首页 > 最新文献

Journal of Physics and Chemistry of Solids最新文献

英文 中文
Doping effects on boron carbide quantum dots for solar cells application: DFT study 用于太阳能电池的碳化硼量子点的掺杂效应:DFT 研究
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1016/j.jpcs.2024.112446
Ibrahim Mahariq , Rohit Sharma , Anjan Kumar , Krunal Vaghela , Rekha M. M , Lokesh Verma , M Ravi Kumar , Maythum Ali Shallan , Abdulrahman A. Almehizia
The DFT method was used to explore the photovoltaic properties of nitrogen- and phosphorus-doped boron carbide quantum dots (BC3QDs). Results showed chemical activity values of −5.512 eV for nitrogen-doped and −3.971 eV for phosphorus-doped BC3QDs, with nitrogen-doped samples exhibiting higher chemical activity. Doping introduced mid-gap states, causing a red shift in the absorption spectra of 106 nm for nitrogen and 118 nm for phosphorus doping. Nitrogen doping (N-doping) enhanced charge transfer capabilities compared to phosphorus doping (P-doping). The nitrogen-doped BC3QDs also displayed HOMO and LUMO energy levels (−5.373 eV and −2.103 eV, respectively) that are closer to TiO2 and I/I3, making them more compatible for solar cell applications by increasing electron injection, fill factor, light collection efficiency, and open-circuit voltage. Despite an improved energy conversion potential, the N-doped BC3QDs’ efficiency (72.34 %) was impacted by rapid non-radiative recombination. These insights can guide the design of BC3QDs in solar energy applications, photocatalytic devices, and QD nano-composites for energy harvesting.
利用 DFT 方法探讨了掺氮和掺磷碳化硼量子点(BC3QDs)的光伏特性。结果表明,掺氮 BC3QDs 的化学活性值为 -5.512 eV,掺磷 BC3QDs 的化学活性值为 -3.971 eV,其中掺氮样品的化学活性更高。掺杂引入了中隙态,导致吸收光谱发生红移,氮掺杂为 106 nm,磷掺杂为 118 nm。与掺磷(P-doping)相比,掺氮(N-doping)增强了电荷转移能力。氮掺杂的 BC3QDs 还显示出更接近 TiO2 和 I-/I3- 的 HOMO 和 LUMO 能级(分别为 -5.373 eV 和 -2.103 eV),通过提高电子注入、填充因子、集光效率和开路电压,使它们更适合太阳能电池应用。尽管掺杂 N 的 BC3QDs 的能量转换潜力有所提高,但其效率(72.34%)受到快速非辐射重组的影响。这些见解可以指导太阳能应用中 BC3QDs 的设计、光催化设备以及用于能量收集的 QD 纳米复合材料。
{"title":"Doping effects on boron carbide quantum dots for solar cells application: DFT study","authors":"Ibrahim Mahariq ,&nbsp;Rohit Sharma ,&nbsp;Anjan Kumar ,&nbsp;Krunal Vaghela ,&nbsp;Rekha M. M ,&nbsp;Lokesh Verma ,&nbsp;M Ravi Kumar ,&nbsp;Maythum Ali Shallan ,&nbsp;Abdulrahman A. Almehizia","doi":"10.1016/j.jpcs.2024.112446","DOIUrl":"10.1016/j.jpcs.2024.112446","url":null,"abstract":"<div><div>The DFT method was used to explore the photovoltaic properties of nitrogen- and phosphorus-doped boron carbide quantum dots (BC<sub>3</sub>QDs). Results showed chemical activity values of −5.512 eV for nitrogen-doped and −3.971 eV for phosphorus-doped BC<sub>3</sub>QDs, with nitrogen-doped samples exhibiting higher chemical activity. Doping introduced mid-gap states, causing a red shift in the absorption spectra of 106 nm for nitrogen and 118 nm for phosphorus doping. Nitrogen doping (N-doping) enhanced charge transfer capabilities compared to phosphorus doping (P-doping). The nitrogen-doped BC<sub>3</sub>QDs also displayed HOMO and LUMO energy levels (−5.373 eV and −2.103 eV, respectively) that are closer to TiO<sub>2</sub> and I<sup>−</sup>/I<sub>3</sub><sup>−</sup>, making them more compatible for solar cell applications by increasing electron injection, fill factor, light collection efficiency, and open-circuit voltage. Despite an improved energy conversion potential, the N-doped BC<sub>3</sub>QDs’ efficiency (72.34 %) was impacted by rapid non-radiative recombination. These insights can guide the design of BC<sub>3</sub>QDs in solar energy applications, photocatalytic devices, and QD nano-composites for energy harvesting.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"198 ","pages":"Article 112446"},"PeriodicalIF":4.3,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of mesoporous NiWO4 / Co3O4/ g-C3N4 based heterostructure for high performance asymmetric supercapacitors 基于介孔 NiWO4 / Co3O4/ g-C3N4 异质结构的高性能不对称超级电容器的合理设计
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-09 DOI: 10.1016/j.jpcs.2024.112439
K.R. Hariprasath , M. Priyadharshini , P. Shanmugam , P. Balaji , R. Thangappan , T. Pazhanivel
Herein we have designed a nickel-based tungsten oxide as a cathode material for hybrid supercapacitor owing to its better theoretical capacitance values. However, the material lacks good conducting behaviour and rate capability which affect its extensive utilisation as electrode material. In order to overcome the defects heterostructure composite was designed to enhance its electrochemical behaviour. The prepared materials were characterised with several physiochemical and electrochemical techniques. The ternary nanocomposite has portrayed cube like morphology with mesoporous nature. In specific, the ternary composite in three electrode cell have delivered a high specific capacitance of 819 F/g at 1 A/g when compared to other materials and retained a initial capacitance of 91 % after 5000 charge discharge cycles. Then an asymmetric hybrid supercapacitor with NiWO4/Co3O4/g-C3N4 as positive electrode and rGO as negative electrode in 3 M PVA-KOH electrolyte using Swagelok cell was assembled. The fabricated device exhibited a specific capacitance of about 113 F/g at 1 A/g in the potential of 1.4V with a specific energy of 35 Wh/kg at an specific power of 1500 W/kg. Further the device exhibited a better cycle life of 93 % even after 10000 cycles. Thus, the transition metal tungstate based heterostructure could be employed as a potential electrode material for efficient supercapacitors.
