Yiheng Zhang, Chih-Jen Yang, Alexander R Melrose, Jiaqing Pang, Kirrali Schofield, Serena D Song, Iván Parra-Izquierdo, Tony J Zheng, Joseph P Lyssikatos, Stefan D Gross, Joseph J Shatzel, Owen J T McCarty, Joseph E Aslan
Tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL fusion protein, such as imatinib (Gleevec), have revolutionized targeted cancer therapies. However, drug resistance and side effects, particularly those affecting hemostasis, continue to pose significant challenges for TKI therapies. As tyrosine kinases serve pivotal roles in platelet hemostatic function, we investigated the potential impact of both established and emerging ABL TKIs on human platelet activities ex vivo Our study included standard-of-care agents (e.g., imatinib and nilotinib), and second-generation ABL inhibitors including ponatinib and bosutinib designed to mitigate drug resistance. Additionally, we explored the effects of allosteric inhibitors targeting the myristoyl pocket of ABL (e.g., asciminib and GNF-2), and novel agents in preclinical development, including ELVN-919, which uniquely exhibits high specificity for the ABL kinase active site. Our findings reveal that while ABL inhibitors such as ponatinib and bosutinib impede platelet activity, highly specific new-generation ABL inhibitors, including first-in-class therapeutics, do not impact platelet function ex vivo Overall, these new insights around the effects of ABL TKIs on platelet function could inform the development of targeted therapies with reduced hematologic toxicities. Significance Statement This study examines the effects of clinically relevant small molecule BCR-ABL tyrosine kinase inhibitors (TKIs) on platelet activity. This analysis includes first-time assessments of agents such as asciminib and ELVN-919 on human platelet function ex vivo, alongside established therapies (e.g., imatinib, ponatinib) with well-characterized effects on platelet function, to discern potential anti-platelet and other effects of BCR-ABL TKIs and inform clinical safety.
{"title":"<b>Pharmacological effects of small molecule BCR-ABL tyrosine kinase inhibitors on platelet <b>function</b></b>.","authors":"Yiheng Zhang, Chih-Jen Yang, Alexander R Melrose, Jiaqing Pang, Kirrali Schofield, Serena D Song, Iván Parra-Izquierdo, Tony J Zheng, Joseph P Lyssikatos, Stefan D Gross, Joseph J Shatzel, Owen J T McCarty, Joseph E Aslan","doi":"10.1124/jpet.124.002104","DOIUrl":"10.1124/jpet.124.002104","url":null,"abstract":"<p><p>Tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL fusion protein, such as imatinib (Gleevec), have revolutionized targeted cancer therapies. However, drug resistance and side effects, particularly those affecting hemostasis, continue to pose significant challenges for TKI therapies. As tyrosine kinases serve pivotal roles in platelet hemostatic function, we investigated the potential impact of both established and emerging ABL TKIs on human platelet activities <i>ex vivo</i> Our study included standard-of-care agents (e.g., imatinib and nilotinib), and second-generation ABL inhibitors including ponatinib and bosutinib designed to mitigate drug resistance. Additionally, we explored the effects of allosteric inhibitors targeting the myristoyl pocket of ABL (e.g., asciminib and GNF-2), and novel agents in preclinical development, including ELVN-919, which uniquely exhibits high specificity for the ABL kinase active site. Our findings reveal that while ABL inhibitors such as ponatinib and bosutinib impede platelet activity, highly specific new-generation ABL inhibitors, including first-in-class therapeutics, do not impact platelet function <i>ex vivo</i> Overall, these new insights around the effects of ABL TKIs on platelet function could inform the development of targeted therapies with reduced hematologic toxicities. <b>Significance Statement</b> This study examines the effects of clinically relevant small molecule BCR-ABL tyrosine kinase inhibitors (TKIs) on platelet activity. This analysis includes first-time assessments of agents such as asciminib and ELVN-919 on human platelet function <i>ex vivo</i>, alongside established therapies (e.g., imatinib, ponatinib) with well-characterized effects on platelet function, to discern potential anti-platelet and other effects of BCR-ABL TKIs and inform clinical safety.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kendall Simpson, Derek B Allison, Daheng He, Jinpeng Liu, Chi Wang, Xiaoqi Liu
Androgen deprivation is the standard treatment for prostate cancer (PCa) patients. However, the disease eventually progresses as castration-resistant PCa (CRPC). Enzalutamide, an AR inhibitor, is a typical drug to treating CRPC and due to continuous reliance on the drug, can lead to Enzalutamide-resistance (ENZ-r). This highlights the necessity for developing novel therapeutic targets to combat the gain of resistance. Metformin has been recently investigated for its potential anti-tumorigenic effects in many cancer types. In this study, we used enzalutamide and metformin in combination to explore the possible rescued efficacy of enzalutamide in the treatment of ENZ-r CRPC. We first tested the effects of this combination treatment on cell viability, drug synergy, and cell proliferation in ENZ-r CRPC cell lines. After combination treatment, we observed a decrease in cell proliferation and viability as well as a synergistic effect of both enzalutamide and metformin in vitro Following these results, we sought to explore how combination treatment effected mitochondrial fitness utilizing mitochondrial stress test analysis and mitochondrial membrane potential (MMP) shifts due to metformin's action in inhibiting Complex I of oxidative phosphorylation. We employed 2 different strategies of in vivo testing using 22Rv1 and LuCaP35CR xenograft models. Finally, RNA sequencing revealed a potential link in the downregulation of Ras/MAPK signaling following combination treatment. Significance Statement Increasing evidence suggests that oxidative phosphorylation might play a critical role in the development of resistance to cancer therapy. We showed that targeting oxidative phosphorylation with metformin can enhance the efficacy of enzalutamide in castration-resistant prostate cancer in vitro.
