首页 > 最新文献

Journal of Propulsion and Power最新文献

英文 中文
Enhancing Hybrid Rocket Engine Regression Rates: The Stepped Helix Design 提高混合火箭发动机的回归率:阶梯螺旋设计
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-06-05 DOI: 10.2514/1.b39258
Christopher Glaser, Jouke Hijlkema, Jean-Yves Lestrade, Jérôme Anthoine
Journal of Propulsion and Power, Ahead of Print.
推进与动力杂志》,印刷版前。
{"title":"Enhancing Hybrid Rocket Engine Regression Rates: The Stepped Helix Design","authors":"Christopher Glaser, Jouke Hijlkema, Jean-Yves Lestrade, Jérôme Anthoine","doi":"10.2514/1.b39258","DOIUrl":"https://doi.org/10.2514/1.b39258","url":null,"abstract":"Journal of Propulsion and Power, Ahead of Print. <br/>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"29 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141252841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tandem Energy-Analyzer/Mass-Spectrometer Measurements of an Ionic Liquid Ion Source 离子液体离子源的串联能量分析仪/质谱仪测量
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-05-28 DOI: 10.2514/1.b39396
Christopher T. Lyne, Miron F. Liu, Joshua L. Rovey
Journal of Propulsion and Power, Ahead of Print.
推进与动力杂志》,印刷版前。
{"title":"Tandem Energy-Analyzer/Mass-Spectrometer Measurements of an Ionic Liquid Ion Source","authors":"Christopher T. Lyne, Miron F. Liu, Joshua L. Rovey","doi":"10.2514/1.b39396","DOIUrl":"https://doi.org/10.2514/1.b39396","url":null,"abstract":"Journal of Propulsion and Power, Ahead of Print. <br/>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"38 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141168248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear Coaxial Methane–Oxygen Injector Mixing and Combustion Examined by Laser Absorption Tomography 通过激光吸收断层扫描检查剪切同轴甲烷-氧气喷射器的混合和燃烧情况
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-05-13 DOI: 10.2514/1.b39463
Alex R. Keller, R. Mitchell Spearrin, Fabio A. Bendana
Journal of Propulsion and Power, Ahead of Print.
推进与动力杂志》,印刷版前。
{"title":"Shear Coaxial Methane–Oxygen Injector Mixing and Combustion Examined by Laser Absorption Tomography","authors":"Alex R. Keller, R. Mitchell Spearrin, Fabio A. Bendana","doi":"10.2514/1.b39463","DOIUrl":"https://doi.org/10.2514/1.b39463","url":null,"abstract":"Journal of Propulsion and Power, Ahead of Print. <br/>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"38 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization and Testing of DC Electromagnetic Pump for Liquid Metal Space Use 液态金属太空直流电磁泵的优化与测试
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-05-08 DOI: 10.2514/1.b39203
Mengwen Qiao, Yixin Zhou, Guilin Liu, Zhongshan Deng, Lei Sheng, Lei Wang, Qian Wang, Jing Liu
Journal of Propulsion and Power, Ahead of Print.
推进与动力杂志》,印刷版前。
{"title":"Optimization and Testing of DC Electromagnetic Pump for Liquid Metal Space Use","authors":"Mengwen Qiao, Yixin Zhou, Guilin Liu, Zhongshan Deng, Lei Sheng, Lei Wang, Qian Wang, Jing Liu","doi":"10.2514/1.b39203","DOIUrl":"https://doi.org/10.2514/1.b39203","url":null,"abstract":"Journal of Propulsion and Power, Ahead of Print. <br/>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"155 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140929557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Current Density Performance of a Magnetically Shielded Hall Thruster 磁屏蔽霍尔推进器的高电流密度性能
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-05-02 DOI: 10.2514/1.b39324
Leanne L. Su, Parker J. Roberts, Tate M. Gill, William J. Hurley, Thomas A. Marks, Christopher L. Sercel, Madison G. Allen, Collin B. Whittaker, Eric Viges, Benjamin A. Jorns

The performance of a magnetically shielded Hall thruster operating on xenon and krypton is characterized at discharge current densities up to 10 times greater than its nominal level. A thrust stand and far-field probe suite are employed to evaluate operation at 300 V discharge voltage and discharge currents from 15 to 125 A (xenon) and from 15 to 150 A (krypton). The thrust, specific impulse, and anode efficiency at the highest currents are found to be 1650±30 mN, 2309±56 s, and 52.8±2.0% respectively for xenon, and 1839±18 mN, 2567±48 s, and 55.0±1.6% for krypton. The thrust density at the highest conditions are shown to be six (xenon) and eight (krypton) times higher than the lowest current condition. A maximum in anode efficiency as a function of discharge current is observed for both gases. This is attributed to a trade between mass utilization, which increases to unity with current, and beam utilization, which gradually decreases with current. The dependence of these efficiency modes on current is discussed in the context of a series of first-principles scaling laws. The observation that efficiency only moderately decreases with current density is examined in the context of high-power electric propulsion development.