在这里,我们设计了一种镍基氧化钨作为混合超级电容器的阴极材料,因为它具有更好的理论电容值。然而,这种材料缺乏良好的导电性能和速率能力,影响了其作为电极材料的广泛应用。为了克服这些缺陷,我们设计了异质结构复合材料来增强其电化学性能。制备出的材料通过多种物理化学和电化学技术进行了表征。三元纳米复合材料具有类似立方体的形态和介孔性质。具体而言,与其他材料相比,三元复合材料在三电极电池中的比电容高达 819 F/g(1 A/g),并且在 5000 次充放电循环后仍能保持 91% 的初始电容。然后,使用世伟洛克电池在 3 M PVA-KOH 电解液中组装了以 NiWO4/Co3O4/g-C3N4 为正极、rGO 为负极的不对称混合超级电容器。在 1.4V 的电位下,1 A/g 的比电容约为 113 F/g,在 1500 W/kg 的比功率下,比能量为 35 Wh/kg。此外,即使在 10000 次循环后,该器件的循环寿命仍高达 93%。因此,基于过渡金属钨酸盐的异质结构可用作高效超级电容器的潜在电极材料。
{"title":"Rational design of mesoporous NiWO4 / Co3O4/ g-C3N4 based heterostructure for high performance asymmetric supercapacitors","authors":"K.R. Hariprasath ,&nbsp;M. Priyadharshini ,&nbsp;P. Shanmugam ,&nbsp;P. Balaji ,&nbsp;R. Thangappan ,&nbsp;T. Pazhanivel","doi":"10.1016/j.jpcs.2024.112439","DOIUrl":"10.1016/j.jpcs.2024.112439","url":null,"abstract":"<div><div>Herein we have designed a nickel-based tungsten oxide as a cathode material for hybrid supercapacitor owing to its better theoretical capacitance values. However, the material lacks good conducting behaviour and rate capability which affect its extensive utilisation as electrode material. In order to overcome the defects heterostructure composite was designed to enhance its electrochemical behaviour. The prepared materials were characterised with several physiochemical and electrochemical techniques. The ternary nanocomposite has portrayed cube like morphology with mesoporous nature. In specific, the ternary composite in three electrode cell have delivered a high specific capacitance of 819 F/g at 1 A/g when compared to other materials and retained a initial capacitance of 91 % after 5000 charge discharge cycles. Then an asymmetric hybrid supercapacitor with NiWO<sub>4</sub>/Co<sub>3</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> as positive electrode and rGO as negative electrode in 3 M PVA-KOH electrolyte using Swagelok cell was assembled. The fabricated device exhibited a specific capacitance of about 113 F/g at 1 A/g in the potential of 1.4V with a specific energy of 35 Wh/kg at an specific power of 1500 W/kg. Further the device exhibited a better cycle life of 93 % even after 10000 cycles. Thus, the transition metal tungstate based heterostructure could be employed as a potential electrode material for efficient supercapacitors.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112439"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation to optimize the photovoltaic performances of Cu2ZnSnS4 solar cell with Cu2NiSnS4 as hole transport layer 通过数值模拟优化以 Cu2NiSnS4 为空穴传输层的 Cu2ZnSnS4 太阳能电池的光伏性能
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-09 DOI: 10.1016/j.jpcs.2024.112448
Md. Raton Ali, Tanvir Mahtab Khan, Nurjahan-Ara, Sheikh Rashel Al Ahmed
Cu2ZnSnS4 (CZTS) has been taken as an encouraging absorber material for photovoltaic (PV) device applications due to its earth-abundant composition, favorable bandgap, and non-toxicity. However, the recombination losses at both front and back interfaces in the heterojunction CZTS solar cells provide poor efficiency and open-circuit voltage (Voc). In this study, we have designed and investigated heterojunction CZTS-based solar cell employing Cu2NiSnS4 (CNTS) as hole transport layer (HTL) and tungsten disulfide (WS2) as buffer layer. A novel solar cell structure of Ni/CNTS/CZTS/WS2/FTO/Al has been designed numerically by utilizing the one-dimensional solar cell capacitance simulator (SCAPS-1D). At first, we have verified an experimental structure (Mo/CZTS/CdS/ZnO) with conversion efficiency of 8.38 % without HTL numerically with the help of the SCAPS-1D simulator for the validation purposes. A comparison of the PV performances among different HTLs is provided. It is revealed that the addition of HTL at rear side of the CZTS cell minimizes the carrier recombination, thus improving the device outputs. Also, the lower lattice mismatch between the proposed CNTS HTL and CZTS absorber compared to other HTLs further results in better performances. In addition, a ‘spike like’ band orientation at the CZTS/WS2 interface helps to increase PV outputs by reducing the carrier recombination loss. The output of proposed CZTS heterojunction TFSC is further examined by changing different parameters including thickness, doping concentration, bulk and interface defect densities, temperature, cell resistances, and metal work function. In this work, an optimized thickness for CZTS absorber is found to be 1.0 μm for the cost-effective PV device. A maximum efficiency of 30.26 % including Voc of 1.08 V, short-circuit current density (Jsc) of 31.75 mA/cm2, and fill-factor (FF) of 88.04 % is achieved numerically. Therefore, these findings will help to researchers for designing Cd-free, low-cost, environmentally friendly, and highly efficient CZTS heterojunction TFSC.
