, we revised the most frequent dysmorphic features described in newborns with CHD, comparing those associated with monogenic syndromes (MSG) with the ones reported in newborns with genomic disorders. For this systematic review according to PRISMA statement, we used PubMed, Medline, Google Scholar, Scopus database, and search terms related to CHD and syndrome. We found a wide range of dysmorphisms (ocular region, ears, mouth, and/or palate and phalangeal anomalies) detected in more than half of MSGs were found to be associated with CHDs, but those anomalies are also described in genomic rearrangements syndromes with equal prevalence. These findings confirmed that etiological diagnosis in newborns is challenging, and only the prompt and expert recognition of features suggestive of genetic conditions can improve the selection of appropriate, cost-effective diagnostic tests. However, in general practice, it is crucial to recognize clues that can suggest the presence of a genetic syndrome, and neonatologists often have the unique opportunity to be the first to identify abnormalities in the neonate.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"10 3","pages":"173-193"},"PeriodicalIF":0.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416220/pdf/10-1055-s-0041-1731036.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39403467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Silver syndrome is a rare autosomal dominant spastic paraparesis in which spasticity of the lower limbs is accompanied by amyotrophy of the small hand muscles. The causative gene is the Berardinelli-Seip congenital lipodystrophy 2 ( BSCL2) , which is related to a spectrum of neurological phenotypes. In the current study, we presented a 14-year-old male with a slowly progressive spastic paraparesis with urinary incontinence that later on exhibited atrophy and weakness in the thenar and dorsal interosseous muscles. Magnetic resonance imaging (MRI) revealed discrete atrophy of the corpus callosum isthmus and an extended next-generation sequencing panel identified a de novo heterozygous mutation in BSCL2 gene, c.269C > T p.(S90L). Various clinical expression and incomplete penetrance of BSCL2 gene mutations complicate the establishment of a genetic etiology for these cases. Therefore, Silver syndrome should be included in the differential diagnosis if the initial presentation is a spastic paraparesis by urinary involvement with childhood-onset, even with MRI atypical findings. This report described the first Iberian Silver syndrome case carrying a de novo c.269C > T p. (S90L) BSCL2 gene mutation.
希尔维综合征是一种罕见的常染色体显性痉挛性截瘫,患者下肢痉挛并伴有小手肌肉萎缩。致病基因是 Berardinelli-Seip 先天性脂肪营养不良 2(BSCL2),它与一系列神经系统表型有关。在本研究中,我们发现一名 14 岁的男性患者患有缓慢进展的痉挛性截瘫并伴有尿失禁,随后表现出趾骨和背侧骨间肌萎缩和无力。磁共振成像(MRI)显示胼胝体峡部出现离散性萎缩,扩展的下一代测序面板确定了 BSCL2 基因的一个新发杂合突变,c.269C > T p.(S90L)。BSCL2基因突变的各种临床表现和不完全渗透性使这些病例遗传病因的确定变得复杂。因此,如果最初表现为儿童期发病的泌尿系统受累的痉挛性截瘫,即使核磁共振成像结果不典型,也应将希尔维综合征纳入鉴别诊断。本报告描述了第一例伊比利亚银色综合征病例,该病例携带一个从头c.269C > T p. (S90L) BSCL2基因突变。
{"title":"A De Novo <i>BSCL2</i> Gene S90L Mutation in a Progressive Tetraparesis with Urinary Dysfunction and Corpus Callosum Involvement.","authors":"Joana Ramos-Lopes, Joana Ribeiro, Mário Laço, Cristina Alves, Anabela Matos, Cármen Costa","doi":"10.1055/s-0040-1713768","DOIUrl":"10.1055/s-0040-1713768","url":null,"abstract":"<p><p>A Silver syndrome is a rare autosomal dominant spastic paraparesis in which spasticity of the lower limbs is accompanied by amyotrophy of the small hand muscles. The causative gene is the Berardinelli-Seip congenital lipodystrophy 2 ( <i>BSCL2)</i> , which is related to a spectrum of neurological phenotypes. In the current study, we presented a 14-year-old male with a slowly progressive spastic paraparesis with urinary incontinence that later on exhibited atrophy and weakness in the thenar and dorsal interosseous muscles. Magnetic resonance imaging (MRI) revealed discrete atrophy of the corpus callosum isthmus and an extended next-generation sequencing panel identified a de novo heterozygous mutation in <i>BSCL2</i> gene, c.269C > T p.