{"title":"Metformin in Overcoming Enzalutamide Resistance in Castration-Resistant Prostate Cancer.","authors":"Kendall Simpson, Derek B Allison, Daheng He, Jinpeng Liu, Chi Wang, Xiaoqi Liu","doi":"10.1124/jpet.124.002424","DOIUrl":"https://doi.org/10.1124/jpet.124.002424","url":null,"abstract":"<p><p>Androgen deprivation is the standard treatment for prostate cancer (PCa) patients. However, the disease eventually progresses as castration-resistant PCa (CRPC). Enzalutamide, an AR inhibitor, is a typical drug to treating CRPC and due to continuous reliance on the drug, can lead to Enzalutamide-resistance (ENZ-r). This highlights the necessity for developing novel therapeutic targets to combat the gain of resistance. Metformin has been recently investigated for its potential anti-tumorigenic effects in many cancer types. In this study, we used enzalutamide and metformin in combination to explore the possible rescued efficacy of enzalutamide in the treatment of ENZ-r CRPC. We first tested the effects of this combination treatment on cell viability, drug synergy, and cell proliferation in ENZ-r CRPC cell lines. After combination treatment, we observed a decrease in cell proliferation and viability as well as a synergistic effect of both enzalutamide and metformin <i>in vitro</i> Following these results, we sought to explore how combination treatment effected mitochondrial fitness utilizing mitochondrial stress test analysis and mitochondrial membrane potential (MMP) shifts due to metformin's action in inhibiting Complex I of oxidative phosphorylation. We employed 2 different strategies of <i>in vivo</i> testing using 22Rv1 and LuCaP35CR xenograft models. Finally, RNA sequencing revealed a potential link in the downregulation of Ras/MAPK signaling following combination treatment. <b>Significance Statement</b> Increasing evidence suggests that oxidative phosphorylation might play a critical role in the development of resistance to cancer therapy. We showed that targeting oxidative phosphorylation with metformin can enhance the efficacy of enzalutamide in castration-resistant prostate cancer in vitro.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amitriptyline, a pleiotropic tricyclic antidepressant, possesses anti-oxidant and anti-inflammatory properties. Despite its diverse benefits, the specific effects of amitriptyline on IBD are not yet well defined. To explore this, we utilized a DSS-induced colitis model to examine the anti-inflammatory effects of amitriptyline and the underlying mechanisms by which it operates. Our research revealed that amitriptyline is effective in alleviating several pathological manifestations associated with colitis. This includes improvements in body weight retention, reductions in DAI, lessening of colon length shortening, and repair of colonic mucosal damage. Treatment with amitriptyline significantly protected mucosal injury by preserving the population of goblet cells and increasing the expression of tight junction proteins. Furthermore, we observed that amitriptyline effectively countered immune cell infiltration, specifically neutrophils and macrophages, while simultaneously lowering the levels of inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Additionally, RNA sequencing analysis pointed to the potential involvement of the TLR pathway in the anti-colitic effects induced by amitriptyline. Subsequent Western blot analysis indicated that amitriptyline significantly inhibited the TLR4-mediated NF-κB signaling pathway. To bolster our findings, in vitro studies demonstrated that amitriptyline down-regulated the TLR4/NF-κB/MAPK signaling cascades in mouse macrophages stimulated with LPS. Further molecular investigations revealed that amitriptyline was able to suppress the elevated expression of MD-2 that LPS stimulation typically induces. In summary, our findings suggest that amitriptyline effectively mitigates DSS-induced colitis in mice through the inhibition of TLR4/MD-2 pathway signaling, indicating its potential repurposing for IBD treatment. Significance Statement The potential of utilizing amitriptyline in treating IBD appears promising, leveraging its established safety and dosing profile as an antidepressant. Our observations show that amitriptyline can alleviate pathological symptoms, inflammation, and intestinal mucosal damage in mice with colitis induced by DSS. The protective effect observed appear to be linked to the inhibition of the TLR4/MD2 signaling pathway. By exploring novel applications for existing medications, we can optimize amitriptyline's efficacy and broaden its impact in both medical and commercial contexts.
