首页 > 最新文献

Journal of Pharmacology and Experimental Therapeutics最新文献

英文 中文
Significance of nitric oxide derived from the nitric oxide synthases system in cardiovascular interorgan crosstalk. 一氧化氮合成酶系统产生的一氧化氮在心血管器官间串联中的意义。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-11-22 DOI: 10.1124/jpet.124.002222
Masato Tsutsui, Kazuhiro Yatera

Interorgan crosstalk contributes to the pathogenesis of various disorders, and drug development based on interorgan crosstalk is attracting attention. The roles of nitric oxide (NO) derived from the NO synthases system (NOSs) in interorgan crosstalk remain unclear. We have investigated this issue by using our mice deficient in all 3 NOSs (triple n/i/eNOSs-/- mice). We reported that 2/3 nephrectomized triple n/i/eNOSs-/- mice die suddenly because of the early onset of myocardial infarction, suggesting the protective role of NO derived from NOSs in the crosstalk between the kidney and the heart. We studied the role of NO derived from NOSs expressed in the bone marrow in vascular lesion formation. Constrictive arterial remodeling and neointimal formation following unilateral carotid artery ligation were prominently aggravated in wild-type mice transplanted with triple n/i/eNOSs-/- bone marrow cells as compared with those with wild-type bone marrow cells, suggesting the protective role of NO derived from NOSs in the crosstalk between the bone marrow and the blood vessel. We further investigated the role of NO derived from NOSs expressed in the bone marrow in pulmonary hypertension. The extent of pulmonary hypertension after chronic hypoxic exposure was markedly exacerbated in wild-type mice that underwent triple n/i/eNOSs-/- bone marrow transplantation as compared with those that underwent wild-type bone marrow transplantation, suggesting the protective role of NO derived from NOSs in the crosstalk between the bone marrow and the lung. These lines of evidence demonstrate that systemic and myelocytic NOSs could be novel therapeutic targets for myocardial infarction, vascular disease, and pulmonary hypertension. SIGNIFICANCE STATEMENT: This study demonstrated partial nephrectomy accelerates the occurrence of myocardial infarction induced by systemic NOSs deficiency in triple n/i/eNOSs-/- mice, that myelocytic NOSs deficiency aggravates vascular lesion formation after unilateral carotid artery ligation, and that myelocytic NOSs deficiency exacerbates chronic hypoxia-induced pulmonary hypertension. These results suggest that NO derived from NOSs plays a protective role in cardiovascular interorgan crosstalk, indicating that systemic and myelocytic NOSs could be important therapeutic targets for myocardial infarction, vascular disease, and pulmonary hypertension.

{"title":"Significance of nitric oxide derived from the nitric oxide synthases system in cardiovascular interorgan crosstalk.","authors":"Masato Tsutsui, Kazuhiro Yatera","doi":"10.1124/jpet.124.002222","DOIUrl":"https://doi.org/10.1124/jpet.124.002222","url":null,"abstract":"<p><p>Interorgan crosstalk contributes to the pathogenesis of various disorders, and drug development based on interorgan crosstalk is attracting attention. The roles of nitric oxide (NO) derived from the NO synthases system (NOSs) in interorgan crosstalk remain unclear. We have investigated this issue by using our mice deficient in all 3 NOSs (triple n/i/eNOSs<sup>-/-</sup> mice). We reported that 2/3 nephrectomized triple n/i/eNOSs<sup>-/-</sup> mice die suddenly because of the early onset of myocardial infarction, suggesting the protective role of NO derived from NOSs in the crosstalk between the kidney and the heart. We studied the role of NO derived from NOSs expressed in the bone marrow in vascular lesion formation. Constrictive arterial remodeling and neointimal formation following unilateral carotid artery ligation were prominently aggravated in wild-type mice transplanted with triple n/i/eNOSs<sup>-/-</sup> bone marrow cells as compared with those with wild-type bone marrow cells, suggesting the protective role of NO derived from NOSs in the crosstalk between the bone marrow and the blood vessel. We further investigated the role of NO derived from NOSs expressed in the bone marrow in pulmonary hypertension. The extent of pulmonary hypertension after chronic hypoxic exposure was markedly exacerbated in wild-type mice that underwent triple n/i/eNOSs<sup>-/-</sup> bone marrow transplantation as compared with those that underwent wild-type bone marrow transplantation, suggesting the protective role of NO derived from NOSs in the crosstalk between the bone marrow and the lung. These lines of evidence demonstrate that systemic and myelocytic NOSs could be novel therapeutic targets for myocardial infarction, vascular disease, and pulmonary hypertension. SIGNIFICANCE STATEMENT: This study demonstrated partial nephrectomy accelerates the occurrence of myocardial infarction induced by systemic NOSs deficiency in triple n/i/eNOSs<sup>-/-</sup> mice, that myelocytic NOSs deficiency aggravates vascular lesion formation after unilateral carotid artery ligation, and that myelocytic NOSs deficiency exacerbates chronic hypoxia-induced pulmonary hypertension. These results suggest that NO derived from NOSs plays a protective role in cardiovascular interorgan crosstalk, indicating that systemic and myelocytic NOSs could be important therapeutic targets for myocardial infarction, vascular disease, and pulmonary hypertension.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100025"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential: FKK6 as a microbial mimicry-based therapy for chronic inflammation-associated colorectal cancer in a murine model.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-12-10 DOI: 10.1016/j.jpet.2024.100059
Lucia Sládeková, Hao Li, Vera M DesMarais, Amanda P Beck, Hillary Guzik, Barbora Vyhlídalová, Haiwei Gu, Sridhar Mani, Zdenek Dvořák

