We present the results of our participation in the VarDial 4 shared task on discriminating closely related languages. Our submission includes simple traditional models using linear support vector machines (SVMs) and a neural network (NN). The main idea was to leverage language group information. We did so with a two-layer approach in the traditional model and a multi-task objective in the neural network case. Our results confirm earlier findings: simple traditional models outperform neural networks consistently for this task, at least given the amount of systems we could examine in the available time. Our two-layer linear SVM ranked 2nd in the shared task.
{"title":"When Sparse Traditional Models Outperform Dense Neural Networks: the Curious Case of Discriminating between Similar Languages","authors":"M. Medvedeva, Martin Kroon, Barbara Plank","doi":"10.18653/v1/W17-1219","DOIUrl":"https://doi.org/10.18653/v1/W17-1219","url":null,"abstract":"We present the results of our participation in the VarDial 4 shared task on discriminating closely related languages. Our submission includes simple traditional models using linear support vector machines (SVMs) and a neural network (NN). The main idea was to leverage language group information. We did so with a two-layer approach in the traditional model and a multi-task objective in the neural network case. Our results confirm earlier findings: simple traditional models outperform neural networks consistently for this task, at least given the amount of systems we could examine in the available time. Our two-layer linear SVM ranked 2nd in the shared task.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131407009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper describes the submission from the University of Helsinki to the shared task on cross-lingual dependency parsing at VarDial 2017. We present work on annotation projection and treebank translation that gave good results for all three target languages in the test set. In particular, Slovak seems to work well with information coming from the Czech treebank, which is in line with related work. The attachment scores for cross-lingual models even surpass the fully supervised models trained on the target language treebank. Croatian is the most difficult language in the test set and the improvements over the baseline are rather modest. Norwegian works best with information coming from Swedish whereas Danish contributes surprisingly little.
{"title":"Cross-lingual dependency parsing for closely related languages - Helsinki’s submission to VarDial 2017","authors":"J. Tiedemann","doi":"10.18653/v1/W17-1216","DOIUrl":"https://doi.org/10.18653/v1/W17-1216","url":null,"abstract":"This paper describes the submission from the University of Helsinki to the shared task on cross-lingual dependency parsing at VarDial 2017. We present work on annotation projection and treebank translation that gave good results for all three target languages in the test set. In particular, Slovak seems to work well with information coming from the Czech treebank, which is in line with related work. The attachment scores for cross-lingual models even surpass the fully supervised models trained on the target language treebank. Croatian is the most difficult language in the test set and the improvements over the baseline are rather modest. Norwegian works best with information coming from Swedish whereas Danish contributes surprisingly little.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134514766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents the systems submitted by the MAZA team to the Arabic Dialect Identification (ADI) shared task at the VarDial Evaluation Campaign 2017. The goal of the task is to evaluate computational models to identify the dialect of Arabic utterances using both audio and text transcriptions. The ADI shared task dataset included Modern Standard Arabic (MSA) and four Arabic dialects: Egyptian, Gulf, Levantine, and North-African. The three systems submitted by MAZA are based on combinations of multiple machine learning classifiers arranged as (1) voting ensemble; (2) mean probability ensemble; (3) meta-classifier. The best results were obtained by the meta-classifier achieving 71.7% accuracy, ranking second among the six teams which participated in the ADI shared task.