{"title":"The protective effect of Amitriptyline on experimental colitis through inhibiting TLR4/MD2 signaling pathway.","authors":"Chengcheng Zeng, Qingqing Zhu, Wu Peng, Chen Huang, Huiting Chen, Hongli Huang, Yongjian Zhou, Chong Zhao","doi":"10.1124/jpet.124.002207","DOIUrl":"https://doi.org/10.1124/jpet.124.002207","url":null,"abstract":"<p><p>Amitriptyline, a pleiotropic tricyclic antidepressant, possesses anti-oxidant and anti-inflammatory properties. Despite its diverse benefits, the specific effects of amitriptyline on IBD are not yet well defined. To explore this, we utilized a DSS-induced colitis model to examine the anti-inflammatory effects of amitriptyline and the underlying mechanisms by which it operates. Our research revealed that amitriptyline is effective in alleviating several pathological manifestations associated with colitis. This includes improvements in body weight retention, reductions in DAI, lessening of colon length shortening, and repair of colonic mucosal damage. Treatment with amitriptyline significantly protected mucosal injury by preserving the population of goblet cells and increasing the expression of tight junction proteins. Furthermore, we observed that amitriptyline effectively countered immune cell infiltration, specifically neutrophils and macrophages, while simultaneously lowering the levels of inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Additionally, RNA sequencing analysis pointed to the potential involvement of the TLR pathway in the anti-colitic effects induced by amitriptyline. Subsequent Western blot analysis indicated that amitriptyline significantly inhibited the TLR4-mediated NF-κB signaling pathway. To bolster our findings, in vitro studies demonstrated that amitriptyline down-regulated the TLR4/NF-κB/MAPK signaling cascades in mouse macrophages stimulated with LPS. Further molecular investigations revealed that amitriptyline was able to suppress the elevated expression of MD-2 that LPS stimulation typically induces. In summary, our findings suggest that amitriptyline effectively mitigates DSS-induced colitis in mice through the inhibition of TLR4/MD-2 pathway signaling, indicating its potential repurposing for IBD treatment. <b>Significance Statement</b> The potential of utilizing amitriptyline in treating IBD appears promising, leveraging its established safety and dosing profile as an antidepressant. Our observations show that amitriptyline can alleviate pathological symptoms, inflammation, and intestinal mucosal damage in mice with colitis induced by DSS. The protective effect observed appear to be linked to the inhibition of the TLR4/MD2 signaling pathway. By exploring novel applications for existing medications, we can optimize amitriptyline's efficacy and broaden its impact in both medical and commercial contexts.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huai Wen, Naohiro Yano, Thomas Zhao, Lei Wei, Ting C Zhao
The objective of this study is to investigate whether PI3kinase (PI3K) and p38 mitogen-activated kinase contributes to the protection of irisin during hemorrhage/resuscitation. Experimental groups were divided by receiving the different treatments during resuscitation: I) Hemorrhage: Adult male CD-1 mice were subjected to hemorrhage at a mean arterial blood pressure of 35~45 mmHg for 60 min followed by 120 min of resuscitation (n=13); II) Hemorrhage + Irisin: receiving irisin (5µg/kg) (n=13); III) Hemorrhage + Irisin + PI3K inhibitor: receiving both Ly294002 (1mg/kg, i.v.) and irisin (n=6); IV) Hemorrhage + Irisin + p38 inhibitor: receiving SB202190 (1mg/kg, i.v.) and irisin (n=6). As compared to hemorrhage/resuscitation control, irisin improved the cardiac function and recovery of hemodynamics in association with the decreased systemic IL-1, IL-6, and TNF-α, which was completely abrogated by PI3K or p38 inhibitions. Furthermore, inhibition of PI3K or p38 abolished irisin-induced reduction of the infiltration of inflammatory cells and TUNEL-positive apoptosis in the cardiac and skeletal muscles. Irisin reduced TNF-α and IL6 expression in cardiac and skeletal muscle, which was abrogated by inhibition of PI3K or p38. Irisin-treated hemorrhage increases the phosphorylation of PI3K and p38 in both cardiac and skeletal muscle, which was mitigated by inhibition of PI3K or p38. Conclusion: PI3K and p38 play a critical role in modulating the protective effect of irisin during the hemorrhage/resuscitation. Significance Statement 1). This study has identified a critical pathway in regulation of trauma/hemorrhage by using a preclinical and reproducible model, in which Irisin, as a hormone factor, stimulates PI3K and p38 pathways to induce the protection against traumatic conditions. 2). The study holds promise to develop a new therapeutic strategy to target irisin and its pathway related to PI3K and p38 to treat trauma and its comorbidities to reduce mortality for clinical implication.