对使用氙和氪的磁屏蔽霍尔推进器在放电电流密度比额定值大 10 倍的情况下的性能进行了鉴定。在 300 V 放电电压和 15 至 125 A(氙)及 15 至 150 A(氪)放电电流条件下,使用推力台架和远场探针套件对运行情况进行了评估。在最高电流下,氙的推力、比冲和阳极效率分别为 1650±30 mN、2309±56 s 和 52.8±2.0%;氪的推力、比冲和阳极效率分别为 1839±18 mN、2567±48 s 和 55.0±1.6%。最高条件下的推力密度分别是最低电流条件下的 6 倍(氙)和 8 倍(氪)。根据放电电流的函数,两种气体的阳极效率都达到了最大值。这归因于质量利用率和束流利用率之间的权衡,质量利用率随电流的增加而增加,直至达到统一;束流利用率则随电流的增加而逐渐降低。这些效率模式对电流的依赖性在一系列第一原理缩放定律的背景下进行了讨论。在大功率电力推进发展的背景下,对效率仅随电流密度适度降低这一观察结果进行了研究。
{"title":"High-Current Density Performance of a Magnetically Shielded Hall Thruster","authors":"Leanne L. Su, Parker J. Roberts, Tate M. Gill, William J. Hurley, Thomas A. Marks, Christopher L. Sercel, Madison G. Allen, Collin B. Whittaker, Eric Viges, Benjamin A. Jorns","doi":"10.2514/1.b39324","DOIUrl":"https://doi.org/10.2514/1.b39324","url":null,"abstract":"<p>The performance of a magnetically shielded Hall thruster operating on xenon and krypton is characterized at discharge current densities up to 10 times greater than its nominal level. A thrust stand and far-field probe suite are employed to evaluate operation at 300 V discharge voltage and discharge currents from 15 to 125 A (xenon) and from 15 to 150 A (krypton). The thrust, specific impulse, and anode efficiency at the highest currents are found to be <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mrow><mn>1650</mn><mo>±</mo><mn>30</mn><mtext> </mtext><mi>mN</mi></mrow></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mrow><mn>2309</mn><mo>±</mo><mn>56</mn><mtext> </mtext><mi mathvariant=\"normal\">s</mi></mrow></math></span><span></span>, and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mrow><mn>52.8</mn><mo>±</mo><mn>2.0</mn><mo>%</mo></mrow></math></span><span></span> respectively for xenon, and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mrow><mn>1839</mn><mo>±</mo><mn>18</mn><mtext> </mtext><mi>mN</mi></mrow></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mrow><mn>2567</mn><mo>±</mo><mn>48</mn><mtext> </mtext><mi mathvariant=\"normal\">s</mi></mrow></math></span><span></span>, and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mrow><mn>55.0</mn><mo>±</mo><mn>1.6</mn><mo>%</mo></mrow></math></span><span></span> for krypton. The thrust density at the highest conditions are shown to be six (xenon) and eight (krypton) times higher than the lowest current condition. A maximum in anode efficiency as a function of discharge current is observed for both gases. This is attributed to a trade between mass utilization, which increases to unity with current, and beam utilization, which gradually decreases with current. The dependence of these efficiency modes on current is discussed in the context of a series of first-principles scaling laws. The observation that efficiency only moderately decreases with current density is examined in the context of high-power electric propulsion development.</p>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"10 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current Status of Liquid-Bipropellant Detonation-Based Propulsion Devices 液体双推进剂引爆推进装置的现状
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-05-02 DOI: 10.2514/1.b39360
Nathan D. Ballintyn, Alexis J. Harroun, Stephen D. Heister
Journal of Propulsion and Power, Ahead of Print.
推进与动力杂志》,印刷版前。
{"title":"Current Status of Liquid-Bipropellant Detonation-Based Propulsion Devices","authors":"Nathan D. Ballintyn, Alexis J. Harroun, Stephen D. Heister","doi":"10.2514/1.b39360","DOIUrl":"https://doi.org/10.2514/1.b39360","url":null,"abstract":"Journal of Propulsion and Power, Ahead of Print. <br/>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"57 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Voltage Discharge Optimization of a Hybrid-Wall Hall Thruster 混合壁式霍尔推进器的高压放电优化
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-04-30 DOI: 10.2514/1.b39061
Xingyu Liu, Hong Li, Xingdong Che, Shangmin Wang, Wei Mao, Yongjie Ding, Liqiu Wei, Daren Yu
Journal of Propulsion and Power, Ahead of Print.
推进与动力》杂志,印刷前。
{"title":"High-Voltage Discharge Optimization of a Hybrid-Wall Hall Thruster","authors":"Xingyu Liu, Hong Li, Xingdong Che, Shangmin Wang, Wei Mao, Yongjie Ding, Liqiu Wei, Daren Yu","doi":"10.2514/1.b39061","DOIUrl":"https://doi.org/10.2514/1.b39061","url":null,"abstract":"Journal of Propulsion and Power, Ahead of Print. <br/>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"50 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140842232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Unsteady Combustion Regimes in a Kerosene-Fueled Scramjet with Air Throttling 煤油燃料喷气式喷气发动机非稳态燃烧规律研究
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-04-11 DOI: 10.2514/1.b39424
Ye Tian, Guangming Du, Yanguang Yang, Jialing Le, Hong Liu