Chronic intestinal inflammation significantly contributes to the development of colorectal cancer and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics Felix Kopp Kortagere 6 (FKK6), which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane and DSS. FKK6 (2 mg/kg) displayed substantial antitumor activity, as revealed by reduced size and number of colon tumors, improved colon histopathology, and decreased expression of tumor markers (c-MYC, β-catenin, Ki-67, and cyclin D) in the colon. In addition, we carried out a chronic toxicity (30 days) assessment of FKK6 (1 mg/kg and 2 mg/kg) in C57BL/6 mice. Histological examination of tissues, biochemical blood analyses, and immunohistochemical staining for Ki-67 and γ-H2AX showed no difference between FKK6-treated and control mice. Comparative metabolomic analyses in mice exposed for 5 days to DSS and administered with FKK6 (0.4 mg/kg) revealed no significant effects on several classes of metabolites in the mouse fecal metabolome. Ames and micronucleus tests showed no genotoxic and mutagenic potential of FKK6 in vitro. In conclusion, anticancer effects of FKK6 in azoxymethane/DSS-induced CAC, together with FKK6 safety data from in vitro tests and in vivo chronic toxicity study, and comparative metabolomic study, are supportive of the potential therapeutic use of FKK6 in the treatment of CAC. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry proposes that chemical mimics of microbial metabolites that serve to protect hosts against aberrant inflammation in the gut could serve as a new paradigm for the development of drugs targeting inflammatory bowel disease if, like the parent metabolite, is devoid of toxicity but more potent against the microbial metabolite receptor. We identified a chemical mimic of Felix Kopp Kortagere 6, and we propose that Felix Kopp Kortagere 6 is devoid of toxicity yet significantly reduces tumor formation in an azoxymethane-dextran sodium sulfate model of murine colitis-induced colon cancer.

{"title":"Unlocking the potential: FKK6 as a microbial mimicry-based therapy for chronic inflammation-associated colorectal cancer in a murine model.","authors":"Lucia Sládeková, Hao Li, Vera M DesMarais, Amanda P Beck, Hillary Guzik, Barbora Vyhlídalová, Haiwei Gu, Sridhar Mani, Zdenek Dvořák","doi":"10.1016/j.jpet.2024.100059","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.100059","url":null,"abstract":"<p><p>Chronic intestinal inflammation significantly contributes to the development of colorectal cancer and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics Felix Kopp Kortagere 6 (FKK6), which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane and DSS. FKK6 (2 mg/kg) displayed substantial antitumor activity, as revealed by reduced size and number of colon tumors, improved colon histopathology, and decreased expression of tumor markers (c-MYC, β-catenin, Ki-67, and cyclin D) in the colon. In addition, we carried out a chronic toxicity (30 days) assessment of FKK6 (1 mg/kg and 2 mg/kg) in C57BL/6 mice. Histological examination of tissues, biochemical blood analyses, and immunohistochemical staining for Ki-67 and γ-H2AX showed no difference between FKK6-treated and control mice. Comparative metabolomic analyses in mice exposed for 5 days to DSS and administered with FKK6 (0.4 mg/kg) revealed no significant effects on several classes of metabolites in the mouse fecal metabolome. Ames and micronucleus tests showed no genotoxic and mutagenic potential of FKK6 in vitro. In conclusion, anticancer effects of FKK6 in azoxymethane/DSS-induced CAC, together with FKK6 safety data from in vitro tests and in vivo chronic toxicity study, and comparative metabolomic study, are supportive of the potential therapeutic use of FKK6 in the treatment of CAC. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry proposes that chemical mimics of microbial metabolites that serve to protect hosts against aberrant inflammation in the gut could serve as a new paradigm for the development of drugs targeting inflammatory bowel disease if, like the parent metabolite, is devoid of toxicity but more potent against the microbial metabolite receptor. We identified a chemical mimic of Felix Kopp Kortagere 6, and we propose that Felix Kopp Kortagere 6 is devoid of toxicity yet significantly reduces tumor formation in an azoxymethane-dextran sodium sulfate model of murine colitis-induced colon cancer.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100059"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Baclofen and opioid interactions in mice could inform pain treatment methods.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-12-25 DOI: 10.1016/j.jpet.2024.100531
Stacie K Totsch, Remy Y Meir, Aaron R Landis, Tammie L Quinn, Robert E Sorge