{"title":"<b>The protective effect of irisin against hemorrhagic injury is mediated by PI3K and p38 pathways in hemorrhage/resuscitation.</b>","authors":"Huai Wen, Naohiro Yano, Thomas Zhao, Lei Wei, Ting C Zhao","doi":"10.1124/jpet.124.002238","DOIUrl":"https://doi.org/10.1124/jpet.124.002238","url":null,"abstract":"<p><p>The objective of this study is to investigate whether PI3kinase (PI3K) and p38 mitogen-activated kinase contributes to the protection of irisin during hemorrhage/resuscitation. Experimental groups were divided by receiving the different treatments during resuscitation: <b>I</b>) Hemorrhage: Adult male CD-1 mice were subjected to hemorrhage at a mean arterial blood pressure of 35~45 mmHg for 60 min followed by 120 min of resuscitation (n=13); <b>II</b>) Hemorrhage + Irisin: receiving irisin (5µg/kg) (n=13); <b>III</b>) Hemorrhage + Irisin + PI3K inhibitor: receiving both Ly294002 (1mg/kg, i.v.) and irisin (n=6); <b>IV</b>) Hemorrhage + Irisin + p38 inhibitor: receiving SB202190 (1mg/kg, i.v.) and irisin (n=6). As compared to hemorrhage/resuscitation control, irisin improved the cardiac function and recovery of hemodynamics in association with the decreased systemic IL-1, IL-6, and TNF-α, which was completely abrogated by PI3K or p38 inhibitions. Furthermore, inhibition of PI3K or p38 abolished irisin-induced reduction of the infiltration of inflammatory cells and TUNEL-positive apoptosis in the cardiac and skeletal muscles. Irisin reduced TNF-α and IL6 expression in cardiac and skeletal muscle, which was abrogated by inhibition of PI3K or p38. Irisin-treated hemorrhage increases the phosphorylation of PI3K and p38 in both cardiac and skeletal muscle, which was mitigated by inhibition of PI3K or p38<b>. Conclusion:</b> PI3K and p38 play a critical role in modulating the protective effect of irisin during the hemorrhage/resuscitation. <b>Significance Statement</b> 1). This study has identified a critical pathway in regulation of trauma/hemorrhage by using a preclinical and reproducible model, in which Irisin, as a hormone factor, stimulates PI3K and p38 pathways to induce the protection against traumatic conditions. 2). The study holds promise to develop a new therapeutic strategy to target irisin and its pathway related to PI3K and p38 to treat trauma and its comorbidities to reduce mortality for clinical implication.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eugenio Antonio Carrera Silva, Jorge Correale, Carla Rothlin, Juan Manuel Ortiz Wilczyñski
Progressive multiple sclerosis (PMS) represents the worsening phase of the disease by accumulative neurodegeneration and disability, mainly refractory to current treatments. The therapeutic options remain challenging based partially on the lack of understanding of the pathogenic mechanisms but also because the early dogma was centered on neuroinflammation, overshadowing the critical role of the tissue repair process. The tissue repair target should necessarily start early in disease development and PMS should combine anti-inflammatory and neuroprotective therapeutic strategies. Increasing preclinical evidence, together with the new era of omics applied on frozen human brain tissue, shed light on some ligand receptors axis, such as GAS6/TYRO3 and PROS1/AXL required to dampen inflammation, promote tissue repair and engage remyelination, at the early stages of multiple sclerosis (MS) as a critical step in preventing or stopping neurodegeneration. Here, we will discuss those receptor/ligand pairs that could be targetable for therapeutic intervention in progressive MS disease. Significance Statement The aim for PMS should be to combine anti-inflammatory and neuroprotective therapeutic strategies based on early intervention. The TYRO3, AXL, and MERTK (TAM) signaling axis, particularly GAS6/TYRO3 and PROS1/AXL, which are involved in tempering inflammation, promoting tissue repair, and engaging remyelination, could significantly benefit patients at the early PMS.