Cu2ZnSnS4(CZTS)因其富含地球成分、良好的带隙和无毒性,已被视为光伏(PV)设备应用中令人鼓舞的吸收材料。然而,异质结 CZTS 太阳能电池前后界面的重组损耗导致效率和开路电压(Voc)较低。在这项研究中,我们设计并研究了以 Cu2NiSnS4(CNTS)为空穴传输层(HTL)、二硫化钨(WS2)为缓冲层的异质结 CZTS 太阳能电池。我们利用一维太阳能电池电容模拟器(SCAPS-1D)对镍/CNTS/CZTS/WS2/FTO/Al 的新型太阳能电池结构进行了数值设计。首先,我们在 SCAPS-1D 模拟器的帮助下,数值验证了一种无 HTL 的实验结构(Mo/CZTS/CdS/ZnO),其转换效率为 8.38%。对不同 HTL 的光伏性能进行了比较。结果表明,在 CZTS 电池后侧添加 HTL 可以最大限度地减少载流子重组,从而提高器件输出。此外,与其他 HTL 相比,所提出的 CNTS HTL 和 CZTS 吸收体之间的晶格失配更低,从而进一步提高了性能。此外,CZTS/WS2 接口上的 "尖峰 "带取向有助于通过减少载流子重组损耗来提高光伏输出。通过改变不同的参数,包括厚度、掺杂浓度、块状和界面缺陷密度、温度、电池电阻和金属功函数,进一步检验了所提出的 CZTS 异质结 TFSC 的输出。这项研究发现,CZTS 吸收体的最佳厚度为 1.0 μm,以实现高性价比的光伏设备。数值结果表明,CZTS 吸收器的最高效率为 30.26%,其中 Voc 为 1.08 V,短路电流密度 (Jsc) 为 31.75 mA/cm2,填充因子 (FF) 为 88.04%。因此,这些发现将有助于研究人员设计无镉、低成本、环保和高效的 CZTS 异质结 TFSC。
{"title":"Numerical simulation to optimize the photovoltaic performances of Cu2ZnSnS4 solar cell with Cu2NiSnS4 as hole transport layer","authors":"Md. Raton Ali,&nbsp;Tanvir Mahtab Khan,&nbsp;Nurjahan-Ara,&nbsp;Sheikh Rashel Al Ahmed","doi":"10.1016/j.jpcs.2024.112448","DOIUrl":"10.1016/j.jpcs.2024.112448","url":null,"abstract":"<div><div>Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) has been taken as an encouraging absorber material for photovoltaic (PV) device applications due to its earth-abundant composition, favorable bandgap, and non-toxicity. However, the recombination losses at both front and back interfaces in the heterojunction CZTS solar cells provide poor efficiency and open-circuit voltage (V<sub>oc</sub>). In this study, we have designed and investigated heterojunction CZTS-based solar cell employing Cu<sub>2</sub>NiSnS<sub>4</sub> (CNTS) as hole transport layer (HTL) and tungsten disulfide (WS<sub>2</sub>) as buffer layer. A novel solar cell structure of Ni/CNTS/CZTS/WS<sub>2</sub>/FTO/Al has been designed numerically by utilizing the one-dimensional solar cell capacitance simulator (SCAPS-1D). At first, we have verified an experimental structure (Mo/CZTS/CdS/ZnO) with conversion efficiency of 8.38 % without HTL numerically with the help of the SCAPS-1D simulator for the validation purposes. A comparison of the PV performances among different HTLs is provided. It is revealed that the addition of HTL at rear side of the CZTS cell minimizes the carrier recombination, thus improving the device outputs. Also, the lower lattice mismatch between the proposed CNTS HTL and CZTS absorber compared to other HTLs further results in better performances. In addition, a ‘spike like’ band orientation at the CZTS/WS<sub>2</sub> interface helps to increase PV outputs by reducing the carrier recombination loss. The output of proposed CZTS heterojunction TFSC is further examined by changing different parameters including thickness, doping concentration, bulk and interface defect densities, temperature, cell resistances, and metal work function. In this work, an optimized thickness for CZTS absorber is found to be 1.0 μm for the cost-effective PV device. A maximum efficiency of 30.26 % including V<sub>oc</sub> of 1.08 V, short-circuit current density (J<sub>sc</sub>) of 31.75 mA/cm<sup>2</sup>, and fill-factor (FF) of 88.04 % is achieved numerically. Therefore, these findings will help to researchers for designing Cd-free, low-cost, environmentally friendly, and highly efficient CZTS heterojunction TFSC.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112448"},"PeriodicalIF":4.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical investigation of transition metal (Cr, Fe)-Doped AlN in a rocksalt structure: A DFT study on physical properties 岩盐结构中过渡金属(铬、铁)掺杂氮化铝的理论研究:关于物理性质的 DFT 研究
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1016/j.jpcs.2024.112442
Fatima Elhamra , Mourad Rougab , Ahmed Gueddouh
This study presents first-principles computations to explore the structural, electronic, optical, elastic, vibrational, and thermodynamic properties of Aluminum Nitride (AlN) doped with the transition metals Chromium (Cr) and Iron (Fe) in the rocksalt structure. Using spin-polarized density functional theory (DFT) within the CASTEP code, we applied GGA-PBE, GGA + U, and HSE06 approximations for exchange-correlation functions. Our results reveal that Cr doping transforms AlN into a dilute magnetic semiconductor (DMS), while Fe doping induces a transition to a metallic state. Both Al0.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N exhibit strong covalent bonding, contributing to enhanced hardness. The substantial increase in static dielectric constant and refractive index suggests strong optical responses. Furthermore, our analysis confirms the mechanical and dynamic stability of these compounds. Al₀.₇₅Cr₀.₂₅N is a promising candidate for electronic and spintronic applications, whereas Al₀.₇₅Fe₀.₂₅N, with its high conductivity, is well-suited for magnetic storage devices and electrical contacts. Our findings for AlN are consistent with prior theoretical and experimental data, while the results for Al₀.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N offer novel insights for future research.