This paper describes an experimental study investigating unsteady combustion regimes in a kerosene-fueled scramjet. The results are obtained under inflow conditions of a 2.9 MPa stagnation pressure, 1900 K stagnation temperature, and a Mach number of 3.0. The air throttling position is 240 mm downstream of the combustor entrance, with an air throttling flow rate (ratio of air throttling mass flux to inflow mass flux) of 38% and a fuel equivalence ratio of 0.37. Combustion is relatively stable when air throttling is applied and is dominated by auto-ignition. When air throttling is turned off, the combustion becomes more unsteady and is dominated by flame propagation. At the same time, the combustion mode changes, and the frequency of the combustion mode transition is 286 Hz. Schlieren images and one-dimension analysis show that the effect of air throttling is the coupling of cold throat (aerodynamic throat) and hot throat (thermal throat). The proper orthogonal decomposition and dynamic mode decomposition analysis present that when air throttling is applied or removed, the frequencies of injector–flame feedback are almost the same, while the frequencies of shock–flame feedback exhibit considerable variation, which is caused by the location of the precombustion shock affected by air throttling.

本文介绍了一项研究煤油燃料喷气式飞机非稳定燃烧机制的实验研究。实验结果是在停滞压力为 2.9 兆帕、停滞温度为 1900 开氏度、马赫数为 3.0 的流入条件下获得的。空气节流位置在燃烧器入口下游 240 毫米处,空气节流率(空气节流质量通量与流入质量通量之比)为 38%,燃料当量比为 0.37。采用空气节流时,燃烧相对稳定,以自燃为主。当关闭空气节流时,燃烧变得更加不稳定,以火焰传播为主。同时,燃烧模式发生变化,燃烧模式转换频率为 286 赫兹。Schlieren 图像和一维分析表明,空气节流的影响是冷喉管(空气动力学喉管)和热喉管(热喉管)的耦合。适当的正交分解和动模分解分析表明,在实施或取消空气节流时,喷射器-火焰反馈的频率基本相同,而冲击-火焰反馈的频率则表现出相当大的差异,这是受空气节流影响的燃烧前冲击位置造成的。
{"title":"Investigation of Unsteady Combustion Regimes in a Kerosene-Fueled Scramjet with Air Throttling","authors":"Ye Tian, Guangming Du, Yanguang Yang, Jialing Le, Hong Liu","doi":"10.2514/1.b39424","DOIUrl":"https://doi.org/10.2514/1.b39424","url":null,"abstract":"<p>This paper describes an experimental study investigating unsteady combustion regimes in a kerosene-fueled scramjet. The results are obtained under inflow conditions of a 2.9 MPa stagnation pressure, 1900 K stagnation temperature, and a Mach number of 3.0. The air throttling position is 240 mm downstream of the combustor entrance, with an air throttling flow rate (ratio of air throttling mass flux to inflow mass flux) of 38% and a fuel equivalence ratio of 0.37. Combustion is relatively stable when air throttling is applied and is dominated by auto-ignition. When air throttling is turned off, the combustion becomes more unsteady and is dominated by flame propagation. At the same time, the combustion mode changes, and the frequency of the combustion mode transition is 286 Hz. Schlieren images and one-dimension analysis show that the effect of air throttling is the coupling of cold throat (aerodynamic throat) and hot throat (thermal throat). The proper orthogonal decomposition and dynamic mode decomposition analysis present that when air throttling is applied or removed, the frequencies of injector–flame feedback are almost the same, while the frequencies of shock–flame feedback exhibit considerable variation, which is caused by the location of the precombustion shock affected by air throttling.</p>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"31 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Thermal Expansion and Pressure on Far-Field Fluctuations of Heterogeneous Propellants 热膨胀和压力对异质推进剂远场波动的影响
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-04-05 DOI: 10.2514/1.b39373
Kevin C. Brown, Thomas L. Jackson