{"title":"New potential ligand-receptor axis involved in tissue repair as therapeutic targets in progressive multiple sclerosis.","authors":"Eugenio Antonio Carrera Silva, Jorge Correale, Carla Rothlin, Juan Manuel Ortiz Wilczyñski","doi":"10.1124/jpet.124.002254","DOIUrl":"https://doi.org/10.1124/jpet.124.002254","url":null,"abstract":"<p><p>Progressive multiple sclerosis (PMS) represents the worsening phase of the disease by accumulative neurodegeneration and disability, mainly refractory to current treatments. The therapeutic options remain challenging based partially on the lack of understanding of the pathogenic mechanisms but also because the early dogma was centered on neuroinflammation, overshadowing the critical role of the tissue repair process. The tissue repair target should necessarily start early in disease development and PMS should combine anti-inflammatory and neuroprotective therapeutic strategies. Increasing preclinical evidence, together with the new era of omics applied on frozen human brain tissue, shed light on some ligand receptors axis, such as GAS6/TYRO3 and PROS1/AXL required to dampen inflammation, promote tissue repair and engage remyelination, at the early stages of multiple sclerosis (MS) as a critical step in preventing or stopping neurodegeneration. Here, we will discuss those receptor/ligand pairs that could be targetable for therapeutic intervention in progressive MS disease. <b>Significance Statement</b> The aim for PMS should be to combine anti-inflammatory and neuroprotective therapeutic strategies based on early intervention. The TYRO3, AXL, and MERTK (TAM) signaling axis, particularly GAS6/TYRO3 and PROS1/AXL, which are involved in tempering inflammation, promoting tissue repair, and engaging remyelination, could significantly benefit patients at the early PMS.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1124/jpet.123.002014err
American Society for Pharmacology and Experimental Therapeutics
{"title":"Correction to “Comments on: Increasing Enzyme Mannose-6-Phosphate Levels but Not Miglustat Coadministration Enhances the Efficacy of Enzyme Replacement Therapy in Pompe Mice”","authors":"American Society for Pharmacology and Experimental Therapeutics","doi":"10.1124/jpet.123.002014err","DOIUrl":"https://doi.org/10.1124/jpet.123.002014err","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"31 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mia I Allen, Omeed Rahimi, Bernard N Johnson, Jianjing Cao, Amy Hauck Newman, Michael A Nader
Despite considerable efforts, there remains no FDA-approved medications for cocaine use disorder (CUD). One strategy to mitigate cocaine craving and relapse is to elevate dopamine (DA). The DA transport inhibitor and releaser d-amphetamine has been shown to decrease cocaine self-administration (SA), although it has abuse liability. Recently, several modafinil analogues reduced cocaine SA in rats and monkeys, including JJC8-088, characterized as "cocaine like" in rats, and JJC8-091, characterized as "atypical" and not SA by rats. The present studies evaluated the reinforcing effects of both compounds in monkeys under several conditions. For Experiment 1, four male cocaine-experienced rhesus monkeys self-administered cocaine (0.001-0.3 mg/kg/injection), JJC8-088 (0.001-0.3 mg/kg/injection), and JJC8-091 (0.1-3.0 mg/kg/injection) under a progressive-ratio (PR) schedule of reinforcement. Both JJC compounds functioned as reinforcers with equal reinforcing strength to cocaine. Although JJC8-091 was less potent than cocaine, JJC8-088 and cocaine had similar potencies. For Experiment 2, one male and two females drug-naïve cynomolgus monkeys responded on a fixed-ratio schedule of food reinforcement. JJC8-091 was self-administered at rates higher than saline in all three monkeys. In Experiment 3, monkeys from Experiment 2 responded under a concurrent drug vs. food choice paradigm and given access to cocaine or JJC8-091 under these conditions. At doses equal to or one-half log-units higher than doses used in Experiment 2, cocaine, but not JJC8-091, was chosen over food. Together, these results demonstrate that while JJC8-091 may be reinforcing under some conditions, its reinforcing strength, in the presence of an alternative reinforcer, is substantially less than cocaine. Significance Statement JJC8-088 and JJC8-091 have shown efficacy is reducing cocaine self-administration in rats and in nonhuman primates. This study found that both compounds maintained self-administration in monkeys responding under several conditions. However, when given access to an alternative reinforcer during the self-administration session, JJC8-091 was not reinforcing, suggesting that JJC8-091 may be a viable candidate for CUD since, in the human population, alternatives to drug use are often available.
