首页 > 最新文献

Journal of Nuclear Engineering and Radiation Science最新文献

英文 中文
System Thermal-hydraulics Model for Fluoride Salt-Cooled Reactor Based On Small Advanced High Temperature Reactor (smAHTR) Design Concept 基于小型先进高温堆(smAHTR)设计理念的氟盐冷堆系统热工模型
IF 0.4 Q3 Energy Pub Date : 2023-05-05 DOI: 10.1115/1.4062500
Shu Jun Wang, Xianmin Huang, B. Bromley
A system thermal-hydraulics model for a fluoride-salt-cooled high-temperature reactor (FHR) based on the small modular advanced high-temperature reactor (SmAHTR) design concept is developed, using RELAP5-3D. The SmAHTR components modelled in the simulations include: the reactor core, lower plenum, upper plenum, top plenum, three Primary Heat Exchangers (PHX's) equipped with three primary pumps, and three Director Reactor Auxiliary Cooling System (DRACS) equipped with three fluid diodes. Flows through the reactor core are represented by 19 individual fuel channels, one reflector-hole channel, and one downcomer channel. In each of the 19 SmAHTR fuel block channels, the fuel elements are modeled in 5 groups using 5 heat structures, each with their corresponding power level. The total reactor power is 125 MWth. Using representative core power distributions for the SmAHTR at beginning-of-cycle (BOC) and at end-of-cycle (EOC), two steady-state system thermal-hydraulic model simulations with RELAP5-3D were performed using a default pressure drop loss factor of 1.5 for all 19 fuel channels. Exit coolant temperatures ranged from 688°C to 739°C (BOC) and from 696°C to 721°C (EOC), while peak fuel centerline temperatures in the highest power block were 1,249°C (BOC) and 1,029°C (EOC). By adjusting the loss factors to modify coolant flow rates in each channel, a more uniform exit coolant temperature was possible.
基于小型模块化先进高温堆(SmAHTR)设计理念,利用RELAP5-3D软件建立了氟化物盐冷高温堆(FHR)系统热工模型。模拟的SmAHTR组件包括:堆芯、下静压室、上静压室、上静压室、装有三个主泵的三个主热交换器(PHX)和装有三个流体二极管的三个主任反应堆辅助冷却系统(DRACS)。通过反应堆堆芯的流动由19个单独的燃料通道、一个反射孔通道和一个下降管通道表示。在19个SmAHTR燃料块通道中,燃料元件被分为5组,使用5种热结构,每种热结构都有相应的功率水平。反应堆的总功率为125兆瓦。利用SmAHTR在循环开始(BOC)和循环结束(EOC)时具有代表性的堆芯功率分布,使用RELAP5-3D进行了两个稳态系统热工模型模拟,所有19个燃料通道的默认压降损失系数为1.5。出口冷却液温度范围为688°C至739°C (BOC)和696°C至721°C (EOC),而最高功率块的燃料中心线峰值温度为1,249°C (BOC)和1,029°C (EOC)。通过调整损失系数来调整每个通道的冷却剂流速,可以获得更均匀的出口冷却剂温度。
{"title":"System Thermal-hydraulics Model for Fluoride Salt-Cooled Reactor Based On Small Advanced High Temperature Reactor (smAHTR) Design Concept","authors":"Shu Jun Wang, Xianmin Huang, B. Bromley","doi":"10.1115/1.4062500","DOIUrl":"https://doi.org/10.1115/1.4062500","url":null,"abstract":"\u0000 A system thermal-hydraulics model for a fluoride-salt-cooled high-temperature reactor (FHR) based on the small modular advanced high-temperature reactor (SmAHTR) design concept is developed, using RELAP5-3D. The SmAHTR components modelled in the simulations include: the reactor core, lower plenum, upper plenum, top plenum, three Primary Heat Exchangers (PHX's) equipped with three primary pumps, and three Director Reactor Auxiliary Cooling System (DRACS) equipped with three fluid diodes. Flows through the reactor core are represented by 19 individual fuel channels, one reflector-hole channel, and one downcomer channel. In each of the 19 SmAHTR fuel block channels, the fuel elements are modeled in 5 groups using 5 heat structures, each with their corresponding power level. The total reactor power is 125 MWth. Using representative core power distributions for the SmAHTR at beginning-of-cycle (BOC) and at end-of-cycle (EOC), two steady-state system thermal-hydraulic model simulations with RELAP5-3D were performed using a default pressure drop loss factor of 1.5 for all 19 fuel channels. Exit coolant temperatures ranged from 688°C to 739°C (BOC) and from 696°C to 721°C (EOC), while peak fuel centerline temperatures in the highest power block were 1,249°C (BOC) and 1,029°C (EOC). By adjusting the loss factors to modify coolant flow rates in each channel, a more uniform exit coolant temperature was possible.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85405420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain Localisation and Fracture of Nuclear Reactor Core Materials 核反应堆堆芯材料的应变局部化与断裂
IF 0.4 Q3 Energy Pub Date : 2023-05-04 DOI: 10.3390/jne4020026
M. Griffiths
The production of prismatic dislocation loops in nuclear reactor core materials results in hardening because the loops impede dislocation motion. Yielding often occurs by a localised clearing of the loops through interactions with gliding dislocations called channeling. The cleared channels represent a softer material within which most of the subsequent deformation is localized. Channeling is often associated with hypothetical dislocation pileup and intergranular cracking in reactor components although the channels themselves do not amplify stress as one would expect from a pileup. The channels are often similar in appearance to twins leading to the possibility that twins are sometimes mistakenly identified as channels. Neither twins nor dislocation channels, which are bulk shears, produce the same stress conditions as a pileup on a single plane. At high doses, when cavities are produced (either He-stabilised bubbles at low temperatures or voids at high temperatures), there can be reduced ductility because the material is already in an equivalent advanced stage of microscopic necking. He-stabilised cavities form preferentially on grain boundaries and at precipitate or incoherent twin/ε-martensite interfaces. The higher planar density of the cavities, coupled with the incompatibility at the interface, results in a preferential failure known as He embrittlement. Strain localisation and inter- or intragranular failure are dependent on many factors that are ultimately microstructural in nature. The mechanisms are described and discussed in relation to reactor core materials.