本研究通过第一性原理计算,探讨了掺杂了过渡金属铬(Cr)和铁(Fe)的岩盐结构氮化铝(AlN)的结构、电子、光学、弹性、振动和热力学性质。利用 CASTEP 代码中的自旋极化密度泛函理论(DFT),我们对交换相关函数采用了 GGA-PBE、GGA + U 和 HSE06 近似方法。我们的研究结果表明,铬的掺杂使 AlN 转变为稀磁半导体 (DMS),而铁的掺杂则促使 AlN 转变为金属态。Al0.₇₅Cr₀.₂₅N和Al₀.₇₅Fe₀.₂₅N都表现出很强的共价键,从而提高了硬度。静态介电常数和折射率的大幅增加表明了强烈的光学响应。此外,我们的分析还证实了这些化合物的机械和动态稳定性。Al₀.₇₅Cr₀.₂₅N 是电子和自旋电子应用的理想候选材料,而 Al₀.₇₅Fe₀.₂₅N 具有高导电性,非常适合磁存储设备和电接触。我们对 AlN 的研究结果与之前的理论和实验数据一致,而对 Al₀.₇₅Cr₀.₂₅N 和 Al₀.₇₅Fe₀.₂₅N 的研究结果则为未来的研究提供了新的见解。
{"title":"Theoretical investigation of transition metal (Cr, Fe)-Doped AlN in a rocksalt structure: A DFT study on physical properties","authors":"Fatima Elhamra ,&nbsp;Mourad Rougab ,&nbsp;Ahmed Gueddouh","doi":"10.1016/j.jpcs.2024.112442","DOIUrl":"10.1016/j.jpcs.2024.112442","url":null,"abstract":"<div><div>This study presents first-principles computations to explore the structural, electronic, optical, elastic, vibrational, and thermodynamic properties of Aluminum Nitride (AlN) doped with the transition metals Chromium (Cr) and Iron (Fe) in the rocksalt structure. Using spin-polarized density functional theory (DFT) within the CASTEP code, we applied GGA-PBE, GGA + U, and HSE06 approximations for exchange-correlation functions. Our results reveal that Cr doping transforms AlN into a dilute magnetic semiconductor (DMS), while Fe doping induces a transition to a metallic state. Both Al<sub>0</sub>.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N exhibit strong covalent bonding, contributing to enhanced hardness. The substantial increase in static dielectric constant and refractive index suggests strong optical responses. Furthermore, our analysis confirms the mechanical and dynamic stability of these compounds. Al₀.₇₅Cr₀.₂₅N is a promising candidate for electronic and spintronic applications, whereas Al₀.₇₅Fe₀.₂₅N, with its high conductivity, is well-suited for magnetic storage devices and electrical contacts. Our findings for AlN are consistent with prior theoretical and experimental data, while the results for Al₀.₇₅Cr₀.₂₅N and Al₀.₇₅Fe₀.₂₅N offer novel insights for future research.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112442"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface engineering of LiV3O8 with carbon quantum dots for enhanced electrochemical performance in sodium ion batteries 用碳量子点对 LiV3O8 进行表面工程处理,以提高钠离子电池的电化学性能
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1016/j.jpcs.2024.112445
Lingling Xie , Yu Niu , Limin Zhu , Qing Han , Xuejing Qiu , Xiaoyu Cao
LiV3O8 (LVO), a prominent layered oxide that has been extensively studied in lithium-ion batteries (LIBs), faces several challenges such as insufficient conductivity, irreversible phase transitions, structural collapse, and capacity degradation during charge-discharge cycles. These obstacles are further exacerbated in the context of sodium-ion batteries (SIBs), resulting in compromised cycle stability and rate performance, thereby hindering its application in SIBs. In this research, LVO/CQDs composites were efficiently prepared via a facile sonochemical method using carbon quantum dots (CQDs) modification. The uniform dispersion of CQDs on the LVO surface, while preserving its bulk structure, enhances electronic conductivity and cycle stability, Coulombic efficiency, and rate capability through morphology and dimensional optimization. In particular, the LVO/10%CQDs cathode exhibits an initial discharge capacity of approximately 185.4 mAh g−1 at 30 mA g−1 and retains 116.5 mAh g−1 after 250 cycles, demonstrating remarkable cycling stability and rate capability. The integration of CQDs boosts the conductivity of LVO, reduces the internal resistance, increases the pseudo-capacitance contribution, enhances the Na+ diffusion coefficient, and significantly improves the electrochemical performance. Overall, this research presents a viable surface modification approach to enhance the electrochemical performance of layered metal oxides, potentially alleviating the challenges faced by LVO in SIBs.