{"title":"<b>Contrasting the Reinforcing Effects of the Novel Dopamine Transport Inhibitors JJC8-088 and JJC8-091 in Monkeys: Potential Translation to Medication Assisted Treatment</b>.","authors":"Mia I Allen, Omeed Rahimi, Bernard N Johnson, Jianjing Cao, Amy Hauck Newman, Michael A Nader","doi":"10.1124/jpet.124.002356","DOIUrl":"https://doi.org/10.1124/jpet.124.002356","url":null,"abstract":"<p><p>Despite considerable efforts, there remains no FDA-approved medications for cocaine use disorder (CUD). One strategy to mitigate cocaine craving and relapse is to elevate dopamine (DA). The DA transport inhibitor and releaser <i>d</i>-amphetamine has been shown to decrease cocaine self-administration (SA), although it has abuse liability. Recently, several modafinil analogues reduced cocaine SA in rats and monkeys, including JJC8-088, characterized as \"cocaine like\" in rats, and JJC8-091, characterized as \"atypical\" and not SA by rats. The present studies evaluated the reinforcing effects of both compounds in monkeys under several conditions. For Experiment 1, four male cocaine-experienced rhesus monkeys self-administered cocaine (0.001-0.3 mg/kg/injection), JJC8-088 (0.001-0.3 mg/kg/injection), and JJC8-091 (0.1-3.0 mg/kg/injection) under a progressive-ratio (PR) schedule of reinforcement. Both JJC compounds functioned as reinforcers with equal reinforcing strength to cocaine. Although JJC8-091 was less potent than cocaine, JJC8-088 and cocaine had similar potencies. For Experiment 2, one male and two females drug-naïve cynomolgus monkeys responded on a fixed-ratio schedule of food reinforcement. JJC8-091 was self-administered at rates higher than saline in all three monkeys. In Experiment 3, monkeys from Experiment 2 responded under a concurrent drug vs. food choice paradigm and given access to cocaine or JJC8-091 under these conditions. At doses equal to or one-half log-units higher than doses used in Experiment 2, cocaine, but not JJC8-091, was chosen over food. Together, these results demonstrate that while JJC8-091 may be reinforcing under some conditions, its reinforcing strength, in the presence of an alternative reinforcer, is substantially less than cocaine. <b>Significance Statement</b> JJC8-088 and JJC8-091 have shown efficacy is reducing cocaine self-administration in rats and in nonhuman primates. This study found that both compounds maintained self-administration in monkeys responding under several conditions. However, when given access to an alternative reinforcer during the self-administration session, JJC8-091 was not reinforcing, suggesting that JJC8-091 may be a viable candidate for CUD since, in the human population, alternatives to drug use are often available.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Post-traumatic stress disorder (PTSD) is caused by exposure to a traumatic or stressful event. Symptoms related to this disorder include persistent re-experiencing of memories and fear generalization. Current pharmacological treatments for PTSD are insufficient, with fewer than 30% of patients reporting symptom remission. This study aims to determine the efficacy of acute (R,S) ketamine and chronic fluoxetine (FLX) in reducing fear memory and fear generalization. In rodents, fear conditioning (FC) is commonly used in the literature to induce behaviors related to symptoms of PTSD, and the open field test (OFT) can assess anxiety and fear generalization behaviors during the exploration of a novel environment. In this study, FC consisted of a white noise cue stimulus and four inescapable foot shocks. Treatments began 4 hours after FC. Fear and anxiety behaviors were recorded during re-exposure to the FC stimuli at 24 hours and 2 weeks. The OFT was conducted one day before the last FC re-exposure. Results support the combined use of acute ketamine and chronic FLX as a treatment for reducing behaviors indicative of fear memory during re-exposure at 2 weeks, but not behaviors indicative of anxiety and fear generalization in the OFT. FLX alone was most effective in reducing behaviors related to fear generalization. This study contributes to the existing literature on pharmacological treatment for fear and anxiety behaviors relating to fear memory and fear generalization. Continued research is necessary to replicate results, optimize treatment protocols, and investigate the molecular adaptations to trauma and treatment. Significance Statement Up to 6% of people in the United States will develop PTSD within their lifetime, and less than half of those individuals will find relief from their symptoms given the current therapeutic options. This study offers preliminary support for the efficacy of ketamine and FLX in reducing PTSD-like behaviors induced by fear-conditioning in mice. Compared to current standard treatments, results indicate the potential for a more effective therapeutic option for those with stress-related disorders, such as PTSD.