核反应堆堆芯材料中棱柱形位错环的产生阻碍了位错的运动,导致了位错的硬化。屈服通常是通过与称为通道的滑动位错相互作用而局部清除环路而发生的。清除的通道代表一种较软的材料,其中大部分后续变形都是局部化的。通道通常与假设的位错堆积和反应堆组件的晶间开裂有关,尽管通道本身并不像人们所期望的堆积那样放大应力。通道通常在外观上与双胞胎相似,导致双胞胎有时可能被错误地识别为通道。无论是孪生体还是位错通道,它们都是块状剪切,都不会产生与单一平面上的堆积相同的应力条件。在高剂量下,当产生空腔(低温下氦稳定的气泡或高温下的空洞)时,材料的延展性会降低,因为材料已经处于微观颈缩的等效高级阶段。he稳定空腔优先形成于晶界和析出相或非共格孪晶/ε-马氏体界面。较高的空腔平面密度,加上界面处的不相容,导致优先破坏称为He脆化。应变局部化和颗粒间或颗粒内的破坏取决于许多因素,这些因素最终都是微观结构的。描述和讨论了与堆芯材料有关的机理。
{"title":"Strain Localisation and Fracture of Nuclear Reactor Core Materials","authors":"M. Griffiths","doi":"10.3390/jne4020026","DOIUrl":"https://doi.org/10.3390/jne4020026","url":null,"abstract":"The production of prismatic dislocation loops in nuclear reactor core materials results in hardening because the loops impede dislocation motion. Yielding often occurs by a localised clearing of the loops through interactions with gliding dislocations called channeling. The cleared channels represent a softer material within which most of the subsequent deformation is localized. Channeling is often associated with hypothetical dislocation pileup and intergranular cracking in reactor components although the channels themselves do not amplify stress as one would expect from a pileup. The channels are often similar in appearance to twins leading to the possibility that twins are sometimes mistakenly identified as channels. Neither twins nor dislocation channels, which are bulk shears, produce the same stress conditions as a pileup on a single plane. At high doses, when cavities are produced (either He-stabilised bubbles at low temperatures or voids at high temperatures), there can be reduced ductility because the material is already in an equivalent advanced stage of microscopic necking. He-stabilised cavities form preferentially on grain boundaries and at precipitate or incoherent twin/ε-martensite interfaces. The higher planar density of the cavities, coupled with the incompatibility at the interface, results in a preferential failure known as He embrittlement. Strain localisation and inter- or intragranular failure are dependent on many factors that are ultimately microstructural in nature. The mechanisms are described and discussed in relation to reactor core materials.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76735181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bulk Tungsten Fiber-Reinforced Tungsten (Wf/W) Composites Using Yarn-Based Textile Preforms 基于纱线纺织预成型的块状钨纤维增强钨(Wf/W)复合材料
IF 0.4 Q3 Energy Pub Date : 2023-05-04 DOI: 10.3390/jne4020027
Alexander Lau, J. Coenen, D. Schwalenberg, Y. Mao, T. Höschen, Johann Riesch, L. Raumann, Michael Treitz, Hanns Gietl, A. Terra, Beatrix Göhts, C. Linsmeier, K. Theis-Bröhl, J. Gonzalez‐Julian
The use of tungsten fiber-reinforced tungsten composites (Wf/W) has been demonstrated to significantly enhance the mechanical properties of tungsten (W) by incorporating W-fibers into the W-matrix. However, prior research has been restricted by the usage of single fiber-based textile fabrics, consisting of 150 µm warp and 50 µm weft filaments, with limited homogeneity, reproducibility, and mechanical properties in bulk structures due to the rigidity of the 150 µm W-fibers. To overcome this limitation, two novel textile preforms were developed utilizing radial braided W-yarns with 7 core and 16 sleeve filaments (R.B. 16 + 7), with a diameter of 25 µm each, as the warp material. In this study, bulk composites of two different fabric types were produced via a layer-by-layer CVD process, utilizing single 50 µm filaments (type 1) and R.B. 16 + 7 yarns (type 2) as weft materials. The produced composites were sectioned into KLST-type specimens based on DIN EN ISO 179-1:2000 using electrical discharge machining (EDM) and subjected to three-point bending tests. Both composites demonstrated enhanced mechanical properties with pseudo-ductile behavior at room temperature and withstood over 10,000 load cycles between 50–90% of their respective maximum load without sample fracture in three-point cyclic loading tests. Furthermore, a novel approach to predict the fatigue behavior of the material under cyclic loading was developed based on the high reproducibility of the composites produced, especially for the composite based on type 1. This approach provides a new benchmark for upscaling endeavors and may enable a better