With the current pressure to reduce opioid usage in the clinical setting, there is a call for the development of adjunct therapies. Although opioids remain the primary analgesic used in the treatment of moderate to severe pain, these drugs come with negative side effects, such as increased potential for abuse. The overlap in expression of opioid and GABA receptors suggests that the 2 systems may interact. Therefore, to investigate this interaction, our study used the GABAB receptor agonist, baclofen, because it has previously been used as a treatment for spasticity and addiction and has demonstrated weak analgesic properties. Our study focused on the interaction between baclofen and opioid analgesics regarding analgesic efficacy and abuse potential. Analgesia was assessed through hot plate testing and reward was assessed through conditioned place preference testing in outbred CD1 mice. These interactions were examined with morphine, methadone, oxycodone, and fentanyl using isobolographic analyses. All opioids tested with baclofen demonstrate synergism in analgesia and no consistent significant interactions in place preference conditioning. Together these data support the use of baclofen coupled with opioids to enhance the analgesia, with no concomitant increase in abuse liability and associated common side effects of opioid drugs. SIGNIFICANCE STATEMENT: The combination of the commonly prescribed drug, baclofen, and a variety of opioids exhibits a synergistic analgesic effect allowing for lower doses of opioids to be used for equivalent analgesic effect. Synergistic analgesia was seen without concomitant enhanced tolerance, constipation, or reward, and across species, suggesting a beneficial interaction for pain relief.

目前,临床上面临着减少阿片类药物用量的压力,人们呼吁开发辅助疗法。虽然阿片类药物仍是治疗中度至重度疼痛的主要镇痛药,但这些药物也有负面影响,如增加滥用的可能性。阿片受体和 GABA 受体表达的重叠表明,这两种系统可能会相互作用。因此,为了研究这种相互作用,我们的研究使用了 GABAB 受体激动剂巴氯芬,因为它以前曾被用作治疗痉挛和成瘾的药物,并表现出微弱的镇痛特性。我们的研究重点是巴氯芬与阿片类镇痛药在镇痛效果和滥用可能性方面的相互作用。我们通过热板测试评估了巴氯芬的镇痛作用,并通过条件性位置偏好测试评估了CD1小鼠的奖赏作用。使用同分异构分析法对吗啡、美沙酮、羟考酮和芬太尼的相互作用进行了研究。与巴氯芬一起测试的所有阿片类药物在镇痛方面都表现出协同作用,而在位置偏好调节方面则没有一致的显著相互作用。总之,这些数据支持巴氯芬与阿片类药物联用以增强镇痛效果,同时不会增加阿片类药物的滥用责任和相关常见副作用。意义声明:将常用处方药巴氯芬与多种阿片类药物结合使用可产生协同镇痛效果,使用较低剂量的阿片类药物即可达到同等镇痛效果。在不同的物种中,协同镇痛效果不会同时增强耐受性、便秘或奖赏,这表明协同镇痛对缓解疼痛是有益的。
{"title":"Baclofen and opioid interactions in mice could inform pain treatment methods.","authors":"Stacie K Totsch, Remy Y Meir, Aaron R Landis, Tammie L Quinn, Robert E Sorge","doi":"10.1016/j.jpet.2024.100531","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.100531","url":null,"abstract":"<p><p>With the current pressure to reduce opioid usage in the clinical setting, there is a call for the development of adjunct therapies. Although opioids remain the primary analgesic used in the treatment of moderate to severe pain, these drugs come with negative side effects, such as increased potential for abuse. The overlap in expression of opioid and GABA receptors suggests that the 2 systems may interact. Therefore, to investigate this interaction, our study used the GABA<sub>B</sub> receptor agonist, baclofen, because it has previously been used as a treatment for spasticity and addiction and has demonstrated weak analgesic properties. Our study focused on the interaction between baclofen and opioid analgesics regarding analgesic efficacy and abuse potential. Analgesia was assessed through hot plate testing and reward was assessed through conditioned place preference testing in outbred CD1 mice. These interactions were examined with morphine, methadone, oxycodone, and fentanyl using isobolographic analyses. All opioids tested with baclofen demonstrate synergism in analgesia and no consistent significant interactions in place preference conditioning. Together these data support the use of baclofen coupled with opioids to enhance the analgesia, with no concomitant increase in abuse liability and associated common side effects of opioid drugs. SIGNIFICANCE STATEMENT: The combination of the commonly prescribed drug, baclofen, and a variety of opioids exhibits a synergistic analgesic effect allowing for lower doses of opioids to be used for equivalent analgesic effect. Synergistic analgesia was seen without concomitant enhanced tolerance, constipation, or reward, and across species, suggesting a beneficial interaction for pain relief.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100531"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preventing cisplatin-induced kidney injury through inhibition of fatty acid amide hydrolase.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-12-27 DOI: 10.1016/j.jpet.2024.100044
Johannes C K van der Mijn
{"title":"Preventing cisplatin-induced kidney injury through inhibition of fatty acid amide hydrolase.","authors":"Johannes C K van der Mijn","doi":"10.1016/j.jpet.2024.100044","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.100044","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100044"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial on recent trends in the pharmacology of cardiovascular diseases for the Journal of Pharmacology and Experimental Therapeutics.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2025-01-16 DOI: 10.1016/j.jpet.2024.103384
Hideyuki Yamawaki, Tetsuo Nakata
{"title":"Editorial on recent trends in the pharmacology of cardiovascular diseases for the Journal of Pharmacology and Experimental Therapeutics.","authors":"Hideyuki Yamawaki, Tetsuo Nakata","doi":"10.1016/j.jpet.2024.103384","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.103384","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"103384"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploration of a novel therapeutic option: Use of a β2 agonist to prevent neuropathic pain development secondary to spinal cord injury in a mouse model.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-12-30 DOI: 10.1016/j.jpet.2024.100038
Robert C Barnes, Josée Guindon
{"title":"Exploration of a novel therapeutic option: Use of a β<sub>2</sub> agonist to prevent neuropathic pain development secondary to spinal cord injury in a mouse model.","authors":"Robert C Barnes, Josée Guindon","doi":"10.1016/j.jpet.2024.100038","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.100038","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100038"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TLR4 downregulation protects against cisplatin-induced ototoxicity in adult and pediatric patients with cancer. 下调 TLR4 可保护成人和儿童癌症患者免受顺铂引起的耳毒性。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-12-09 DOI: 10.1016/j.jpet.2024.100057
John J W Lee, Asna Latif, Erika N Scott, Abhinav Thakral, Mary B Mahler, Beth Brooks, Katrina Hueniken, Astrid Billfalk-Kelly, Osvaldo Espin-Garcia, Luna Jia Zhan, S Rod Rassekh, Lucie Pecheux, Maria Spavor, Yuling Li, David Goldstein, Andrew Hope, Colin J Ross, Geoffrey Liu, Bruce C Carleton, Amit P Bhavsar