{"title":"Arabic Dialect Identification Using iVectors and ASR Transcripts","authors":"S. Malmasi, Marcos Zampieri","doi":"10.18653/v1/W17-1222","DOIUrl":"https://doi.org/10.18653/v1/W17-1222","url":null,"abstract":"This paper presents the systems submitted by the MAZA team to the Arabic Dialect Identification (ADI) shared task at the VarDial Evaluation Campaign 2017. The goal of the task is to evaluate computational models to identify the dialect of Arabic utterances using both audio and text transcriptions. The ADI shared task dataset included Modern Standard Arabic (MSA) and four Arabic dialects: Egyptian, Gulf, Levantine, and North-African. The three systems submitted by MAZA are based on combinations of multiple machine learning classifiers arranged as (1) voting ensemble; (2) mean probability ensemble; (3) meta-classifier. The best results were obtained by the meta-classifier achieving 71.7% accuracy, ranking second among the six teams which participated in the ADI shared task.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125556005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abualsoud Hanani, Aziz Qaroush, Stephen Eugene Taylor
We describe several systems for identifying short samples of Arabic or Swiss-German dialects, which were prepared for the shared task of the 2017 DSL Workshop (Zampieri et al., 2017). The Arabic data comprises both text and acoustic files, and our best run combined both. The Swiss-German data is text-only. Coincidently, our best runs achieved a accuracy of nearly 63% on both the Swiss-German and Arabic dialects tasks.
我们描述了几个用于识别阿拉伯语或瑞士德语方言短样本的系统,这些系统是为2017年DSL研讨会的共享任务而准备的(Zampieri et al., 2017)。阿拉伯语数据包括文本和声音文件,我们最好将两者结合起来。瑞士和德国的数据是纯文本的。巧合的是,我们在瑞士德语和阿拉伯语方言任务上的最佳准确率接近63%。
{"title":"Identifying dialects with textual and acoustic cues","authors":"Abualsoud Hanani, Aziz Qaroush, Stephen Eugene Taylor","doi":"10.18653/v1/W17-1211","DOIUrl":"https://doi.org/10.18653/v1/W17-1211","url":null,"abstract":"We describe several systems for identifying short samples of Arabic or Swiss-German dialects, which were prepared for the shared task of the 2017 DSL Workshop (Zampieri et al., 2017). The Arabic data comprises both text and acoustic files, and our best run combined both. The Swiss-German data is text-only. Coincidently, our best runs achieved a accuracy of nearly 63% on both the Swiss-German and Arabic dialects tasks.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122057084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Discriminating between Similar Languages (DSL) is a challenging task addressed at the VarDial Workshop series. We report on our participation in the DSL shared task with a two-stage system. In the first stage, character n-grams are used to separate language groups, then specialized classifiers distinguish similar language varieties. We have conducted experiments with three system configurations and submitted one run for each. Our main approach is a word-level convolutional neural network (CNN) that learns task-specific vectors with minimal text preprocessing. We also experiment with multi-layer perceptron (MLP) networks and another hybrid configuration. Our best run achieved an accuracy of 90.76%, ranking 8th among 11 participants and getting very close to the system that ranked first (less than 2 points). Even though the CNN model could not achieve the best results, it still makes a viable approach to discriminating between similar languages.
{"title":"Discriminating between Similar Languages with Word-level Convolutional Neural Networks","authors":"Marcelo Criscuolo, S. Aluísio","doi":"10.18653/v1/W17-1215","DOIUrl":"https://doi.org/10.18653/v1/W17-1215","url":null,"abstract":"Discriminating between Similar Languages (DSL) is a challenging task addressed at the VarDial Workshop series. We report on our participation in the DSL shared task with a two-stage system. In the first stage, character n-grams are used to separate language groups, then specialized classifiers distinguish similar language varieties. We have conducted experiments with three system configurations and submitted one run for each. Our main approach is a word-level convolutional neural network (CNN) that learns task-specific vectors with minimal text preprocessing. We also experiment with multi-layer perceptron (MLP) networks and another hybrid configuration. Our best run achieved an accuracy of 90.76%, ranking 8th among 11 participants and getting very close to the system that ranked first (less than 2 points). Even though the CNN model could not achieve the best results, it still makes a viable approach to discriminating between similar languages.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122145101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper deals with the development of morphosyntactic taggers for spoken varieties of the Slavic minority language Rusyn. As neither annotated corpora nor parallel corpora are electronically available for Rusyn, we propose to combine existing resources from the etymologically close Slavic languages Russian, Ukrainian, Slovak, and Polish and adapt them to Rusyn. Using MarMoT as tagging toolkit, we show that a tagger trained on a balanced set of the four source languages outperforms single language taggers by about 9%, and that additional automatically induced morphosyntactic lexicons lead to further improvements. The best observed accuracies for Rusyn are 82.4% for part-of-speech tagging and 75.5% for full morphological tagging.