prediction of the service life of the produced components made of Wf/W in the future. In comparison, the composite based on fabric type 1 demonstrated superior results in manufacturing performance and mechanical properties. With a high relative average density (>97%), a high fiber volume fraction (14–17%), and a very homogeneous fiber distribution in the CVD-W matrix, type 1 shows a promising option to be further tested in high heat flux tests and to be potentially used as an alternative to currently used materials for the most stressed components of nuclear fusion reactors or other potential application fields such as concentrated solar power (CSP), aircraft turbines, the steel industry, quantum computing, or welding tools. Type 2 composites have a higher layer spacing compared to type 1, resulting in gaps within the matrix and less homogeneous material properties. While type 2 composites have demonstrated a notable enhancement over 150 µm fiber-based composites, they are not viable for industrial scale-up unlike type 1 composites.
钨纤维增强钨复合材料(Wf/W)通过在钨基体中加入钨纤维,可以显著提高钨的力学性能。然而,先前的研究受到单一纤维基纺织织物的限制,由150µm经纱和50µm纬纱组成,由于150µm w -纤维的刚性,在大块结构中均匀性、再现性和机械性能有限。为了克服这一限制,研究人员开发了两种新型纺织预成型材料,采用径向编织w纱,其中含有7芯和16袖长丝(r.b.16 + 7),每根直径为25微米。在本研究中,使用单50微米长丝(类型1)和rb 16 + 7纱线(类型2)作为纬纱材料,通过逐层CVD工艺生产了两种不同织物类型的大块复合材料。根据DIN EN ISO 179-1:2000使用电火花加工(EDM)将生产的复合材料切割成klst型试样,并进行三点弯曲试验。两种复合材料在室温下均表现出增强的力学性能和伪延性,并在三点循环加载试验中承受了超过10,000次载荷循环,载荷范围为各自最大载荷的50-90%,无试样断裂。此外,基于所生产的复合材料,特别是基于类型1的复合材料的高重复性,开发了一种新的方法来预测材料在循环载荷下的疲劳行为。这种方法为升级工作提供了一个新的基准,并且可以更好地预测未来由Wf/W制成的生产部件的使用寿命。相比之下,基于织物类型1的复合材料在制造性能和机械性能方面表现出更优越的结果。1型具有较高的相对平均密度(>97%)、较高的纤维体积分数(14-17%)和CVD-W基体中非常均匀的纤维分布,显示出在高热流密度测试中进一步测试的有希望的选择,并有可能作为目前使用的材料的替代品用于核聚变反应堆的最大应力部件或其他潜在的应用领域,如聚光太阳能(CSP)、飞机涡轮机、钢铁工业、量子计算。或焊接工具。与1型相比,2型复合材料具有更高的层间距,导致基体内部存在间隙,材料性能不均匀。虽然2型复合材料在超过150 μ m的纤维基复合材料中表现出显著的增强,但与1型复合材料不同,它们不适合工业规模。
{"title":"Bulk Tungsten Fiber-Reinforced Tungsten (Wf/W) Composites Using Yarn-Based Textile Preforms","authors":"Alexander Lau, J. Coenen, D. Schwalenberg, Y. Mao, T. Höschen, Johann Riesch, L. Raumann, Michael Treitz, Hanns Gietl, A. Terra, Beatrix Göhts, C. Linsmeier, K. Theis-Bröhl, J. Gonzalez‐Julian","doi":"10.3390/jne4020027","DOIUrl":"https://doi.org/10.3390/jne4020027","url":null,"abstract":"The use of tungsten fiber-reinforced tungsten composites (Wf/W) has been demonstrated to significantly enhance the mechanical properties of tungsten (W) by incorporating W-fibers into the W-matrix. However, prior research has been restricted by the usage of single fiber-based textile fabrics, consisting of 150 µm warp and 50 µm weft filaments, with limited homogeneity, reproducibility, and mechanical properties in bulk structures due to the rigidity of the 150 µm W-fibers. To overcome this limitation, two novel textile preforms were developed utilizing radial braided W-yarns with 7 core and 16 sleeve filaments (R.B. 16 + 7), with a diameter of 25 µm each, as the warp material. In this study, bulk composites of two different fabric types were produced via a layer-by-layer CVD process, utilizing single 50 µm filaments (type 1) and R.B. 16 + 7 yarns (type 2) as weft materials. The produced composites were sectioned into KLST-type specimens based on DIN EN ISO 179-1:2000 using electrical discharge machining (EDM) and subjected to three-point bending tests. Both composites demonstrated enhanced mechanical properties with pseudo-ductile behavior at room temperature and withstood over 10,000 load cycles between 50–90% of their respective maximum load without sample fracture in three-point cyclic loading tests. Furthermore, a novel approach to predict the fatigue behavior of the material under cyclic loading was developed based on the high reproducibility of the composites produced, especially for the composite based on type 1. This approach provides a new benchmark for upscaling endeavors and may enable a better prediction of the service life of the produced components made of Wf/W in the future. In comparison, the composite based on fabric type 1 demonstrated superior results in manufacturing performance and mechanical properties. With a high relative average density (>97%), a high fiber volume fraction (14–17%), and a very homogeneous fiber distribution in the CVD-W matrix, type 1 shows a promising option to be further tested in high heat flux tests and to be potentially used as an alternative to currently used materials for the most stressed components of nuclear fusion reactors or other potential application fields such as concentrated solar power (CSP), aircraft turbines, the steel industry, quantum computing, or welding tools. Type 2 composites have a higher layer spacing compared to type 1, resulting in gaps within the matrix and less homogeneous material properties. While type 2 composites have demonstrated a notable enhancement over 150 µm fiber-based composites, they are not viable for industrial scale-up unlike type 1 composites.