LiV3O8(LVO)是一种突出的层状氧化物,在锂离子电池(LIB)中得到了广泛的研究,但它面临着一些挑战,如导电性不足、不可逆相变、结构坍塌以及充放电循环过程中的容量衰减。在钠离子电池(SIB)中,这些障碍进一步加剧,导致循环稳定性和速率性能受到影响,从而阻碍了其在 SIB 中的应用。本研究采用碳量子点(CQDs)改性,通过简便的声化学方法高效制备了 LVO/CQDs 复合材料。CQDs 在 LVO 表面均匀分散,同时保留了其主体结构,通过形貌和尺寸优化,增强了电子导电性和循环稳定性、库仑效率和速率能力。其中,LVO/10%CQDs 阴极在 30 mA g-1 条件下的初始放电容量约为 185.4 mAh g-1,循环 250 次后仍能保持 116.5 mAh g-1,显示出显著的循环稳定性和速率能力。CQDs 的集成提高了 LVO 的电导率,降低了内阻,增加了伪电容贡献,提高了 Na+ 扩散系数,显著改善了电化学性能。总之,这项研究提出了一种可行的表面改性方法来提高层状金属氧化物的电化学性能,从而有可能缓解 LVO 在 SIB 中面临的挑战。
{"title":"Surface engineering of LiV3O8 with carbon quantum dots for enhanced electrochemical performance in sodium ion batteries","authors":"Lingling Xie ,&nbsp;Yu Niu ,&nbsp;Limin Zhu ,&nbsp;Qing Han ,&nbsp;Xuejing Qiu ,&nbsp;Xiaoyu Cao","doi":"10.1016/j.jpcs.2024.112445","DOIUrl":"10.1016/j.jpcs.2024.112445","url":null,"abstract":"<div><div>LiV<sub>3</sub>O<sub>8</sub> (LVO), a prominent layered oxide that has been extensively studied in lithium-ion batteries (LIBs), faces several challenges such as insufficient conductivity, irreversible phase transitions, structural collapse, and capacity degradation during charge-discharge cycles. These obstacles are further exacerbated in the context of sodium-ion batteries (SIBs), resulting in compromised cycle stability and rate performance, thereby hindering its application in SIBs. In this research, LVO/CQDs composites were efficiently prepared via a facile sonochemical method using carbon quantum dots (CQDs) modification. The uniform dispersion of CQDs on the LVO surface, while preserving its bulk structure, enhances electronic conductivity and cycle stability, Coulombic efficiency, and rate capability through morphology and dimensional optimization. In particular, the LVO/10%CQDs cathode exhibits an initial discharge capacity of approximately 185.4 mAh g<sup>−1</sup> at 30 mA g<sup>−1</sup> and retains 116.5 mAh g<sup>−1</sup> after 250 cycles, demonstrating remarkable cycling stability and rate capability. The integration of CQDs boosts the conductivity of LVO, reduces the internal resistance, increases the pseudo-capacitance contribution, enhances the Na<sup>+</sup> diffusion coefficient, and significantly improves the electrochemical performance. Overall, this research presents a viable surface modification approach to enhance the electrochemical performance of layered metal oxides, potentially alleviating the challenges faced by LVO in SIBs.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112445"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel B6P6X (X=As, Sb) monolayers for antiferromagnetic spintronics and hydrogen storage 用于反铁磁自旋电子学和储氢的新型 B6P6X(X=As,Sb)单层膜
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1016/j.jpcs.2024.112431
Yusuf Zuntu Abdullahi , Ikram Djebablia , Sohail Ahmad
<div><div>Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) storage of interstitially X = As and Sb atom doped <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub></mrow></math></span> (<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span>) graphenylene monolayers. The resulting <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span>/<span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span>, respectively. All <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayer is 268.74 K. Furthermore, the H<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> storage capabilities of these <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>X</mi></mrow></math></span> monolayers were examined. We find that <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>A</mi><mi>s</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>6</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>6</mn></mrow></msub><mi>S</mi><mi>b</mi></mrow></math></span> monolayers can each adsorb up to 48H<span><math><msub><mrow
在多孔二维(2D)材料中嵌入外来原子已成为一种很有前途的策略,可定制其电子、磁性和吸附特性,从而在储能和自旋电子器件中实现前景广阔的应用。在这项研究中,利用自旋极化密度泛函理论(DFT)计算研究了间隙 X = As 和 Sb 原子掺杂的 B6P6(B6P6X)石墨亚苯单层的基态性质和氢(H2)存储。由此产生的 B6P6X(X = As、Sb)单层具有非常好的机械、动力学和热稳定性,并具有反铁磁(AFM)基态。电子结构计算显示,这两种单层都具有 AFM 半导体特性,B6P6As/B6P6Sb 的间接/直接带隙分别为 0.71/0.60 eV(PBE)和 2.19/2.14 eV(HSE06)。所有 B6P6X 单层都表现出平面内易磁化轴。此外,还考察了这些 B6P6X 单层的 H2 储存能力。我们发现 B6P6As 和 B6P6Sb 单层最多可吸附 48 个 H2 分子,平均吸附能 (Ea) 为 -0.14 eV/H2。B6P6As@48H2 和 B6P6As@48H2 的相应 H2 储存重力容量分别为 6.91 wt%和 6.10 wt%,超过了美国能源部 2025 年提出的 5.50 wt% 的目标。这些发现凸显了 B6P6X(X = As、Sb)单层在 AFM 自旋电子学和 H2 储存应用方面的潜力。
{"title":"Novel B6P6X (X=As, Sb) monolayers for antiferromagnetic spintronics and hydrogen storage","authors":"Yusuf Zuntu Abdullahi ,&nbsp;Ikram Djebablia ,&nbsp;Sohail Ahmad","doi":"10.1016/j.jpcs.2024.112431","DOIUrl":"10.1016/j.jpcs.2024.112431","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Embedding foreign atoms into porous two-dimensional (2D) materials has emerged as a promising strategy to tailor their electronic, magnetic, and adsorption properties, enabling promising applications in energy storage and spintronics devices. In this work, spin-polarized density functional theory (DFT) calculations were employed to investigate the ground state properties and hydrogen (H&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;) storage of interstitially X = As and Sb atom doped &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;) graphenylene monolayers. The resulting &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; (X = As, Sb) monolayers exhibit very good mechanical, dynamical, and thermal stabilities with antiferromagnetic (AFM) ground states. Electronic structure calculations reveal AFM semiconducting behavior for both monolayers, with indirect/direct band gaps of 0.71/0.60 eV (PBE) and 2.19/2.14 eV (HSE06) for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;/&lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, respectively. All &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; monolayers exhibit an in-plane easy magnetization axis. The obtained Berezinskii–Kosterlitz–Thouless transition (BKT) temperature value of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; monolayer is 268.74 K. Furthermore, the H&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; storage capabilities of these &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; monolayers were examined. We find that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; monolayers can each adsorb up to 48H&lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112431"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced charge carrier separation in stable Type-1 CoNi2S4/MoS2 nanocomposite photocatalyst for sustainable water treatment 在稳定的 1 型 CoNi2S4/MoS2 纳米复合光催化剂中增强电荷载流子分离,实现可持续水处理
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-08 DOI: 10.1016/j.jpcs.2024.112444
B.R. Anusha , Udayabhanu , S. Appu , Fahd Alharethy , G. Srinivas Reddy , Abhijna , M.A. Sangamesha , G. Nagaraju , S. Girish Kumar , K. Prashantha
This study investigates a Type-I CoNi₂S₄/MoS₂ (CM)nanocomposite as an efficient photocatalyst for sustainable water treatment. Combining the catalytic stability of CoNi₂S₄ with the superior light absorption of MoS₂, the nanocomposite exhibits enhanced photocatalytic performance. Structural analysis through X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) confirmed the successful formation of the CoNi₂S₄/MoS₂ heterojunction. The bandgap of the 25 % CoNi₂S₄/MoS₂ composite was tuned from 2.2 eV to 2.0 eV, improving visible light absorption. Photoluminescence (PL) and UV analyses demonstrated reduced electron-hole recombination, contributing to the composite's enhanced activity. Under visible light, the CoNi₂S₄/MoS₂ photocatalyst achieved complete MB dye degradation within 90 min, outperforming other samples. The efficient charge separation in the heterojunction, with electrons moving from MoS₂ to CoNi₂S₄ and holes in the opposite direction, was key to its superior photocatalytic efficiency. This makes CoNi₂S₄/MoS₂ a promising material for environmental applications.