创伤后应激障碍(PTSD)是由创伤或应激事件引起的。这种疾病的相关症状包括持续的记忆重现和恐惧泛化。目前针对创伤后应激障碍的药物治疗效果不佳,只有不到 30% 的患者症状得到缓解。本研究旨在确定急性(R,S)氯胺酮和慢性氟西汀(FLX)在减少恐惧记忆和恐惧泛化方面的疗效。在啮齿类动物中,恐惧条件反射(FC)是文献中常用的诱导创伤后应激障碍症状相关行为的方法,而开放场试验(OFT)可以评估探索新环境时的焦虑和恐惧泛化行为。在本研究中,FC 包括一个白噪声提示刺激和四个无法逃脱的脚震。治疗在 FC 4 小时后开始。分别在 24 小时和 2 周后再次接触 FC 刺激时记录恐惧和焦虑行为。OFT 在最后一次 FC 再次暴露前一天进行。结果表明,联合使用急性氯胺酮和慢性 FLX 可以减少 2 周后再次暴露时的恐惧记忆行为,但不能减少 OFT 中的焦虑和恐惧泛化行为。单独使用 FLX 对减少与恐惧泛化有关的行为最为有效。这项研究为现有的有关恐惧记忆和恐惧泛化的恐惧和焦虑行为的药物治疗文献做出了贡献。有必要继续开展研究,以复制研究结果、优化治疗方案并调查分子对创伤和治疗的适应性。意义声明 在美国,多达 6% 的人会在一生中患上创伤后应激障碍,而在目前的治疗方案下,只有不到一半的人能缓解症状。这项研究初步证实了氯胺酮和 FLX 在减少小鼠由恐惧条件反射诱发的创伤后应激障碍类似行为方面的疗效。与目前的标准疗法相比,研究结果表明,氯胺酮和FLX有可能为创伤后应激障碍等压力相关疾病患者提供更有效的治疗方案。
{"title":"<b>Efficacy of Fluoxetine and (<i>R,S)</i> Ketamine in Attenuating Conditioned Fear Behaviors in Male Mice</b>.","authors":"Megan Wells, Jan Hoffmann, Autumn Stage, Isabella Enger, Jayme Pomper, Lily Briggs, Amber LaCrosse","doi":"10.1124/jpet.124.002252","DOIUrl":"https://doi.org/10.1124/jpet.124.002252","url":null,"abstract":"<p><p>Post-traumatic stress disorder (PTSD) is caused by exposure to a traumatic or stressful event. Symptoms related to this disorder include persistent re-experiencing of memories and fear generalization. Current pharmacological treatments for PTSD are insufficient, with fewer than 30% of patients reporting symptom remission. This study aims to determine the efficacy of acute (<i>R,S)</i> ketamine and chronic fluoxetine (FLX) in reducing fear memory and fear generalization. In rodents, fear conditioning (FC) is commonly used in the literature to induce behaviors related to symptoms of PTSD, and the open field test (OFT) can assess anxiety and fear generalization behaviors during the exploration of a novel environment. In this study, FC consisted of a white noise cue stimulus and four inescapable foot shocks. Treatments began 4 hours after FC. Fear and anxiety behaviors were recorded during re-exposure to the FC stimuli at 24 hours and 2 weeks. The OFT was conducted one day before the last FC re-exposure. Results support the combined use of acute ketamine and chronic FLX as a treatment for reducing behaviors indicative of fear memory during re-exposure at 2 weeks, but not behaviors indicative of anxiety and fear generalization in the OFT. FLX alone was most effective in reducing behaviors related to fear generalization. This study contributes to the existing literature on pharmacological treatment for fear and anxiety behaviors relating to fear memory and fear generalization. Continued research is necessary to replicate results, optimize