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73794827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handbook of Generation IV Nuclear Reactors Edition 2 第四代核反应堆手册第2版
IF 0.4 Q3 Energy Pub Date : 2023-04-21 DOI: 10.1115/1.4062402
J. Riznic
This second edition of the Handbook of Generation IV Nuclear Reactors (https://www.elsevier.com/books/handbook-of-generation-iv-nuclear-reactors/9780128205884) combines the history of development, research, industrial-operating experience, advanced designs, systems and safety analysis, and applications of nuclear energy. Impressive number of 64 recognized nuclear-energy-system experts from 13 nuclear-power countries: Belgium, Canada, China, France, Germany, India, Japan, Russia, Republic of Korea, Ukraine, Switzerland, UK, and USA, contributed to this book. The second edition builds on the successes of the first edition published in 2016 (Handbook of Generation IV Nuclear Reactors, 2016. Editor: I.L. Pioro, Elsevier - Woodhead Publishing).
《第四代核反应堆手册》第二版(https://www.elsevier.com/books/handbook-of-generation-iv-nuclear-reactors/9780128205884)结合了核能的发展历史、研究、工业运行经验、先进设计、系统和安全分析以及应用。来自13个核电国家(比利时、加拿大、中国、法国、德国、印度、日本、俄罗斯、韩国、乌克兰、瑞士、英国和美国)的64位公认的核能系统专家为本书做出了令人印象深刻的贡献。第二版以2016年第一版的成功为基础(《第四代核反应堆手册》,2016年)。编辑:I.L. Pioro, Elsevier - Woodhead Publishing)。
{"title":"Handbook of Generation IV Nuclear Reactors Edition 2","authors":"J. Riznic","doi":"10.1115/1.4062402","DOIUrl":"https://doi.org/10.1115/1.4062402","url":null,"abstract":"\u0000 This second edition of the Handbook of Generation IV Nuclear Reactors (https://www.elsevier.com/books/handbook-of-generation-iv-nuclear-reactors/9780128205884) combines the history of development, research, industrial-operating experience, advanced designs, systems and safety analysis, and applications of nuclear energy. Impressive number of 64 recognized nuclear-energy-system experts from 13 nuclear-power countries: Belgium, Canada, China, France, Germany, India, Japan, Russia, Republic of Korea, Ukraine, Switzerland, UK, and USA, contributed to this book. The second edition builds on the successes of the first edition published in 2016 (Handbook of Generation IV Nuclear Reactors, 2016. Editor: I.L. Pioro, Elsevier - Woodhead Publishing).","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77012371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Design Challenges of Portable Nuclear Magnetic Resonance System 便携式核磁共振系统的设计挑战
IF 0.4 Q3 Energy Pub Date : 2023-04-18 DOI: 10.3390/jne4020025
Mohsen Hosseinzadehtaher, Silvanus D’silva, Matthew Baker, Ritesh Kumar, Nathan T. Hein, M. Shadmand, S. Jagadish, B. Ghanbarian
This article studies the optimal design approach for a portable nuclear magnetic resonance (NMR) system for use in non-destructive flow measurement applications. The mechanical and electromagnetic design procedures were carried out using the Ansys Maxwell finite-element analysis (FEA) software tool. The proposed procedure considered homogeneity and strength constraints while ensuring the desired functionality of the intended device for a given application. A modified particle swarm optimization (MPSO) algorithm was proposed as a reference design framework for optimization stages. The optimally designed NMR tool was prototyped, and its functionality was validated via several case studies. To assess the functionality of the prototyped device, Larmor frequency for hydrogen atom was captured and compared with theoretical results. Furthermore, the functionality and accuracy of the prototyped NMR tool is compared to the off-the-shelf NMR tool. Results demonstrated the feasibility and accuracy of the prototyped NMR tool constrained by factors, such as being lightweight and compact.