(S90L). Various clinical expression and incomplete penetrance of <i>BSCL2</i> gene mutations complicate the establishment of a genetic etiology for these cases. Therefore, Silver syndrome should be included in the differential diagnosis if the initial presentation is a spastic paraparesis by urinary involvement with childhood-onset, even with MRI atypical findings. This report described the first Iberian Silver syndrome case carrying a de novo c.269C > T p. (S90L) <i>BSCL2</i> gene mutation.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"10 3","pages":"253-258"},"PeriodicalIF":0.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416207/pdf/10-1055-s-0040-1713768.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39402377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mutations in the DHDDS gene (MIM: 617836), encoding a subunit of dehydrodolichyl diphosphate synthase complex, have been recently implicated in very rare neurodevelopmental diseases. In total, five individuals carrying two de novo mutations in DHDDS have been reported so far, but genotype-phenotype correlations remain elusive. We reported a boy with a de novo mutation in DHDDS (NM_205861.3: c.G632A; p.Arg211Gln) featuring a complex neurological phenotype, including mild intellectual disability, impaired speech, complex hyperkinetic movements, and refractory epilepsy. We defined the electroclinical and movement disorder phenotype associated with the monoallelic form of the DHDDS -related neurodevelopmental disease and possible underlying dominant-negative mechanisms.
{"title":"Complex Neurological Phenotype Associated with a De Novo <i>DHDDS</i> Mutation in a Boy with Intellectual Disability, Refractory Epilepsy, and Movement Disorder.","authors":"Gianluca Piccolo, Elisabetta Amadori, Maria Stella Vari, Francesca Marchese, Antonella Riva, Valentina Ghirotto, Michele Iacomino, Vincenzo Salpietro, Federico Zara, Pasquale Striano","doi":"10.1055/s-0040-1713159","DOIUrl":"https://doi.org/10.1055/s-0040-1713159","url":null,"abstract":"<p><p>Mutations in the <i>DHDDS</i> gene (MIM: 617836), encoding a subunit of dehydrodolichyl diphosphate synthase complex, have been recently implicated in very rare neurodevelopmental diseases. In total, five individuals carrying two <i>de novo</i> mutations in <i>DHDDS</i> have been reported so far, but genotype-phenotype correlations remain elusive. We reported a boy with a <i>de novo</i> mutation in <i>DHDDS</i> (NM_205861.3: c.G632A; p.Arg211Gln) featuring a complex neurological phenotype, including mild intellectual disability, impaired speech, complex hyperkinetic movements, and refractory epilepsy. We defined the electroclinical and movement disorder phenotype associated with the monoallelic form of the <i>DHDDS</i> -related neurodevelopmental disease and possible underlying dominant-negative mechanisms.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"10 3","pages":"236-238"},"PeriodicalIF":0.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/s-0040-1713159","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39402373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2020-09-02DOI: 10.1055/s-0040-1715528
Parag M Tamhankar, Lakshmi Vasudevan, Pratima Kondurkar, Sarfaraj Niazi, Rita Christopher, Dhaval Solanki, Pooja Dholakia, Mamta Muranjan, Mahesh Kamate, Umesh Kalane, Jayesh Sheth, Vasundhara Tamhankar, Reena Gulati, Madhavi Vasikarla, Sumita Danda, Shaik M Naushad, Katta M Girisha, Shekhar Patil
Glutaric acidemia type 1 (GA-1, OMIM 231670) is an autosomal recessive inborn error of metabolism caused by the deficiency of glutaryl-coenzyme A (CoA) dehydrogenase with most children presenting in infancy with encephalopathy, dystonia, and macrocephaly. In this article, we presented the clinical characteristics, molecular profile, and outcomes in 29 unrelated families with affected children (30 cases total). The mean age at onset of illness was 10 months (±14.58), whereas the mean age at referral for molecular diagnosis was 29.44 months (±28.11). Patients were residents of nine different states of India. Clinical presentation varied from acute encephalitis followed by neuroregression and