Nonlinear simulations of Alfvén modes (AMs) driven by energetic particles (EPs) in the presence of turbulence are performed with the gyrokinetic particle-in-cell code ORB5. The AMs carry a heat flux, and consequently they nonlinearly modify the plasma temperature profiles. The isolated effect of this modification on the dynamics of turbulence is studied by means of electrostatic simulations. We find that turbulence is reduced when the profiles relaxed by the AM are used, with respect to the simulation where the unperturbed profiles are used. This is an example of indirect interaction of EPs and turbulence. First, an analytic magnetic equilibrium with circular concentric flux surfaces is considered as a simplified example for this study. Then, an application to an experimentally relevant case of ASDEX Upgrade is discussed.
Pellet injection is currently the primary candidate for achieving efficient plasma fuelling, one of the key issues for steady-state operation in large fusion devices. In this paper, pellet injection experiments are performed for several magnetic configurations of the TJ-II stellarator. The aim of this study is to increase the understanding of the role played by rational surfaces in plasmoid drift and deposition profiles in stellarators. The analysis of experimentally observed plasmoid drifts is supported by simulations of such cases made with the HPI2 code. Plasmoid drift is found to be significantly reduced, as in tokamaks, in the vicinity of rational surfaces. This is attributed to the fact that plasmoid external charge reconnection lengths are shorter near rational surfaces, resulting in a more effective damping of the plasmoid drift. Although the effect of plasmoid external currents on the drift is expected to be negligible in stellarators, compared with those caused by plasmoid internal currents, the effect observed in TJ-II is clearly measurable. In addition, simulations show that enhanced drift reductions near rational surfaces lead to significantly different deposition profiles for the magnetic configurations included in this study. This implies that it should be possible to select the magnetic configurations to obtain more efficient pellet fuelling.