本文研究了用于非破坏性流量测量的便携式核磁共振(NMR)系统的优化设计方法。采用Ansys Maxwell有限元分析(FEA)软件进行机械和电磁设计。拟议的程序考虑了均匀性和强度限制,同时确保给定应用的预期设备的预期功能。提出了一种改进的粒子群优化算法(MPSO)作为优化阶段的参考设计框架。优化设计的核磁共振工具原型,并通过几个案例研究验证了其功能。为了评估原型装置的功能,捕获了氢原子的拉莫尔频率,并与理论结果进行了比较。此外,原型核磁共振工具的功能和准确性与现成的核磁共振工具进行了比较。结果证明了原型核磁共振工具的可行性和准确性,但受到重量轻、结构紧凑等因素的限制。
{"title":"On Design Challenges of Portable Nuclear Magnetic Resonance System","authors":"Mohsen Hosseinzadehtaher, Silvanus D’silva, Matthew Baker, Ritesh Kumar, Nathan T. Hein, M. Shadmand, S. Jagadish, B. Ghanbarian","doi":"10.3390/jne4020025","DOIUrl":"https://doi.org/10.3390/jne4020025","url":null,"abstract":"This article studies the optimal design approach for a portable nuclear magnetic resonance (NMR) system for use in non-destructive flow measurement applications. The mechanical and electromagnetic design procedures were carried out using the Ansys Maxwell finite-element analysis (FEA) software tool. The proposed procedure considered homogeneity and strength constraints while ensuring the desired functionality of the intended device for a given application. A modified particle swarm optimization (MPSO) algorithm was proposed as a reference design framework for optimization stages. The optimally designed NMR tool was prototyped, and its functionality was validated via several case studies. To assess the functionality of the prototyped device, Larmor frequency for hydrogen atom was captured and compared with theoretical results. Furthermore, the functionality and accuracy of the prototyped NMR tool is compared to the off-the-shelf NMR tool. Results demonstrated the feasibility and accuracy of the prototyped NMR tool constrained by factors, such as being lightweight and compact.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87012065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys 基于机器学习的V-Cr-Ti合金稳定性成分分析
IF 0.4 Q3 Energy Pub Date : 2023-04-14 DOI: 10.3390/jne4020024
K. Tanabe
Machine learning methods allow the prediction of material properties, potentially using only the elemental composition of a molecule or compound, without the knowledge of molecular or crystalline structures. Herein, a composition-based machine learning prediction of the material properties of V–Cr–Ti alloys is demonstrated. Our machine-learning-based prediction of the stability of the V–Cr–Ti alloys is qualitatively consistent with the composition-dependent experimental data of the ductile–brittle transition temperature and swelling. Furthermore, our computational results suggest the existence of a composition region, Cr+Ti ~ 60 wt.%, at a significantly low ductile–brittle transition temperature. This outcome contrasts with a reportedly low Cr+Ti content of less than 10 wt.% in conventional V–Cr–Ti alloys. Machine-learning-based numerical stability prediction is useful for the design and analysis of metal alloys, particularly for multicomponent alloys such as high-entropy alloys, to develop materials for nuclear fusion reactors.
