{"title":"Experimental study of surface roughness of brass micro-drilling to optimize parameters using E-Fast statistical method","authors":"V. Tahmasbi, Zahra Eghdami","doi":"10.52547/masm.1.2.216","DOIUrl":"https://doi.org/10.52547/masm.1.2.216","url":null,"abstract":"","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123374273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Jafari Mehrabadi, Tahmoores Asgari, M. Khodadadi
{"title":"Out of plane vibration analysis of single-walled carbon nanotubes using stress and strain gradient theories based on Donnell's thin shell theory","authors":"S. Jafari Mehrabadi, Tahmoores Asgari, M. Khodadadi","doi":"10.52547/masm.1.2.201","DOIUrl":"https://doi.org/10.52547/masm.1.2.201","url":null,"abstract":"","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128379697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, exact close form solution for out of plane free flexural vibration of moderately thick rectangular nano-plates are presented based on nonlocal sinusoidal shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. the Levy's type boundary conditions is a combination of six different boundary conditions; specifically, two parallel edges are simply supported and any of the other Two edges may be restrained by different combinations of free, simply supported, or clamped boundary conditions. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.
{"title":"Solution of out-of-Plane vibration of moderately thick rectangular nano-plate using nonlocal sinusoidal shear deformation theory","authors":"P. Yousefi, M. Khodadadi","doi":"10.52547/masm.1.2.231","DOIUrl":"https://doi.org/10.52547/masm.1.2.231","url":null,"abstract":"In this paper, exact close form solution for out of plane free flexural vibration of moderately thick rectangular nano-plates are presented based on nonlocal sinusoidal shear deformation theory, with assumptions of the Levy's type boundary conditions, for the first time. The aim of this study is to evaluate the effect of small-scale parameters on the frequency parameters of the moderately thick rectangular nano-plates. To describe the effects of small-scale parameters on vibrations of rectangular nanoplates, the Eringen theory is used. the Levy's type boundary conditions is a combination of six different boundary conditions; specifically, two parallel edges are simply supported and any of the other Two edges may be restrained by different combinations of free, simply supported, or clamped boundary conditions. Governing equations of motion and boundary conditions of the plate are derived by using the Hamilton’s principle. The present analytical solution can be obtained with any required accuracy and can be used as benchmark. Numerical results are presented to illustrate the effectiveness of the proposed method compared to other methods reported in the literature. Finally, the effect of boundary conditions, aspect ratios, small scale parameter and thickness ratios on nondimensional natural frequency parameters and frequency ratios are examined and discussed in detail.","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114526554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
by electromagnetic flux. It is called smart fluid due to having controllable parameters such as damping ratio by electricity variations. Thus, suspension can dampen oscillation by low electricity current efficiently. The current paper introduces a novel active force control (AFC) equipped with an iterative learning estimator for seat suspension via MR damper. Results of simulations show that it can cancel vibration perfectly. The suspension was coupled to the human body vibration model, and the driver vibration results have been obtained. It is important to note that active force control can also be used to eliminate high-velocity disturbances. Since the vibrations that occur in the car have a high rate of change, the results indicated that active force control equipped with an iterative learning estimator system can be effective in reducing the transmission vibration to the driver so that the first and second vibration peaks was reduced by about 60%.
{"title":"Design of Active Force Controller for Off-Road Seat Suspension equipped to MR Damper","authors":"Mona Tahmasebi, M. Gohari, M. Mobarakabadi","doi":"10.52547/masm.1.2.175","DOIUrl":"https://doi.org/10.52547/masm.1.2.175","url":null,"abstract":"by electromagnetic flux. It is called smart fluid due to having controllable parameters such as damping ratio by electricity variations. Thus, suspension can dampen oscillation by low electricity current efficiently. The current paper introduces a novel active force control (AFC) equipped with an iterative learning estimator for seat suspension via MR damper. Results of simulations show that it can cancel vibration perfectly. The suspension was coupled to the human body vibration model, and the driver vibration results have been obtained. It is important to note that active force control can also be used to eliminate high-velocity disturbances. Since the vibrations that occur in the car have a high rate of change, the results indicated that active force control equipped with an iterative learning estimator system can be effective in reducing the transmission vibration to the driver so that the first and second vibration peaks was reduced by about 60%.","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128287314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Khalili, M. Taheri, S. H. Bathaee, Faeze Shakeri
using microscopy based on element method using Nanoparticle manipulation is a process in which particles are moved on a micro/ nanoscale scale using an atomic force microscope and has a wide range of applications from component production to the medical world. In this study, using the theories of contact mechanics of Hertz, JKR, DMT and BSP, as well as using the structure of the DNA biological cell using the Elman method using ABAQUS software to study the amount of displacement, acceleration, force, stress and velocity in time The DNA molecule is discussed on a base sheet and the factors that affect them. The results show that in the deformation between the target particles and the spherical tip of the needle, the Hertz model showed the least and the JKR model showed the highest deformation and penetration depth. By increasing the angle of the needle tip with the z-axis, the amount of penetration depth and deformation created between the particle and the base plate is reduced. Also, the graph of changes in each of the studied parameters of the effective factors per 20 μm of displacement and 20 milliseconds of time for the DNA manipulation process has been calculated.
{"title":"Study of DNA nanoparticle manipulation using atomic force microscopy based on finite element method using theories of contact mechanics","authors":"M. Khalili, M. Taheri, S. H. Bathaee, Faeze Shakeri","doi":"10.52547/masm.1.2.155","DOIUrl":"https://doi.org/10.52547/masm.1.2.155","url":null,"abstract":"using microscopy based on element method using Nanoparticle manipulation is a process in which particles are moved on a micro/ nanoscale scale using an atomic force microscope and has a wide range of applications from component production to the medical world. In this study, using the theories of contact mechanics of Hertz, JKR, DMT and BSP, as well as using the structure of the DNA biological cell using the Elman method using ABAQUS software to study the amount of displacement, acceleration, force, stress and velocity in time The DNA molecule is discussed on a base sheet and the factors that affect them. The results show that in the deformation between the target particles and the spherical tip of the needle, the Hertz model showed the least and the JKR model showed the highest deformation and penetration depth. By increasing the angle of the needle tip with the z-axis, the amount of penetration depth and deformation created between the particle and the base plate is reduced. Also, the graph of changes in each of the studied parameters of the effective factors per 20 μm of displacement and 20 milliseconds of time for the DNA manipulation process has been calculated.","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130298328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bending and Buckling Analysis of Functionally Porous Beam by First Order Shear Deformation Theory","authors":"M. Khoshgoftar, M. Hajiveiseh","doi":"10.52547/masm.1.1.33","DOIUrl":"https://doi.org/10.52547/masm.1.1.33","url":null,"abstract":"","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"4 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132238267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}