Cisplatin causes permanent hearing loss or cisplatin-induced ototoxicity in over 50% of treated patients with cancer, leading to significant social and functional limitations. Interindividual variability in developing hearing loss suggests the role of genetic predispositions to cisplatin-induced hearing loss. We investigated genetic associations between cisplatin-induced ototoxicity and toll-like receptor 4 (TLR4), an immune receptor known to mediate inflammatory responses to cisplatin. Using a case-control candidate gene approach, we identified 20 single nucleotide polymorphisms at the TLR4 locus with significant protection against ototoxicity in a cohort of 213 adult patients, followed by an independent pediatric patient cohort (n = 357). Combined cohort analysis demonstrated a significant association between cisplatin-induced ototoxicity protection and a single variant in the TLR4 promoter, rs10759932. We showed that rs10759932 downregulated TLR4 expression that is normally induced by cisplatin. This work provides pharmacogenetic and functional evidence to implicate TLR4 with cisplatin-induced hearing loss in patients. SIGNIFICANCE STATEMENT: Adult and pediatric patients carrying toll-like receptor 4 (TLR4) genetic variants were protected against developing cisplatin-induced hearing loss following cisplatin treatment. Important variants in the TLR4 promoter disrupted a drug-gene interaction between cisplatin and TLR4, mirroring the protective effect conferred by genetic inhibition of TLR4. These variants have the potential to improve the prediction of cisplatin toxicity, allowing for more precise chemotherapy treatment.

{"title":"TLR4 downregulation protects against cisplatin-induced ototoxicity in adult and pediatric patients with cancer.","authors":"John J W Lee, Asna Latif, Erika N Scott, Abhinav Thakral, Mary B Mahler, Beth Brooks, Katrina Hueniken, Astrid Billfalk-Kelly, Osvaldo Espin-Garcia, Luna Jia Zhan, S Rod Rassekh, Lucie Pecheux, Maria Spavor, Yuling Li, David Goldstein, Andrew Hope, Colin J Ross, Geoffrey Liu, Bruce C Carleton, Amit P Bhavsar","doi":"10.1016/j.jpet.2024.100057","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.100057","url":null,"abstract":"<p><p>Cisplatin causes permanent hearing loss or cisplatin-induced ototoxicity in over 50% of treated patients with cancer, leading to significant social and functional limitations. Interindividual variability in developing hearing loss suggests the role of genetic predispositions to cisplatin-induced hearing loss. We investigated genetic associations between cisplatin-induced ototoxicity and toll-like receptor 4 (TLR4), an immune receptor known to mediate inflammatory responses to cisplatin. Using a case-control candidate gene approach, we identified 20 single nucleotide polymorphisms at the TLR4 locus with significant protection against ototoxicity in a cohort of 213 adult patients, followed by an independent pediatric patient cohort (n = 357). Combined cohort analysis demonstrated a significant association between cisplatin-induced ototoxicity protection and a single variant in the TLR4 promoter, rs10759932. We showed that rs10759932 downregulated TLR4 expression that is normally induced by cisplatin. This work provides pharmacogenetic and functional evidence to implicate TLR4 with cisplatin-induced hearing loss in patients. SIGNIFICANCE STATEMENT: Adult and pediatric patients carrying toll-like receptor 4 (TLR4) genetic variants were protected against developing cisplatin-induced hearing loss following cisplatin treatment. Important variants in the TLR4 promoter disrupted a drug-gene interaction between cisplatin and TLR4, mirroring the protective effect conferred by genetic inhibition of TLR4. These variants have the potential to improve the prediction of cisplatin toxicity, allowing for more precise chemotherapy treatment.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100057"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigation of cisplatin-induced acute kidney injury through oral administration of fatty acid amide hydrolase inhibitor PF-04457845.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-11-22 DOI: 10.1124/jpet.124.002282
Chaoling Chen, Weili Wang, Justin L Poklis, Pin-Lan Li, Aron H Lichtman, David A Gewirtz, Ningjun Li

Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide. Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla induces diuretic and natriuretic effects. Moreover, FAAH knockout mice show protection against both post renal ischemia/reperfusion injury and cisplatin-induced acute kidney injury (AKI), although through distinct mechanisms. This study tested the hypothesis that pharmacological inhibition of FAAH activity mitigates cisplatin-induced AKI, thus, exploring potential renoprotective mechanism. Male wild-type C57BL/6J were administered an oral gavage of a FAAH inhibitor (PF-04457845, 5 mg/kg) or vehicle (10% PEG200+5% Tween 80+normal saline) at 72, 48, 24, and 2 hours before and 24 and 48 hours after a single intraperitoneal injection of cisplatin (25 mg/kg). Mice were euthanized 72 hours after cisplatin treatment. Compared with vehicle-treated mice, PF-04457845-treated mice showed a decrease of cisplatin-induced plasma creatinine, blood urea nitrogen levels, kidney injury biomarkers (neutrophil gelatinase-associated lipocalin and kidney injury molecule-1) and renal tubular damage. The renal protection from oral gavage of PF-04457845 against cisplatin-induced nephrotoxicity was associated with an enhanced endocannabinoid anandamide tone and reduced levels of DNA damage response biomarkers p53 and p21. Our work demonstrated that PF-04457845 effectively alleviates cisplatin-induced nephrotoxicity in mice, underscoring the potential of oral administration of a FAAH inhibitor as a novel strategy to prevent cisplatin nephrotoxicity. SIGNIFICANCE STATEMENT: Oral administration of the fatty acid amide hydrolase (FAAH) inhibitor, PF-04457845, reduced cisplatin-induced DNA damage response, tubular damage, and kidney dysfunction. Inhibition of FAAH represents a promising approach to prevent cisplatin-induced nephrotoxicity.