机器学习方法可以预测材料特性,可能只使用分子或化合物的元素组成,而不需要了解分子或晶体结构。本文展示了一种基于成分的机器学习预测V-Cr-Ti合金材料性能的方法。我们基于机器学习的V-Cr-Ti合金稳定性预测与成分相关的韧脆转变温度和膨胀实验数据在质量上是一致的。此外,我们的计算结果表明,在极低的韧脆转变温度下,存在Cr+Ti ~ 60 wt.%的成分区域。这一结果与传统V-Cr-Ti合金中Cr+Ti含量低于10 wt.%形成对比。基于机器学习的数值稳定性预测对于金属合金的设计和分析,特别是对于多组分合金,如高熵合金,用于核聚变反应堆材料的开发是有用的。
{"title":"Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys","authors":"K. Tanabe","doi":"10.3390/jne4020024","DOIUrl":"https://doi.org/10.3390/jne4020024","url":null,"abstract":"Machine learning methods allow the prediction of material properties, potentially using only the elemental composition of a molecule or compound, without the knowledge of molecular or crystalline structures. Herein, a composition-based machine learning prediction of the material properties of V–Cr–Ti alloys is demonstrated. Our machine-learning-based prediction of the stability of the V–Cr–Ti alloys is qualitatively consistent with the composition-dependent experimental data of the ductile–brittle transition temperature and swelling. Furthermore, our computational results suggest the existence of a composition region, Cr+Ti ~ 60 wt.%, at a significantly low ductile–brittle transition temperature. This outcome contrasts with a reportedly low Cr+Ti content of less than 10 wt.% in conventional V–Cr–Ti alloys. Machine-learning-based numerical stability prediction is useful for the design and analysis of metal alloys, particularly for multicomponent alloys such as high-entropy alloys, to develop materials for nuclear fusion reactors.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83075560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation of Control Rod Drops into Perturbed Fuel Assemblies 控制棒滴入扰动燃料组件的实验研究
IF 0.4 Q3 Energy Pub Date : 2023-04-06 DOI: 10.1115/1.4062275
N. Park, O. Kwon, Y. Yoo, Tae-Suk Kim
This paper discusses permanent deformation of the fuel assembly of pressurized water reactors that can satisfy a drop time requirement of the control rod assembly. During a seismic event, the fuel assemblies and the reactor core exhibit transient vibration. When the fuel assemblies collide, they develop impact forces in the spacer grids along the fuel assemblies. If the impact forces on some spacer grids of the fuel assembly exceed an allowable strength, the buckling occurs in the corresponding spacer grids, followed by permanent deformation. The geometry change of the buckled spacer grids leads to the movement of the guide tube positions in the fuel assembly. Therefore the geometry change is associated with the distortion of the control rod drop path. In this study, the permanent deformation of the spacer grids was measured during the impact tests, and the maximum deviation of the guide tube from the original position was reviewed. Control rod drop tests were also performed to measure the change in drop time according to the deformation of the fuel assembly. Using actuators in the loop test facility, the authors realized the first and second bending mode shapes of the fuel assembly under the flowing water condition. Based on a series of drop tests, the critical fuel assembly deformation was identified that could lead to a violation of an allowable drop time of the control rod.
本文讨论了压水堆燃料组件的永久变形,以满足控制棒组件的下降时间要求。在地震事件中,燃料组件和反应堆堆芯表现出瞬态振动。当燃料组件碰撞时,它们在沿燃料组件的间隔网格中产生冲击力。如果对燃料组件的某些间隔网格的冲击力超过允许强度,则相应的间隔网格发生屈曲,随后发生永久性变形。屈曲间隔栅的几何变化导致导管在燃料组件中的位置的移动。因此,几何变化与控制棒跌落路径的畸变有关。在冲击试验中,测量了间隔栅的永久变形,并对导管与原始位置的最大偏差进行了审查。还进行了控制棒跌落试验,以根据燃料组件的变形测量跌落时间的变化。利用回路试验装置中的执行器,实现了燃油组件在流水工况下的一阶和二阶弯曲模态形状。基于一系列跌落试验,确定了可能导致控制棒超出允许跌落时间的燃料组件临界变形。
{"title":"Experimental Investigation of Control Rod Drops into Perturbed Fuel Assemblies","authors":"N. Park, O. Kwon, Y. Yoo, Tae-Suk Kim","doi":"10.1115/1.4062275","DOIUrl":"https://doi.org/10.1115/1.4062275","url":null,"abstract":"\u0000 This paper discusses permanent deformation of the fuel assembly of pressurized water reactors that can satisfy a drop time requirement of the control rod assembly. During a seismic event, the fuel assemblies and the reactor core exhibit transient vibration. When the fuel assemblies collide, they develop impact forces in the spacer grids along the fuel assemblies. If the impact forces on some spacer grids of the fuel assembly exceed an allowable strength, the buckling occurs in the corresponding spacer grids, followed by permanent deformation. The geometry change of the buckled spacer grids leads to the movement of the guide tube positions in the fuel assembly. Therefore the geometry change is associated with the distortion of the control rod drop path. In this study, the permanent deformation of the spacer grids was measured during the impact tests, and the maximum deviation of the guide tube from the original position was reviewed. Control rod drop tests were also performed to measure the change in drop time according to the deformation of the fuel assembly. Using actuators in the loop test facility, the authors realized the first and second bending mode shapes of the fuel assembly under the flowing water condition. Based on a series of drop tests, the critical fuel assembly deformation was identified that could lead to a violation of an allowable drop time of the control rod.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83022679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary Study on the Thermal Neutron Scattering Cross-Section for HinH2O in Small Modular Reactors HinH2O在小型模块堆中热中子散射截面的初步研究
IF 0.4 Q3 Energy Pub Date : 2023-04-04 DOI: 10.3390/jne4020023
Jun Wu, Yixue Chen
Neutron thermalization leads to the complexity of the scattering cross-section calculation, which influences the accuracy of the neutron transport calculation in the thermal energy range. The higher precision of thermal scattering data is demanded in the small modular reactors (SMRs) design, especially for small-sized PWRs and SCWRs. Additionally, the thermal neutron scattering problems in supercritical water have not yet been solved. In this study, the thermal neutron scattering problems in subcritical water are tested. Based on thermal neutron scattering theory, the GA model and IKE model were analyzed. This work selected the corresponding input parameters, such as the frequency spectrum, the discrete oscillator energy, weight parameters and so on, as well as preliminary studies on how to calculate the thermal scattering data for HinH2O to accomplish the calculation at various temperatures by developing LIPER code. The deviation between the calculated and reference results, which were both obtained by the Monte Carlo code, COSRMC, was below 0.2 pcm. The deviation of the scattering cross-section between the calculation results and reference was below 0.1%, indicating the reasonability of this study’s thermal scattering data calculation.