In this work, we carry out three-dimensional mesoscale simulations of heterogeneous solid propellant combustion. We solve the reactive low-Mach-number equations in the gas phase with complete coupling to the solid phase. The model takes into account thermal expansion and deformation in the solid phase by using a hypoelastic law in the quasi-static limit. To account for morphology, we select two different propellant formulations with different particle size distributions and present the results as a function of pressure. The thermomechanical behavior is accessed by examining quantities such as strain and stress in the propellant as a function of pressure and propellant morphology. We also show that temperature and velocity fluctuations exist in the far field above the propellant surface and that these fluctuations can be significant. To better understand the nature of these fluctuations, we vary the pressure and make relevant plots of normal velocity and temperature probability density functions, as well as time autocorrelations. Such descriptions are necessary to account for the coupling between the mesoscale and the macroscale, where the fluctuations at the mesoscale can affect quantities at the macroscale, such as head-end pressure, trigger parietal vortex shedding, and aeroacoustics.

在这项工作中,我们对异质固体推进剂燃烧进行了三维中尺度模拟。我们求解了气相中的反应性低马赫数方程,并将其与固相完全耦合。该模型在准静态极限下使用低弹性定律,考虑了固相的热膨胀和变形。为了考虑形态问题,我们选择了两种不同粒度分布的推进剂配方,并将结果作为压力的函数加以呈现。通过研究推进剂中的应变和应力等量与压力和推进剂形态的函数关系,可以了解热力学行为。我们还表明,在推进剂表面上方的远场中存在温度和速度波动,而且这些波动可能很大。为了更好地理解这些波动的性质,我们改变了压力,并绘制了正常速度和温度概率密度函数以及时间自相关性的相关图。这种描述对于解释中尺度和宏观尺度之间的耦合是必要的,中尺度的波动会影响宏观尺度的量,如顶端压力、触发顶涡脱落和气动声学。
{"title":"Effects of Thermal Expansion and Pressure on Far-Field Fluctuations of Heterogeneous Propellants","authors":"Kevin C. Brown, Thomas L. Jackson","doi":"10.2514/1.b39373","DOIUrl":"https://doi.org/10.2514/1.b39373","url":null,"abstract":"<p>In this work, we carry out three-dimensional mesoscale simulations of heterogeneous solid propellant combustion. We solve the reactive low-Mach-number equations in the gas phase with complete coupling to the solid phase. The model takes into account thermal expansion and deformation in the solid phase by using a hypoelastic law in the quasi-static limit. To account for morphology, we select two different propellant formulations with different particle size distributions and present the results as a function of pressure. The thermomechanical behavior is accessed by examining quantities such as strain and stress in the propellant as a function of pressure and propellant morphology. We also show that temperature and velocity fluctuations exist in the far field above the propellant surface and that these fluctuations can be significant. To better understand the nature of these fluctuations, we vary the pressure and make relevant plots of normal velocity and temperature probability density functions, as well as time autocorrelations. Such descriptions are necessary to account for the coupling between the mesoscale and the macroscale, where the fluctuations at the mesoscale can affect quantities at the macroscale, such as head-end pressure, trigger parietal vortex shedding, and aeroacoustics.</p>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"75 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methodology for Assessing Retrofitted Hydrogen Combustion and Fuel Cell Aircraft Environmental Impacts 评估加装氢燃烧器和燃料电池飞机环境影响的方法
IF 1.9 4区 工程技术 Q2 ENGINEERING, AEROSPACE Pub Date : 2024-04-05 DOI: 10.2514/1.b39405
Khaled Alsamri, Jessica De la Cruz, Melody Emmanouilidi, Jacqueline Huynh, Jack Brouwer