脂肪酸酰胺水解酶(FAAH)是降解内源性大麻酰胺的主要酶。通过药物或遗传操作抑制脂肪酸酰胺水解酶,可以有效减轻大脑、结肠、心脏和肾脏等多个器官的炎症反应。将 FAAH 抑制剂注入肾髓质可产生利尿和利钠作用。此外,FAAH 基因敲除小鼠对肾缺血/再灌注后损伤和顺铂诱导的急性肾损伤(AKI)均有保护作用,但机制不同。本研究测试了药物抑制 FAAH 活性可减轻顺铂诱导的 AKI 的假设,从而探索潜在的肾脏保护机制。雄性野生型 C57BL/6J 在腹腔注射顺铂(25 毫克/千克)前 72、48、24 和 2 小时以及注射后 24 和 48 小时分别口服 FAAH 抑制剂(PF-04457845,5 毫克/千克)或载体(10% PEG200+5% 吐温 80+ 生理盐水)。小鼠在顺铂治疗 72 小时后安乐死。与药物治疗的小鼠相比,PF-04457845治疗的小鼠显示出顺铂诱导的血浆肌酐、血尿素氮水平、肾损伤生物标志物(中性粒细胞明胶酶相关脂褐素和肾损伤分子-1)和肾小管损伤均有所下降。口服 PF-04457845 对顺铂诱导的肾毒性的保护作用与内源性大麻酰胺的增强以及 DNA 损伤反应生物标志物 p53 和 p21 水平的降低有关。我们的研究表明,PF-04457845 能有效缓解顺铂诱导的小鼠肾毒性,这凸显了口服 FAAH 抑制剂作为预防顺铂肾毒性新策略的潜力。意义声明:口服脂肪酸酰胺水解酶(FAAH)抑制剂 PF-04457845 可减少顺铂诱导的 DNA 损伤反应、肾小管损伤和肾功能障碍。抑制脂肪酸酰胺水解酶是预防顺铂诱导的肾毒性的一种有效方法。
{"title":"Mitigation of cisplatin-induced acute kidney injury through oral administration of fatty acid amide hydrolase inhibitor PF-04457845.","authors":"Chaoling Chen, Weili Wang, Justin L Poklis, Pin-Lan Li, Aron H Lichtman, David A Gewirtz, Ningjun Li","doi":"10.1124/jpet.124.002282","DOIUrl":"https://doi.org/10.1124/jpet.124.002282","url":null,"abstract":"<p><p>Fatty acid amide hydrolase (FAAH) serves as the primary enzyme responsible for degrading the endocannabinoid anandamide. Inhibition of FAAH, either through pharmacological means or genetic manipulation, can effectively reduce inflammation in various organs, including the brain, colon, heart, and kidneys. Infusion of a FAAH inhibitor into the kidney medulla induces diuretic and natriuretic effects. Moreover, FAAH knockout mice show protection against both post renal ischemia/reperfusion injury and cisplatin-induced acute kidney injury (AKI), although through distinct mechanisms. This study tested the hypothesis that pharmacological inhibition of FAAH activity mitigates cisplatin-induced AKI, thus, exploring potential renoprotective mechanism. Male wild-type C57BL/6J were administered an oral gavage of a FAAH inhibitor (PF-04457845, 5 mg/kg) or vehicle (10% PEG200+5% Tween 80+normal saline) at 72, 48, 24, and 2 hours before and 24 and 48 hours after a single intraperitoneal injection of cisplatin (25 mg/kg). Mice were euthanized 72 hours after cisplatin treatment. Compared with vehicle-treated mice, PF-04457845-treated mice showed a decrease of cisplatin-induced plasma creatinine, blood urea nitrogen levels, kidney injury biomarkers (neutrophil gelatinase-associated lipocalin and kidney injury molecule-1) and renal tubular damage. The renal protection from oral gavage of PF-04457845 against cisplatin-induced nephrotoxicity was associated with an enhanced endocannabinoid anandamide tone and reduced levels of DNA damage response biomarkers p53 and p21. Our work demonstrated that PF-04457845 effectively alleviates cisplatin-induced nephrotoxicity in mice, underscoring the potential of oral administration of a FAAH inhibitor as a novel strategy to prevent cisplatin nephrotoxicity. SIGNIFICANCE STATEMENT: Oral administration of the fatty acid amide hydrolase (FAAH) inhibitor, PF-04457845, reduced cisplatin-induced DNA damage response, tubular damage, and kidney dysfunction. Inhibition of FAAH represents a promising approach to prevent cisplatin-induced nephrotoxicity.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100032"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elesclomol rescues mitochondrial copper deficiency in disease models without triggering cuproptosis.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-11-30 DOI: 10.1016/j.jpet.2024.100048
Mohammad Zulkifli, Krishna P Maremanda, Adriana U Okonkwo, Ifrah Farid, Vishal M Gohil

Copper (Cu) is an essential cofactor for metalloenzymes such as cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial electron transport chain. Mutations that directly or indirectly prevent Cu transport to mitochondria result in lethal pediatric diseases, such as Menkes disease. There is no clinically approved treatment for Menkes disease. We recently discovered that an investigational chemotherapy drug, elesclomol (ES), when complexed with Cu (ES-Cu), rescues mitochondrial Cu deficiency, activates CcO, and prevents perinatal lethality in a mouse model of Menkes disease. However, ES-Cu also has the potential to trigger cuproptosis, a type of Cu-dependent cell death. Therefore, to develop ES-Cu as a therapeutic agent for Menkes disease, it is critical to determine the therapeutic index of ES-Cu in Cu-deficient models. To this end, we used a Cu-deficient rat cardiomyocyte cell line and a mottled-brindled mouse model of severe Menkes disease to determine the toxicity and efficacy of ES-Cu. Our cell culture studies demonstrated that the EC50 of ES-Cu is ∼50-fold lower than IC50. Moreover, the biomarkers of Cu toxicity, including lipoylated proteins and a subset of iron-sulfur cluster-containing proteins of mitochondria, are activated only when ES-Cu is used at ∼10-fold to 25-fold higher than its EC50. Importantly, none of these biomarkers are activated in mottled-brindled mice treated with therapeutic doses of ES-Cu. Our study shows that ES-Cu can deliver Cu to CcO both in vitro and in vivo without triggering cuproptosis, a finding that could facilitate its use in Cu deficiency disorders, such as Menkes disease. SIGNIFICANCE STATEMENT: Genetic copper (Cu) deficiency causes lethal pediatric diseases, such as Menkes disease, which lacks approved treatment. Recently, the therapeutic potential of elesclomol (ES), a Cu-transporting chemotherapeutic drug, in a mouse model of Menkes disease has been reported. Because of the potential risk of Cu-induced toxicity from ES-Cu, it is crucial to determine its therapeutic index. Here, the biomarkers of ES-Cu efficacy and toxicity in Cu-deficient disease models were measured to demonstrate that ES-Cu can restore cuproenzymes without triggering toxicity biomarkers.