{"title":"Multi-source morphosyntactic tagging for spoken Rusyn","authors":"Yves Scherrer, Achim Rabus","doi":"10.18653/v1/W17-1210","DOIUrl":"https://doi.org/10.18653/v1/W17-1210","url":null,"abstract":"This paper deals with the development of morphosyntactic taggers for spoken varieties of the Slavic minority language Rusyn. As neither annotated corpora nor parallel corpora are electronically available for Rusyn, we propose to combine existing resources from the etymologically close Slavic languages Russian, Ukrainian, Slovak, and Polish and adapt them to Rusyn. Using MarMoT as tagging toolkit, we show that a tagger trained on a balanced set of the four source languages outperforms single language taggers by about 9%, and that additional automatically induced morphosyntactic lexicons lead to further improvements. The best observed accuracies for Rusyn are 82.4% for part-of-speech tagging and 75.5% for full morphological tagging.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130130320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents three systems submitted to the German Dialect Identification (GDI) task at the VarDial Evaluation Campaign 2017. The task consists of training models to identify the dialect of Swiss-German speech transcripts. The dialects included in the GDI dataset are Basel, Bern, Lucerne, and Zurich. The three systems we submitted are based on: a plurality ensemble, a mean probability ensemble, and a meta-classifier trained on character and word n-grams. The best results were obtained by the meta-classifier achieving 68.1% accuracy and 66.2% F1-score, ranking first among the 10 teams which participated in the GDI shared task.
{"title":"German Dialect Identification in Interview Transcriptions","authors":"S. Malmasi, Marcos Zampieri","doi":"10.18653/v1/W17-1220","DOIUrl":"https://doi.org/10.18653/v1/W17-1220","url":null,"abstract":"This paper presents three systems submitted to the German Dialect Identification (GDI) task at the VarDial Evaluation Campaign 2017. The task consists of training models to identify the dialect of Swiss-German speech transcripts. The dialects included in the GDI dataset are Basel, Bern, Lucerne, and Zurich. The three systems we submitted are based on: a plurality ensemble, a mean probability ensemble, and a meta-classifier trained on character and word n-grams. The best results were obtained by the meta-classifier achieving 68.1% accuracy and 66.2% F1-score, ranking first among the 10 teams which participated in the GDI shared task.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125950498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Catalan and Spanish are two related languages given that both derive from Latin. They share similarities in several linguistic levels including morphology, syntax and semantics. This makes them particularly interesting for the MT task. Given the recent appearance and popularity of neural MT, this paper analyzes the performance of this new approach compared to the well-established rule-based and phrase-based MT systems. Experiments are reported on a large database of 180 million words. Results, in terms of standard automatic measures, show that neural MT clearly outperforms the rule-based and phrase-based MT system on in-domain test set, but it is worst in the out-of-domain test set. A naive system combination specially works for the latter. In-domain manual analysis shows that neural MT tends to improve both adequacy and fluency, for example, by being able to generate more natural translations instead of literal ones, choosing to the adequate target word when the source word has several translations and improving gender agreement. However, out-of-domain manual analysis shows how neural MT is more affected by unknown words or contexts.