本研究探讨了一种 I 型 CoNi₂S₄/MoS₂(CM)纳米复合材料,作为一种高效光催化剂用于可持续水处理。结合 CoNi₂S₄的催化稳定性和 MoS₂的优异光吸收性,该纳米复合材料表现出更强的光催化性能。通过 X 射线衍射(XRD)和高分辨率电子显微镜(HREM)进行的结构分析证实了 CoNi₂S₄/MoS₂ 异质结的成功形成。25% CoNi₂S₄/MoS₂复合材料的带隙从 2.2 eV 调整到 2.0 eV,从而改善了对可见光的吸收。光致发光(PL)和紫外分析表明,电子-空穴重组减少,从而提高了复合材料的活性。在可见光下,CoNi₂S₄/MoS₂光催化剂能在 90 分钟内完全降解 MB 染料,性能优于其他样品。在异质结中,电子从 MoS₂移动到 CoNi₂S₄,而空穴则反向移动,这种高效的电荷分离是其光催化效率出众的关键。这使得 CoNi₂S₄/MoS₂成为一种很有前景的环境应用材料。
{"title":"Enhanced charge carrier separation in stable Type-1 CoNi2S4/MoS2 nanocomposite photocatalyst for sustainable water treatment","authors":"B.R. Anusha ,&nbsp;Udayabhanu ,&nbsp;S. Appu ,&nbsp;Fahd Alharethy ,&nbsp;G. Srinivas Reddy ,&nbsp;Abhijna ,&nbsp;M.A. Sangamesha ,&nbsp;G. Nagaraju ,&nbsp;S. Girish Kumar ,&nbsp;K. Prashantha","doi":"10.1016/j.jpcs.2024.112444","DOIUrl":"10.1016/j.jpcs.2024.112444","url":null,"abstract":"<div><div>This study investigates a Type-I CoNi₂S₄/MoS₂ (CM)nanocomposite as an efficient photocatalyst for sustainable water treatment. Combining the catalytic stability of CoNi₂S₄ with the superior light absorption of MoS₂, the nanocomposite exhibits enhanced photocatalytic performance. Structural analysis through X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) confirmed the successful formation of the CoNi₂S₄/MoS₂ heterojunction. The bandgap of the 25 % CoNi₂S₄/MoS₂ composite was tuned from 2.2 eV to 2.0 eV, improving visible light absorption. Photoluminescence (PL) and UV analyses demonstrated reduced electron-hole recombination, contributing to the composite's enhanced activity. Under visible light, the CoNi₂S₄/MoS₂ photocatalyst achieved complete MB dye degradation within 90 min, outperforming other samples. The efficient charge separation in the heterojunction, with electrons moving from MoS₂ to CoNi₂S₄ and holes in the opposite direction, was key to its superior photocatalytic efficiency. This makes CoNi₂S₄/MoS₂ a promising material for environmental applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"198 ","pages":"Article 112444"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142703532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical and work function-based chemical gas sensors utilizing NC3 and graphene combination 利用 NC3 和石墨烯组合的基于电气和功函数的化学气体传感器
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-07 DOI: 10.1016/j.jpcs.2024.112443
Mohamed J. Saadh , Ali Basem , Jayanti Makasana , Pawan Sharma , Luma Hussain Saleh , Abhishek Kumar , Tariq J Al-Musawi , I. Alrekabi , Abdulrahman A. Almehizia
Research has been conducted on the potential practical uses of heterostructures made of graphene and carbon nitride (NC3) following their successful synthesis. The remarkable gas sensing properties of these 2D nanosheets have captured significant interest, attributed to distinctive electronic characteristics and exceptional surface-to-volume ratio that are resulted from combination of NC3 and graphene. In this study, we present a detailed analysis of electronic and structural features of pristine NC3 and graphene (PG), and their in-plane heterostructures using first-principles density functional theory. Our investigation utilizes the B3LYP and dispersion-corrected van der Waals (vdW) functional WB97XD, along with 6-311G (d, p) basis set. Our findings indicate that the nanosheets we anticipated exhibit robust structural stability, characterized by a desirable cohesive energy. Furthermore, we observed a gradual increase in the bandgap as the concentration of N–C in the nanosheets increases. Additionally, we investigated the adsorption characteristics of these heterostructures towards toxic gas molecules such as SO2 and CO. Among the studied heterostructures, GNC3I demonstrated higher adsorption energy (Eads), with values of approximately −0.283 and −0.491 eV when exposed to SO2 and carbon monoxide gas molecules respectively. Electronic characteristics, including LUMO and HOMO energy values, energy gap (Eg) between HOMO and LUMO, work function, Fermi level, and conductivity, underwent notable modifications upon SO2 gas adsorption over nanosheets, except for PG. However, these parameters remained relatively unchanged following carbon monoxide adsorption. Natural bond orbital (NBO) and Mulliken charge analysis demonstrates that there is a transfer of charge from gas molecules to nanosheets. Although nanosheets exhibit slightly higher adsorption energy (Eads) values for CO gas compared to SO2 gas, various assessments, including molecular electrostatic potential (MEP) mapping, electronic properties, and charge transfer (CT) analysis, suggest that these nanosheets are superior sensors for detecting SO2 gas rather than carbon monoxide gas molecules.