中子热化导致散射截面计算的复杂性,影响了在热能范围内中子输运计算的准确性。小型模块化反应堆的设计对热散射数据的精度提出了更高的要求,特别是小型压水堆和SCWRs。此外,超临界水中的热中子散射问题尚未得到解决。本文对亚临界水中的热中子散射问题进行了测试。基于热中子散射理论,对GA模型和IKE模型进行了分析。本工作选择了相应的输入参数,如频谱、离散振荡器能量、权重参数等,并对如何计算HinH2O的热散射数据进行了初步研究,通过开发LIPER代码完成了不同温度下的计算。计算结果与参考结果之间的偏差均小于0.2 pcm,均由蒙特卡罗程序COSRMC获得。计算结果与参考文献的散射截面偏差小于0.1%,表明本研究热散射数据计算的合理性。
{"title":"Preliminary Study on the Thermal Neutron Scattering Cross-Section for HinH2O in Small Modular Reactors","authors":"Jun Wu, Yixue Chen","doi":"10.3390/jne4020023","DOIUrl":"https://doi.org/10.3390/jne4020023","url":null,"abstract":"Neutron thermalization leads to the complexity of the scattering cross-section calculation, which influences the accuracy of the neutron transport calculation in the thermal energy range. The higher precision of thermal scattering data is demanded in the small modular reactors (SMRs) design, especially for small-sized PWRs and SCWRs. Additionally, the thermal neutron scattering problems in supercritical water have not yet been solved. In this study, the thermal neutron scattering problems in subcritical water are tested. Based on thermal neutron scattering theory, the GA model and IKE model were analyzed. This work selected the corresponding input parameters, such as the frequency spectrum, the discrete oscillator energy, weight parameters and so on, as well as preliminary studies on how to calculate the thermal scattering data for HinH2O to accomplish the calculation at various temperatures by developing LIPER code. The deviation between the calculated and reference results, which were both obtained by the Monte Carlo code, COSRMC, was below 0.2 pcm. The deviation of the scattering cross-section between the calculation results and reference was below 0.1%, indicating the reasonability of this study’s thermal scattering data calculation.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74838789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eddy Current Flow Meter Measurements in Liquid Sodium at High Temperatures 涡流流量计在高温下测量液态钠
IF 0.4 Q3 Energy Pub Date : 2023-03-31 DOI: 10.1115/1.4062239
N. Krauter, A. Onea, G. Gerbeth, S. Eckert
We present measurement results for the flow rate of liquid sodium at temperatures up to 700°C that were obtained with a high temperature prototype of an immersed Eddy Current Flow Meter. The experimental campaign was conducted at the SOLTEC-2 sodium loop at KIT. The main objective of the experiments is the high temperature qualification of the Eddy Current Flow Meter as part of the safety instrumentation of generation IV liquid metal cooled fast reactors. There it is intended to be used for monitoring the flow rate of the coolant and to detect possible blockages of sub assemblies. Due to the large liquid metal volume, the sensor has to be located close to the sub assemblies, therefore measurements from outside of the vessel are not possible and an immersed sensor is required. We demonstrate the successful application of the immersed Eddy Current Flow Meter at such high temperatures and identify the relevant effects with impact on the sensor performance.