铜(Cu)是金属酶(如线粒体电子传递链的末端酶细胞色素 c 氧化酶(CcO))所必需的辅助因子。直接或间接阻止铜向线粒体运输的突变会导致致命的儿科疾病,如门克氏病。目前尚无临床批准的治疗门克思病的方法。我们最近发现,一种正在研究的化疗药物伊利司莫(ES)在与 Cu 复合物(ES-Cu)复配后,能挽救线粒体 Cu 缺乏症,激活 CcO,并防止门克氏症小鼠模型的围产期致死。然而,ES-Cu 也有可能引发杯突症(一种依赖 Cu 的细胞死亡)。因此,要将 ES-Cu 开发为治疗梅克斯病的药物,关键是要确定 ES-Cu 在缺铜模型中的治疗指数。为此,我们使用缺铜大鼠心肌细胞系和斑驳小鼠重症门克氏症模型来确定 ES-Cu 的毒性和疗效。我们的细胞培养研究表明,ES-Cu 的 EC50 比 IC50 低 50 倍。此外,铜毒性的生物标志物,包括脂酰化蛋白和线粒体含铁硫簇蛋白子集,只有在使用 ES-Cu 的浓度比其 EC50 高 10 至 25 倍时才会被激活。重要的是,在使用治疗剂量的 ES-Cu 治疗斑驳小鼠时,这些生物标志物均未被激活。我们的研究表明,ES-Cu 在体外和体内都能将铜输送到 CcO,而不会引发杯突变,这一发现有助于将 ES-Cu 用于铜缺乏症(如门克氏症)的治疗。意义声明:遗传性铜(Cu)缺乏症会导致致命的儿科疾病,如门克氏病,目前尚无有效的治疗方法。最近,有报道称一种铜转运化疗药物伊来克洛莫(ES)在门克氏症小鼠模型中具有治疗潜力。由于ES-Cu可能存在Cu诱导毒性的风险,因此确定其治疗指数至关重要。本文测定了缺铜疾病模型中 ES-Cu 的疗效和毒性生物标志物,以证明 ES-Cu 可以恢复铜酵素而不会引发毒性生物标志物。
{"title":"Elesclomol rescues mitochondrial copper deficiency in disease models without triggering cuproptosis.","authors":"Mohammad Zulkifli, Krishna P Maremanda, Adriana U Okonkwo, Ifrah Farid, Vishal M Gohil","doi":"10.1016/j.jpet.2024.100048","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.100048","url":null,"abstract":"<p><p>Copper (Cu) is an essential cofactor for metalloenzymes such as cytochrome c oxidase (CcO), the terminal enzyme of the mitochondrial electron transport chain. Mutations that directly or indirectly prevent Cu transport to mitochondria result in lethal pediatric diseases, such as Menkes disease. There is no clinically approved treatment for Menkes disease. We recently discovered that an investigational chemotherapy drug, elesclomol (ES), when complexed with Cu (ES-Cu), rescues mitochondrial Cu deficiency, activates CcO, and prevents perinatal lethality in a mouse model of Menkes disease. However, ES-Cu also has the potential to trigger cuproptosis, a type of Cu-dependent cell death. Therefore, to develop ES-Cu as a therapeutic agent for Menkes disease, it is critical to determine the therapeutic index of ES-Cu in Cu-deficient models. To this end, we used a Cu-deficient rat cardiomyocyte cell line and a mottled-brindled mouse model of severe Menkes disease to determine the toxicity and efficacy of ES-Cu. Our cell culture studies demonstrated that the EC<sub>50</sub> of ES-Cu is ∼50-fold lower than IC<sub>50</sub>. Moreover, the biomarkers of Cu toxicity, including lipoylated proteins and a subset of iron-sulfur cluster-containing proteins of mitochondria, are activated only when ES-Cu is used at ∼10-fold to 25-fold higher than its EC<sub>50</sub>. Importantly, none of these biomarkers are activated in mottled-brindled mice treated with therapeutic doses of ES-Cu. Our study shows that ES-Cu can deliver Cu to CcO both in vitro and in vivo without triggering cuproptosis, a finding that could facilitate its use in Cu deficiency disorders, such as Menkes disease. SIGNIFICANCE STATEMENT: Genetic copper (Cu) deficiency causes lethal pediatric diseases, such as Menkes disease, which lacks approved treatment. Recently, the therapeutic potential of elesclomol (ES), a Cu-transporting chemotherapeutic drug, in a mouse model of Menkes disease has been reported. Because of the potential risk of Cu-induced toxicity from ES-Cu, it is crucial to determine its therapeutic index. Here, the biomarkers of ES-Cu efficacy and toxicity in Cu-deficient disease models were measured to demonstrate that ES-Cu can restore cuproenzymes without triggering toxicity biomarkers.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100048"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CNOT6L deadenylase suppresses cardiac remodeling in heart failure through downregulation of tenascin-C mRNA.
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2025-02-01 Epub Date: 2024-11-30 DOI: 10.1016/j.jpet.2024.100052
Teruki Sato, Tomokazu Yamaguchi, Takafumi Minato, Midori Hoshizaki, Ayaha Yamamoto, Masahiro Morita, Toru Suzuki, Yasushi Fujio, Yumiko Imai, Yutaka Suzuki, Tadashi Yamamoto, Hiroyuki Watanabe, Keiji Kuba