treatment protocols, and investigate the molecular adaptations to trauma and treatment. <b>Significance Statement</b> Up to 6% of people in the United States will develop PTSD within their lifetime, and less than half of those individuals will find relief from their symptoms given the current therapeutic options. This study offers preliminary support for the efficacy of ketamine and FLX in reducing PTSD-like behaviors induced by fear-conditioning in mice. Compared to current standard treatments, results indicate the potential for a more effective therapeutic option for those with stress-related disorders, such as PTSD.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142289741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Methocinnamox is a Potent and Long-Acting Antagonist that can Prevent and Reverse Opioid-Induced Respiratory Depression.","authors":"James A Carr,Daniel J Morgan","doi":"10.1124/jpet.124.002205","DOIUrl":"https://doi.org/10.1124/jpet.124.002205","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"39 1","pages":"1-3"},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ashley N Ewens, Alexander Pilski, Shayne D Hastings, Chris Krook-Magnuson, Steven M Graves, Esther Krook-Magnuson, Stanley A Thayer
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
在 3900 万艾滋病毒感染者中,近一半人患有艾滋病毒相关神经认知障碍(HAND)。HAND 的症状从亚临床认知障碍到痴呆不等;HAND 的发病机制尚不清楚,也没有治疗方法。艾滋病毒蛋白转录激活因子(TAT)被认为是导致 HAND 的原因,因为它在中枢神经系统中持续存在,并在动物模型中引起神经毒性。神经网络过度兴奋与神经退行性疾病的认知能力加速下降有关。在这里,我们发现抗癫痫药物左乙拉西坦(LEV)可以减轻异常兴奋性突触传递,保护突触可塑性,降低癫痫发作的易感性,并保护诱导性TAT(iTAT)转基因雄性小鼠的认知能力。iTAT小鼠在海马切片记录中的自发兴奋性突触后电流频率增加,长期电位(一种突触可塑性形式,是学习和记忆的基础)受损。通过渗透性微型泵给药两周的LEV可防止这两种损害。给 iTAT 小鼠注射凯尼酸会诱发较高的最大行为发作评分、较长的发作持续时间和较短的首次发作潜伏期,这与较低的发作阈值相符。LEV治疗可防止这些体内过度兴奋的迹象。最后,在巴恩斯迷宫中,与接受 LEV 治疗的 iTAT 小鼠相比,接受 LEV 治疗的 iTAT 小鼠需要更多时间才能到达目标,犯的错误更多,认知得分更低。因此,TAT的表达驱动了功能缺陷,表明它在手足徐动症中起着致病作用。由于LEV不仅能防止iTAT小鼠的突触活动异常,还能防止认知功能障碍,因此它可能为治疗手足徐动症提供一种很有前景的药理学方法。意义声明 约有一半的艾滋病病毒感染者患有艾滋病相关神经认知障碍(HAND),目前尚无治疗方法。艾滋病病毒蛋白 TAT 会引起毒性,被认为是导致 HAND 的原因之一。在这里,我们展示了一种抗癫痫药物--左乙拉西坦(LEV)--能防止TAT表达小鼠出现突触和认知障碍。左乙拉西坦被广泛用于治疗癫痫发作,在人类(包括艾滋病毒感染者)中的耐受性良好。这项研究支持进一步研究 LEV 治疗对 HAND 神经保护的作用。
{"title":"Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder.","authors":"Ashley N Ewens, Alexander Pilski, Shayne D Hastings, Chris Krook-Magnuson, Steven M Graves, Esther Krook-Magnuson, Stanley A Thayer","doi":"10.1124/jpet.124.002272","DOIUrl":"10.1124/jpet.124.002272","url":null,"abstract":"<p><p>Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":" ","pages":"104-118"},"PeriodicalIF":3.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}