chronic/insidious developmental delay. Neurological sequelae varied from asymptomatic (no sequelae, 2 patients) to moderate (5 patients) and severe (23 patients) sequelae. All patients underwent blood tandem mass spectrometry (TMS on dried blood spots) and/or urine gas chromatography mass spectrometry (GCMS). Neuroimaging demonstrated batwing appearance in 95% cases. Sanger's sequencing of GCDH , covering all exons and exon-intron boundaries, was performed for all patients. Variants identified include 15 novel coding variants: p.Met100Thr, p.Gly107Ser, p.Leu179Val, p.Pro217Ser, p. Phe236Leufs*107, p.Ser255Pro, p.Met266Leufs*2, p.Gln330Ter, p.Thr344Ile, p.Leu345Pro, p.Lys377Arg, p.Leu424Pro, p.Asn373Lys, p.Lys377Arg, p.Asn392Metfs*9, and nine known genetic variants such as p.Arg128Gln, p.Leu179Arg, p.Trp225Ter, p.Met339Val, p.Gly354Ser, p.Arg402Gln, p.Arg402Trp, p.His403Tyr, and p.Ala433Val (Ensembl transcript ID: ENST00000222214). Using in silico analysis, genetic variants were shown to be affecting the residues responsible for homotetramer formation of the glutaryl-CoA dehydrogenase protein. Treatment included oral carnitine, riboflavin, protein-restricted diet, lysine-deficient special formulae, and management of acute crises with intravenous glucose and hydration. However, the mortality (9/30, 27.58%) and morbidity was high in our cohort with only two patients affording the diet. Our study is the largest multicentric, genetic variant-proven series of glutaric aciduria type 1 from India till date.
{"title":"Clinical Characteristics, Molecular Profile, and Outcomes in Indian Patients with Glutaric Aciduria Type 1.","authors":"Parag M Tamhankar, Lakshmi Vasudevan, Pratima Kondurkar, Sarfaraj Niazi, Rita Christopher, Dhaval Solanki, Pooja Dholakia, Mamta Muranjan, Mahesh Kamate, Umesh Kalane, Jayesh Sheth, Vasundhara Tamhankar, Reena Gulati, Madhavi Vasikarla, Sumita Danda, Shaik M Naushad, Katta M Girisha, Shekhar Patil","doi":"10.1055/s-0040-1715528","DOIUrl":"https://doi.org/10.1055/s-0040-1715528","url":null,"abstract":"<p><p>Glutaric acidemia type 1 (GA-1, OMIM 231670) is an autosomal recessive inborn error of metabolism caused by the deficiency of glutaryl-coenzyme A (CoA) dehydrogenase with most children presenting in infancy with encephalopathy, dystonia, and macrocephaly. In this article, we presented the clinical characteristics, molecular profile, and outcomes in 29 unrelated families with affected children (30 cases total). The mean age at onset of illness was 10 months (±14.58), whereas the mean age at referral for molecular diagnosis was 29.44 months (±28.11). Patients were residents of nine different states of India. Clinical presentation varied from acute encephalitis followed by neuroregression and chronic/insidious developmental delay. Neurological sequelae varied from asymptomatic (no sequelae, 2 patients) to moderate (5 patients) and severe (23 patients) sequelae. All patients underwent blood tandem mass spectrometry (TMS on dried blood spots) and/or urine gas chromatography mass spectrometry (GCMS). Neuroimaging demonstrated batwing appearance in 95% cases. Sanger's sequencing of <i>GCDH</i> , covering all exons and exon-intron boundaries, was performed for all patients. Variants identified include 15 novel coding variants: p.Met100Thr, p.Gly107Ser, p.Leu179Val, p.Pro217Ser, p. Phe236Leufs*107, p.Ser255Pro, p.Met266Leufs*2, p.Gln330Ter, p.Thr344Ile, p.Leu345Pro, p.Lys377Arg, p.Leu424Pro, p.Asn373Lys, p.Lys377Arg, p.Asn392Metfs*9, and nine known genetic variants such as p.Arg128Gln, p.Leu179Arg, p.Trp225Ter, p.Met339Val, p.Gly354Ser, p.Arg402Gln, p.Arg402Trp, p.His403Tyr, and p.Ala433Val (Ensembl transcript ID: ENST00000222214). Using in silico analysis, genetic variants were shown to be affecting the residues responsible for homotetramer formation of the glutaryl-CoA dehydrogenase protein. Treatment included oral carnitine, riboflavin, protein-restricted diet, lysine-deficient special formulae, and management of acute crises with intravenous glucose and hydration. However, the mortality (9/30, 27.58%) and morbidity was high in our cohort with only two patients affording the diet. Our study is the largest multicentric, genetic variant-proven series of glutaric aciduria type 1 from India till date.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"10 3","pages":"213-221"},"PeriodicalIF":0.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/s-0040-1715528","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39403470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2020-07-27DOI: 10.1055/s-0040-1714717