{"title":"Why Catalan-Spanish Neural Machine Translation? Analysis, comparison and combination with standard Rule and Phrase-based technologies","authors":"M. Costa-jussà","doi":"10.18653/v1/W17-1207","DOIUrl":"https://doi.org/10.18653/v1/W17-1207","url":null,"abstract":"Catalan and Spanish are two related languages given that both derive from Latin. They share similarities in several linguistic levels including morphology, syntax and semantics. This makes them particularly interesting for the MT task. Given the recent appearance and popularity of neural MT, this paper analyzes the performance of this new approach compared to the well-established rule-based and phrase-based MT systems. Experiments are reported on a large database of 180 million words. Results, in terms of standard automatic measures, show that neural MT clearly outperforms the rule-based and phrase-based MT system on in-domain test set, but it is worst in the out-of-domain test set. A naive system combination specially works for the latter. In-domain manual analysis shows that neural MT tends to improve both adequacy and fluency, for example, by being able to generate more natural translations instead of literal ones, choosing to the adequate target word when the source word has several translations and improving gender agreement. However, out-of-domain manual analysis shows how neural MT is more affected by unknown words or contexts.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127781129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rudolf Rosa, Daniel Zeman, D. Mareček, Z. Žabokrtský
We once had a corp, or should we say, it once had us They showed us its tags, isn’t it great, unified tags They asked us to parse and they told us to use everything So we looked around and we noticed there was near nothing We took other langs, bitext aligned: words one-to-one We played for two weeks, and then they said, here is the test The parser kept training till morning, just until deadline So we had to wait and hope what we get would be just fine And, when we awoke, the results were done, we saw we’d won So, we wrote this paper, isn’t it good, Norwegian wood.
{"title":"Slavic Forest, Norwegian Wood","authors":"Rudolf Rosa, Daniel Zeman, D. Mareček, Z. Žabokrtský","doi":"10.18653/v1/W17-1226","DOIUrl":"https://doi.org/10.18653/v1/W17-1226","url":null,"abstract":"We once had a corp, or should we say, it once had us They showed us its tags, isn’t it great, unified tags They asked us to parse and they told us to use everything So we looked around and we noticed there was near nothing We took other langs, bitext aligned: words one-to-one We played for two weeks, and then they said, here is the test The parser kept training till morning, just until deadline So we had to wait and hope what we get would be just fine And, when we awoke, the results were done, we saw we’d won So, we wrote this paper, isn’t it good, Norwegian wood.","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123824145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Author profiling is the study of how language is shared by people, a problem of growing importance in applications dealing with security, in order to understand who could be behind an anonymous threat message, and marketing, where companies may be interested in knowing the demographics of people that in online reviews liked or disliked their products. In this talk we will give an overview of the PAN shared tasks that since 2013 have been organised at CLEF and FIRE evaluation forums, mainly on age and gender identification in social media, although also personality recognition in Twitter as well as in code sources was also addressed. In 2017 the PAN author profiling shared task addresses jointly gender and language variety identification in Twitter where tweets have been annotated with authors’ gender and their specific variation of their native language: English (Australia, Canada, Great Britain, Ireland, New Zealand, United States), Spanish (Argentina, Chile, Colombia, Mexico, Peru, Spain, Venezuela), Portuguese (Brazil, Portugal), and Arabic (Egypt, Gulf, Levantine, Maghrebi).
{"title":"Author Profiling at PAN: from Age and Gender Identification to Language Variety Identification (invited talk)","authors":"Paolo Rosso","doi":"10.18653/v1/W17-1205","DOIUrl":"https://doi.org/10.18653/v1/W17-1205","url":null,"abstract":"Author profiling is the study of how language is shared by people, a problem of growing importance in applications dealing with security, in order to understand who could be behind an anonymous threat message, and marketing, where companies may be interested in knowing the demographics of people that in online reviews liked or disliked their products. In this talk we will give an overview of the PAN shared tasks that since 2013 have been organised at CLEF and FIRE evaluation forums, mainly on age and gender identification in social media, although also personality recognition in Twitter as well as in code sources was also addressed. In 2017 the PAN author profiling shared task addresses jointly gender and language variety identification in Twitter where tweets have been annotated with authors’ gender and their specific variation of their native language: English (Australia, Canada, Great Britain, Ireland, New Zealand, United States), Spanish (Argentina, Chile, Colombia, Mexico, Peru, Spain, Venezuela), Portuguese (Brazil, Portugal), and Arabic (Egypt, Gulf, Levantine, Maghrebi).","PeriodicalId":167439,"journal":{"name":"Workshop on NLP for Similar Languages, Varieties and Dialects","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122367504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}