Hydrogen (H2) combustion and solid oxide fuel cells (SOFCs) can potentially reduce aviation-produced greenhouse gas emissions compared to kerosene propulsion. This paper outlines a methodology for evaluating performance and emission tradeoffs when retrofitting conventional kerosene-powered aircraft with lower-emission H2 combustion and SOFC hybrid alternatives. The proposed framework presents a constant-range approach for designing liquid hydrogen fuel tanks, considering insulation, sizing, center of gravity, and power constraints. A lifecycle assessment evaluates greenhouse gas emissions and contrail formation effects for carbon footprint mitigation, while a cost analysis examines retrofit implementation consequences. A Cessna Citation 560XLS+ case study shows a 5% mass decrease for H2 combustion and a 0.4% mass decrease for the SOFC hybrid, at the tradeoff of removing three passengers. The lifecycle analysis of green hydrogen in aviation reveals a significant reduction in CO2 emissions for H2 combustion and SOFC systems, except for natural-gas-produced H2 combustion, when compared to Jet-A fuel. However, this environmental benefit is contrasted by an increase in fuel cost per passenger-km for green H2 combustion and a rise for natural-gas-produced H2 SOFC compared to kerosene. The results suggest that retrofitting aircraft with alternative fuels could lower carbon emissions, noting the economic and passenger capacity tradeoffs.

与煤油推进相比,氢气(H2)燃烧和固体氧化物燃料电池(SOFC)有可能减少航空产生的温室气体排放。本文概述了一种方法,用于评估用低排放的氢气燃烧和 SOFC 混合动力替代品改装传统煤油动力飞机时的性能和排放权衡。建议的框架提出了设计液氢燃料箱的恒定范围方法,考虑了绝缘、尺寸、重心和功率限制。一项生命周期评估评估了温室气体排放和尾迹形成的影响,以减轻碳足迹,而成本分析则检查了改装实施的后果。Cessna Citation 560XLS+ 案例研究显示,燃烧氢气可使质量减少 5%,SOFC 混合动力可使质量减少 0.4%,但代价是减少三名乘客。绿色氢气在航空中的生命周期分析表明,与 Jet-A 燃料相比,除天然气生产的氢气燃烧外,氢气燃烧和 SOFC 系统的二氧化碳排放量显著减少。然而,与这种环境效益形成鲜明对比的是,与煤油相比,绿色 H2 燃烧系统的每乘客公里燃料成本增加,天然气生产的 H2 SOFC 系统的每乘客公里燃料成本增加。研究结果表明,在飞机上加装替代燃料可以降低碳排放,但要注意经济性和乘客容量的权衡。
{"title":"Methodology for Assessing Retrofitted Hydrogen Combustion and Fuel Cell Aircraft Environmental Impacts","authors":"Khaled Alsamri, Jessica De la Cruz, Melody Emmanouilidi, Jacqueline Huynh, Jack Brouwer","doi":"10.2514/1.b39405","DOIUrl":"https://doi.org/10.2514/1.b39405","url":null,"abstract":"<p>Hydrogen (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math></span><span></span>) combustion and solid oxide fuel cells (SOFCs) can potentially reduce aviation-produced greenhouse gas emissions compared to kerosene propulsion. This paper outlines a methodology for evaluating performance and emission tradeoffs when retrofitting conventional kerosene-powered aircraft with lower-emission <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math></span><span></span> combustion and SOFC hybrid alternatives. The proposed framework presents a constant-range approach for designing liquid hydrogen fuel tanks, considering insulation, sizing, center of gravity, and power constraints. A lifecycle assessment evaluates greenhouse gas emissions and contrail formation effects for carbon footprint mitigation, while a cost analysis examines retrofit implementation consequences. A Cessna Citation 560XLS+ case study shows a 5% mass decrease for <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math></span><span></span> combustion and a 0.4% mass decrease for the SOFC hybrid, at the tradeoff of removing three passengers. The lifecycle analysis of green hydrogen in aviation reveals a significant reduction in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi>CO</mi><mn>2</mn></msub></mrow></math></span><span></span> emissions for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math></span><span></span> combustion and SOFC systems, except for natural-gas-produced <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math></span><span></span> combustion, when compared to Jet-A fuel. However, this environmental benefit is contrasted by an increase in fuel cost per passenger-km for green <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math></span><span></span> combustion and a rise for natural-gas-produced <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mrow><msub><mi mathvariant=\"normal\">H</mi><mn>2</mn></msub></mrow></math></span><span></span> SOFC compared to kerosene. The results suggest that retrofitting aircraft with alternative fuels could lower carbon emissions, noting the economic and passenger capacity tradeoffs.</p>","PeriodicalId":16903,"journal":{"name":"Journal of Propulsion and Power","volume":"49 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140567833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Propulsion and Power
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1