在成功合成石墨烯和氮化碳(NC3)异质结构后,人们对其潜在的实际用途进行了研究。由于 NC3 和石墨烯的结合具有独特的电子特性和优异的表面体积比,这些二维纳米片的卓越气体传感特性引起了人们的极大兴趣。在本研究中,我们利用第一原理密度泛函理论详细分析了原始 NC3 和石墨烯 (PG) 及其面内异质结构的电子和结构特征。我们的研究采用了 B3LYP 和色散校正范德华(vdW)函数 WB97XD 以及 6-311G (d, p) 基集。研究结果表明,我们预期的纳米片具有强大的结构稳定性,其特点是具有理想的内聚能。此外,我们还观察到,随着纳米片中 N-C 浓度的增加,带隙也逐渐增大。此外,我们还研究了这些异质结构对有毒气体分子(如二氧化硫和一氧化碳)的吸附特性。在所研究的异质结构中,GNC3I 表现出更高的吸附能(Eads),当暴露于二氧化硫和一氧化碳气体分子时,吸附能值分别约为 -0.283 和 -0.491 eV。除 PG 外,纳米片吸附 SO2 气体后的电子特性,包括 LUMO 和 HOMO 能值、HOMO 和 LUMO 之间的能隙 (Eg)、功函数、费米级和电导率都发生了显著变化。然而,吸附一氧化碳后,这些参数相对保持不变。自然键轨道(NBO)和 Mulliken 电荷分析表明,气体分子向纳米片转移了电荷。虽然纳米片对一氧化碳气体的吸附能(Eads)值略高于对二氧化硫气体的吸附能(Eads)值,但各种评估(包括分子静电势(MEP)绘图、电子特性和电荷转移(CT)分析)表明,这些纳米片是检测二氧化硫气体而非一氧化碳气体分子的理想传感器。
{"title":"Electrical and work function-based chemical gas sensors utilizing NC3 and graphene combination","authors":"Mohamed J. Saadh ,&nbsp;Ali Basem ,&nbsp;Jayanti Makasana ,&nbsp;Pawan Sharma ,&nbsp;Luma Hussain Saleh ,&nbsp;Abhishek Kumar ,&nbsp;Tariq J Al-Musawi ,&nbsp;I. Alrekabi ,&nbsp;Abdulrahman A. Almehizia","doi":"10.1016/j.jpcs.2024.112443","DOIUrl":"10.1016/j.jpcs.2024.112443","url":null,"abstract":"<div><div>Research has been conducted on the potential practical uses of heterostructures made of graphene and carbon nitride (NC<sub>3</sub>) following their successful synthesis. The remarkable gas sensing properties of these 2D nanosheets have captured significant interest, attributed to distinctive electronic characteristics and exceptional surface-to-volume ratio that are resulted from combination of NC<sub>3</sub> and graphene. In this study, we present a detailed analysis of electronic and structural features of pristine NC<sub>3</sub> and graphene (PG), and their in-plane heterostructures using first-principles density functional theory. Our investigation utilizes the B3LYP and dispersion-corrected van der Waals (vdW) functional WB97XD, along with 6-311G (d, p) basis set. Our findings indicate that the nanosheets we anticipated exhibit robust structural stability, characterized by a desirable cohesive energy. Furthermore, we observed a gradual increase in the bandgap as the concentration of N–C in the nanosheets increases. Additionally, we investigated the adsorption characteristics of these heterostructures towards toxic gas molecules such as SO<sub>2</sub> and CO. Among the studied heterostructures, GNC<sub>3</sub>I demonstrated higher adsorption energy (E<sub>ads</sub>), with values of approximately −0.283 and −0.491 eV when exposed to SO<sub>2</sub> and carbon monoxide gas molecules respectively. Electronic characteristics, including LUMO and HOMO energy values, energy gap (E<sub>g</sub>) between HOMO and LUMO, work function, Fermi level, and conductivity, underwent notable modifications upon SO<sub>2</sub> gas adsorption over nanosheets, except for PG. However, these parameters remained relatively unchanged following carbon monoxide adsorption. Natural bond orbital (NBO) and Mulliken charge analysis demonstrates that there is a transfer of charge from gas molecules to nanosheets. Although nanosheets exhibit slightly higher adsorption energy (E<sub>ads</sub>) values for CO gas compared to SO<sub>2</sub> gas, various assessments, including molecular electrostatic potential (MEP) mapping, electronic properties, and charge transfer (CT) analysis, suggest that these nanosheets are superior sensors for detecting SO<sub>2</sub> gas rather than carbon monoxide gas molecules.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112443"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron transport and quantum phase transitions in cumulene-connected C80H20 fulleryne: DFT and tight-binding studies 积烯连接的 C80H20 富勒烯中的电子传输和量子相变:DFT 和紧密结合研究
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.jpcs.2024.112441
Mohammad Qasemnazhand , Farhad Khoeini , Mohammad Amir Bazrafshan , Ahmad I. Ayesh
Molecular bridges are opening up exciting new applications in diverse fields, improving the efficiency of conductive inks, enhancing the performance of devices such as organic light-emitting diodes and low-cost solar cells, and advancing the development of highly sensitive sensors, chemical reactions, drug delivery systems, and more. In this paper, we study the electron transport properties of a C80H20 fulleryne (dodecahedryne) connected to two cumulene electrodes. Using density functional theory (DFT), we determine the optimal molecular bridge structure. Based on the IR vibration spectra, different stable phases of the molecular bridge are obtained. The corresponding tight-binding (TB) parameters of the cage are obtained by assigning appropriate values of the length and type of bonds for the fulleryne cage through matching the HOMO-LUMO gap between the DFT calculations and the TB parameters. The electron transport for the desired structures is investigated using the obtained tight-binding parameters and the non-equilibrium Green's function (NEGF) method. Finally, it is concluded that among the five possible configurations for the cumulene-dodecahedryne -cumulene molecular bridge, only one specific configuration—where the electrodes are one edge apart—exhibits metallic behavior, while other positions act as insulators. In addition, the system exhibits quantum phase transitions from metal to semiconductor and from insulator to metal in the presence of critical electric fields. The ability to control quantum phase transitions in these molecular systems can be leveraged to develop qubits for quantum computing. The unique properties can be utilized to design advanced molecular electronic devices.