我们给出了在高达700°C的温度下液体钠的流速的测量结果,这是用浸入式涡流流量计的高温原型获得的。实验活动在KIT的SOLTEC-2钠环上进行。实验的主要目的是对作为第四代液态金属冷却快堆安全仪表的涡流流量计进行高温鉴定。在那里,它被用来监测冷却剂的流速,并检测可能的子组件堵塞。由于液态金属体积很大,传感器必须靠近子组件,因此无法从容器外部进行测量,需要浸入式传感器。我们演示了浸入式涡流流量计在这种高温下的成功应用,并确定了影响传感器性能的相关影响。
{"title":"Eddy Current Flow Meter Measurements in Liquid Sodium at High Temperatures","authors":"N. Krauter, A. Onea, G. Gerbeth, S. Eckert","doi":"10.1115/1.4062239","DOIUrl":"https://doi.org/10.1115/1.4062239","url":null,"abstract":"\u0000 We present measurement results for the flow rate of liquid sodium at temperatures up to 700°C that were obtained with a high temperature prototype of an immersed Eddy Current Flow Meter. The experimental campaign was conducted at the SOLTEC-2 sodium loop at KIT. The main objective of the experiments is the high temperature qualification of the Eddy Current Flow Meter as part of the safety instrumentation of generation IV liquid metal cooled fast reactors. There it is intended to be used for monitoring the flow rate of the coolant and to detect possible blockages of sub assemblies. Due to the large liquid metal volume, the sensor has to be located close to the sub assemblies, therefore measurements from outside of the vessel are not possible and an immersed sensor is required. We demonstrate the successful application of the immersed Eddy Current Flow Meter at such high temperatures and identify the relevant effects with impact on the sensor performance.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89229692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ITER Test Blanket Module—ALARA Investigations for Port Cell Pipe Forest Replacement ITER试验包层模块- alara对端口单元管道森林替换的研究
IF 0.4 Q3 Energy Pub Date : 2023-03-17 DOI: 10.3390/jne4010022
J. Friconneau, T. Batal, O. David, Chiara Di Paolo, F. Ferlay, S. Gazzotti, L. Giancarli, Christophe Lacroix, J. Martins, Benjamin Michel, J. Travere
The objective of the ITER test blanket module (TBM) program is to provide experimental data on the performance of the breeding blankets in the integrated fusion nuclear environment. The ITER test blanket modules are installed and operated inside the vacuum vessel (VV) at the equatorial ports located within port plugs (PP), and each PP includes two TBMs. After each 18-month-long plasma operation campaign, the TBM research plan testing program requires the replacement of the TBMs with new ones during the ITER long-term shutdown, called long-term maintenance (LTM). The replacement of a TBM requires the removal/reinstallation of all test blanket system (TBS) equipment present in the port cell (PC), including those in the port interspace (PI), called pipe forest (PF). TBSs shall be designed so that occupational radiation exposure (ORE) can be as low as reasonably achievable (ALARA) over the life of the plant to follow the ITER policy. To implement ALARA process requirements, design activities shall consider careful integration investigations starting from the early phase to address all engineering aspects of the replacement sequence. The case study focuses on the PF replacement, in particular the port cell operations. This paper describes the investigations and findings of the ALARA optimisation process implementation in the early engineering phase of the PF.
ITER试验包层模块(TBM)计划的目标是提供在综合聚变核环境中繁殖包层性能的实验数据。ITER试验包层模块安装在真空容器(VV)内,并在位于端口塞(PP)内的赤道端口内运行,每个PP包括两个TBMs。在每次长达18个月的等离子体运行活动之后,TBM研究计划测试项目需要在ITER长期关闭期间用新的TBM替换,称为长期维护(LTM)。TBM的更换需要移除/重新安装端口单元(PC)中的所有测试覆盖系统(TBS)设备,包括端口间隙(PI)中的设备,称为管道森林(PF)。tss的设计应使职业辐射暴露(ORE)在核电厂的整个生命周期内尽可能低(ALARA),以遵循ITER政策。为了实施ALARA工艺要求,设计活动应从早期阶段开始考虑仔细的集成调查,以解决替换顺序的所有工程方面。案例研究的重点是PF的替换,特别是端口单元操作。本文描述了在PF的早期工程阶段实施ALARA优化过程的调查和结果。
{"title":"ITER Test Blanket Module—ALARA Investigations for Port Cell Pipe Forest Replacement","authors":"J. Friconneau, T. Batal, O. David, Chiara Di Paolo, F. Ferlay, S. Gazzotti, L. Giancarli, Christophe Lacroix, J. Martins, Benjamin Michel, J. Travere","doi":"10.3390/jne4010022","DOIUrl":"https://doi.org/10.3390/jne4010022","url":null,"abstract":"The objective of the ITER test blanket module (TBM) program is to provide experimental data on the performance of the breeding blankets in the integrated fusion nuclear environment. The ITER test blanket modules are installed and operated inside the vacuum vessel (VV) at the equatorial ports located within port plugs (PP), and each PP includes two TBMs. After each 18-month-long plasma operation campaign, the TBM research plan testing program requires the replacement of the TBMs with new ones during the ITER long-term shutdown, called long-term maintenance (LTM). The replacement of a TBM requires the removal/reinstallation of all test blanket system (TBS) equipment present in the port cell (PC), including those in the port interspace (PI), called pipe forest (PF). TBSs shall be designed so that occupational radiation exposure (ORE) can be as low as reasonably achievable (ALARA) over the life of the plant to follow the ITER policy. To implement ALARA process requirements, design activities shall consider careful integration investigations starting from the early phase to address all engineering aspects of the replacement sequence. The case study focuses on the PF replacement, in particular the port cell operations. This paper describes the investigations and findings of the ALARA optimisation process implementation in the early engineering phase of the PF.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75411960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nuclear Engineering and Radiation Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1