Vykuntaraju K Gowda, Varunvenkat M Srinivasan, Balamurugan Nagarajan, Maya Bhat, Sanjay K Shivappa, Naveen Benakappa
Background Childhood ataxia with central nervous system hypomyelination (CACH) is a recently described childhood inherited white matter disease, caused by mutations in any of the five genes encoding eukaryotic translation initiation factor ( eIF2B ). Methods Retrospective review of the charts of children with CACH was performed from January 2014 to March 2020 at tertiary care center from Southern India. Diagnosis was based on magnetic resonance imaging (MRI) criteria or genetic testing. Results Total number of children with CACH enrolled were 18. Male/female ratio was 10:8. Mean age of presentation was 37.11 months (range = 6-144 months). Affected siblings were seen in five (28%) cases. All children had spasticity, ataxia, and diffuse white matter changes with similar signal as cerebrospinal fluid on all pulse sequences on MRI brain. Of the 18 children, only nine are alive. Duration of illness among deceased children was 9.6667 months (range = 2-16 months). Waxing and waning of symptoms were seen in seven cases. Genetic analysis of EIF2B gene was performed in five cases, among which three mutations were novel. Conclusion A diagnosis of childhood ataxia with central nervous system hypomyelination should be considered in patients presenting with acute onset neuroregression following infection or trauma with associated neuroimaging showing classical white matter findings.
{"title":"Profile of Indian Children with Childhood Ataxia and Central Nervous System Hypomyelination/Vanishing White Matter Disease: A Single Center Experience from Southern India.","authors":"Vykuntaraju K Gowda, Varunvenkat M Srinivasan, Balamurugan Nagarajan, Maya Bhat, Sanjay K Shivappa, Naveen Benakappa","doi":"10.1055/s-0040-1714717","DOIUrl":"https://doi.org/10.1055/s-0040-1714717","url":null,"abstract":"<p><p><b>Background</b> Childhood ataxia with central nervous system hypomyelination (CACH) is a recently described childhood inherited white matter disease, caused by mutations in any of the five genes encoding eukaryotic translation initiation factor ( <i>eIF2B</i> ). <b>Methods</b> Retrospective review of the charts of children with CACH was performed from January 2014 to March 2020 at tertiary care center from Southern India. Diagnosis was based on magnetic resonance imaging (MRI) criteria or genetic testing. <b>Results</b> Total number of children with CACH enrolled were 18. Male/female ratio was 10:8. Mean age of presentation was 37.11 months (range = 6-144 months). Affected siblings were seen in five (28%) cases. All children had spasticity, ataxia, and diffuse white matter changes with similar signal as cerebrospinal fluid on all pulse sequences on MRI brain. Of the 18 children, only nine are alive. Duration of illness among deceased children was 9.6667 months (range = 2-16 months). Waxing and waning of symptoms were seen in seven cases. Genetic analysis of <i>EIF2B</i> gene was performed in five cases, among which three mutations were novel. <b>Conclusion</b> A diagnosis of childhood ataxia with central nervous system hypomyelination should be considered in patients presenting with acute onset neuroregression following infection or trauma with associated neuroimaging showing classical white matter findings.</p>","PeriodicalId":16695,"journal":{"name":"Journal of pediatric genetics","volume":"10 3","pages":"205-212"},"PeriodicalIF":0.4,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1055/s-0040-1714717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39403469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}