分子桥在不同领域开辟了令人兴奋的新应用,提高了导电油墨的效率,增强了有机发光二极管和低成本太阳能电池等设备的性能,推动了高灵敏度传感器、化学反应、药物输送系统等的发展。在本文中,我们研究了连接两个积雪烯电极的 C80H20 全碳烯(十二碳杂环丁烯)的电子传输特性。我们利用密度泛函理论(DFT)确定了最佳分子桥结构。根据红外振动光谱,我们得到了分子桥的不同稳定相。通过匹配 DFT 计算和 TB 参数之间的 HOMO-LUMO 间隙,为富勒烯笼赋予适当的键长和键类型值,从而获得相应的笼紧结合 (TB) 参数。利用获得的紧密结合参数和非平衡格林函数 (NEGF) 方法研究了所需结构的电子传输。最后得出的结论是,在积雪烯-十二碳二烯-积雪烯分子桥的五种可能构型中,只有一种特定构型--电极相隔一条边--表现出金属特性,而其他位置则是绝缘体。此外,在临界电场的作用下,该系统还表现出从金属到半导体以及从绝缘体到金属的量子相变。在这些分子体系中控制量子相变的能力可用于开发量子计算的量子比特。这些独特的特性可用于设计先进的分子电子器件。
{"title":"Electron transport and quantum phase transitions in cumulene-connected C80H20 fulleryne: DFT and tight-binding studies","authors":"Mohammad Qasemnazhand ,&nbsp;Farhad Khoeini ,&nbsp;Mohammad Amir Bazrafshan ,&nbsp;Ahmad I. Ayesh","doi":"10.1016/j.jpcs.2024.112441","DOIUrl":"10.1016/j.jpcs.2024.112441","url":null,"abstract":"<div><div>Molecular bridges are opening up exciting new applications in diverse fields, improving the efficiency of conductive inks, enhancing the performance of devices such as organic light-emitting diodes and low-cost solar cells, and advancing the development of highly sensitive sensors, chemical reactions, drug delivery systems, and more. In this paper, we study the electron transport properties of a C<sub>80</sub>H<sub>20</sub> fulleryne (dodecahedryne) connected to two cumulene electrodes. Using density functional theory (DFT), we determine the optimal molecular bridge structure. Based on the IR vibration spectra, different stable phases of the molecular bridge are obtained. The corresponding tight-binding (TB) parameters of the cage are obtained by assigning appropriate values of the length and type of bonds for the fulleryne cage through matching the HOMO-LUMO gap between the DFT calculations and the TB parameters. The electron transport for the desired structures is investigated using the obtained tight-binding parameters and the non-equilibrium Green's function (NEGF) method. Finally, it is concluded that among the five possible configurations for the cumulene-dodecahedryne -cumulene molecular bridge, only one specific configuration—where the electrodes are one edge apart—exhibits metallic behavior, while other positions act as insulators. In addition, the system exhibits quantum phase transitions from metal to semiconductor and from insulator to metal in the presence of critical electric fields. The ability to control quantum phase transitions in these molecular systems can be leveraged to develop qubits for quantum computing. The unique properties can be utilized to design advanced molecular electronic devices.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"197 ","pages":"Article 112441"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to the article titled “Enhanced energy storage performance of copper intercalated redox active 1, 2, 4, 5-benzene-tetracarboxylic Acid organic framework” [Journal of Physics and Chemistry of Solids 193 (2024) 112175 https://doi.org/10.1016/j.jpcs.2024.112175] 题为 "增强铜插层氧化还原活性 1, 2, 4, 5-苯四羧酸有机框架的储能性能 "的文章更正[《固体物理与化学杂志》193 (2024) 112175 https://doi.org/10.1016/j.jpcs.2024.112175]
IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-06 DOI: 10.1016/j.jpcs.2024.112407
Shahid Alam , Amina Urooj , Muhammad Zahir Iqbal , Ahmed M. Fouda , Hosameldin Helmy Hegazy , Nacer Badi
{"title":"Corrigendum to the article titled “Enhanced energy storage performance of copper intercalated redox active 1, 2, 4, 5-benzene-tetracarboxylic Acid organic framework” [Journal of Physics and Chemistry of Solids 193 (2024) 112175 https://doi.org/10.1016/j.jpcs.2024.112175]","authors":"Shahid Alam ,&nbsp;Amina Urooj ,&nbsp;Muhammad Zahir Iqbal ,&nbsp;Ahmed M. Fouda ,&nbsp;Hosameldin Helmy Hegazy ,&nbsp;Nacer Badi","doi":"10.1016/j.jpcs.2024.112407","DOIUrl":"10.1016/j.jpcs.2024.112407","url":null,"abstract":"","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112407"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Physics and Chemistry of Solids
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1