Heart failure is rapidly increasing and is a growing burden on human health and the economy in the world. The functional role of mRNA regulation in the pathogenesis of heart failure remains to be elucidated. Carbon catabolite repression 4-negative on TATA-less complex is a multisubunit protein complex that deadenylates mRNA, a process of exonuclease-mediated degradation of mRNA poly(A) tail. Here we show the cardiac protective roles of deadenylase subunit CNOT6L against cardiac stress. After 2 weeks of transverse aortic constriction (TAC)-induced pressure overload, expression of CNOT6L deadenylase subunit was significantly upregulated in the mouse hearts. When CNOT6L gene was genetically deleted, the mice exhibited marked decline of left ventricular contractility and enhancement of fibrosis at 2 weeks after TAC. Transcriptome analyses elucidated that CNOT6L targets tenascin-C mRNA, which stimulates tissue fibrosis and inflammation. CNOT6L deletion markedly upregulated tenascin-C expression in cardiac fibroblasts. Poly(A) tail length and luciferase reporter analyses revealed that CNOT6L catalyzes deadenylation of tenascin-C mRNA likely through interaction with the cis-element in its 3'-untranslated region. Double knockout of tenascin-C and CNOT6L ameliorated cardiac fibrosis and dysfunction in single CNOT6 knockout mice under TAC or chronic infusion of angiotensin II. Thus, CNOT6L deadenylase prevents the progression of heart failure through downregulation of the expression of tenascin-C in cardiac fibroblasts, implicating a potential therapeutic strategy of targeting mRNA deadenylation. SIGNIFICANCE STATEMENT: To our knowledge, this study provides the first evidence that posttranscriptional regulation of tenascin-C expression in cardiac fibroblasts, including cell-type-specific roles of CNOT6L-mediated mRNA deadenylation, is crucial to maintain heart functions against pressure overload stress or angiotensin II-induced hypertension, implicating a potential therapeutic strategy of targeting mRNA deadenylation.

{"title":"CNOT6L deadenylase suppresses cardiac remodeling in heart failure through downregulation of tenascin-C mRNA.","authors":"Teruki Sato, Tomokazu Yamaguchi, Takafumi Minato, Midori Hoshizaki, Ayaha Yamamoto, Masahiro Morita, Toru Suzuki, Yasushi Fujio, Yumiko Imai, Yutaka Suzuki, Tadashi Yamamoto, Hiroyuki Watanabe, Keiji Kuba","doi":"10.1016/j.jpet.2024.100052","DOIUrl":"https://doi.org/10.1016/j.jpet.2024.100052","url":null,"abstract":"<p><p>Heart failure is rapidly increasing and is a growing burden on human health and the economy in the world. The functional role of mRNA regulation in the pathogenesis of heart failure remains to be elucidated. Carbon catabolite repression 4-negative on TATA-less complex is a multisubunit protein complex that deadenylates mRNA, a process of exonuclease-mediated degradation of mRNA poly(A) tail. Here we show the cardiac protective roles of deadenylase subunit CNOT6L against cardiac stress. After 2 weeks of transverse aortic constriction (TAC)-induced pressure overload, expression of CNOT6L deadenylase subunit was significantly upregulated in the mouse hearts. When CNOT6L gene was genetically deleted, the mice exhibited marked decline of left ventricular contractility and enhancement of fibrosis at 2 weeks after TAC. Transcriptome analyses elucidated that CNOT6L targets tenascin-C mRNA, which stimulates tissue fibrosis and inflammation. CNOT6L deletion markedly upregulated tenascin-C expression in cardiac fibroblasts. Poly(A) tail length and luciferase reporter analyses revealed that CNOT6L catalyzes deadenylation of tenascin-C mRNA likely through interaction with the cis-element in its 3'-untranslated region. Double knockout of tenascin-C and CNOT6L ameliorated cardiac fibrosis and dysfunction in single CNOT6 knockout mice under TAC or chronic infusion of angiotensin II. Thus, CNOT6L deadenylase prevents the progression of heart failure through downregulation of the expression of tenascin-C in cardiac fibroblasts, implicating a potential therapeutic strategy of targeting mRNA deadenylation. SIGNIFICANCE STATEMENT: To our knowledge, this study provides the first evidence that posttranscriptional regulation of tenascin-C expression in cardiac fibroblasts, including cell-type-specific roles of CNOT6L-mediated mRNA deadenylation, is crucial to maintain heart functions against pressure overload stress or angiotensin II-induced hypertension, implicating a potential therapeutic strategy of targeting mRNA deadenylation.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 2","pages":"100052"},"PeriodicalIF":3.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143537336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Pharmacology and Experimental Therapeutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1