Bernd Zolitschka, Frank Preusser, Junjie Zhang, Felix Bittmann
<p>Middle to Late Pleistocene glacial–interglacial cycles appear to closely follow Milankovich cyclicity. This cyclicity has been observed to exert a discernible influence on both marine and terrestrial environments (EPICA community members, <span>2004</span>; Lisiecki and Raymo, <span>2005</span>). While the marine realm provides quasi-continuous sediment records back into the Tertiary, terrestrial environmental archives are more complex, often fragmentary, and commonly provide evidence of one interglacial only (Hughes et al., <span>2020</span>). Sequences comprising multiple interglacials in superposition are uncommon, with notable examples including crater lake (de Beaulieu et al., <span>2001</span>; Rohrmüller et al., <span>2017</span>; Stebich et al., <span>2020</span>) and tectonic lake records (Donders et al., <span>2021</span>). Moreover, the majority of Central European records was analysed with a purely palaeobotanical (pollen) approach and their chronologies are typically based on wiggle matching (cyclostratigraphy), employing the global marine stable isotope stack (LR04) as a reference (Lisiecki and Raymo, <span>2005</span>). Despite the prevailing consensus that pollen records offer primary regional, rather than local, signals, there is the possibility that they may be incomplete or influenced by site-specific conditions. This potential limitation renders interregional correlation a challenging endeavour. The presence of regional variations in vegetation patterns, in conjunction with the absence of independent dating methodologies, further complicates stratigraphic classifications. These factors give rise to debates and controversial discussions surrounding the nature of Middle Pleistocene environmental variability.</p><p>This assertion is particularly pertinent in the context of the discourse surrounding the palynologically defined Holsteinian interglacial in Central Europe. The initial correlation of this interglacial was with marine isotope stage (MIS) 7 (Caspers et al., <span>1995</span>). However, subsequent studies moved it further back in time, to MIS 9 (Geyh and Müller, <span>2005</span>; Litt et al., <span>2007</span>), and finally to MIS 11 (Nitychoruk et al., <span>2006</span>; Koutsodendris et al., <span>2013</span>; Lauer et al., <span>2020</span>; Fernández Arias et al., <span>2023</span>; Schläfli et al., <span>2023</span>). However, the temporal position of glacial advances in Central Europe and especially of intervening interglacials (cf., Van Beirendonck and Verbruggen, <span>2025a</span>) remains a scientific controversy. Furthermore, direct numerical dating of the Holsteinian is yet limited to a very few case studies. Thus, ‘the lesson being that simple, one-to-one, uncritical correlations with terrestrial, and in particular with the marine isotope sequences, hold many potentially serious pitfalls for the unwary’. This is even more complicated because ‘the fact that 100 ka glacial–interglacial cycles produced glac
中至晚更新世冰期-间冰期旋回与米兰科维奇旋回密切相关。这种周期性已被观察到对海洋和陆地环境产生明显的影响(EPICA社区成员,2004;Lisiecki和Raymo, 2005)。虽然海洋领域提供了准连续的沉积记录,可追溯到第三纪,但陆地环境档案更为复杂,往往是碎片化的,通常只提供一次间冰期的证据(Hughes et al., 2020)。由多个间冰期叠加组成的层序并不常见,值得注意的例子包括火山口湖(de Beaulieu et al., 2001;rohrrm<e:1> ller等,2017;Stebich等人,2020)和构造湖泊记录(Donders等人,2021)。此外,大多数中欧记录是用纯古植物学(花粉)方法分析的,它们的年表通常基于摆动匹配(旋回地层学),采用全球海洋稳定同位素堆栈(LR04)作为参考(Lisiecki和Raymo, 2005)。尽管普遍的共识是花粉记录提供了主要的区域信号,而不是局部信号,但它们可能是不完整的或受特定地点条件的影响。这种潜在的限制使区域间的相互联系成为一项具有挑战性的努力。由于存在植被格局的区域差异,再加上缺乏独立的测年方法,使地层分类进一步复杂化。这些因素引起了关于中更新世环境变率性质的争论和争议性讨论。这一论断在围绕孢粉学定义的中欧荷尔斯泰因间冰期的论述中尤为贴切。该间冰期的初始相关性为海洋同位素阶段(MIS) 7 (Caspers et al., 1995)。然而,随后的研究将其进一步追溯到MIS 9 (Geyh和m<s:1> ller, 2005;Litt et al., 2007),最后到MIS 11 (Nitychoruk et al., 2006;Koutsodendris et al., 2013;Lauer等人,2020;Fernández Arias et al., 2023;Schläfli et al., 2023)。然而,中欧冰川推进的时间位置,特别是间冰期的时间位置(参见Van Beirendonck和Verbruggen, 2025a)仍然存在科学争议。此外,荷尔斯泰因系的直接数值定年还仅限于极少数的案例研究。因此,“教训是,与陆地,特别是与海洋同位素序列的简单,一对一,不加批判的相关性,为粗心大意的人带来了许多潜在的严重陷阱”。这就更加复杂了,因为“100 ka冰期-间冰期旋回在全球不同地方产生的冰期规模差异很大,这一事实在依赖全球冰川变化指标时带来了问题,正如使用海洋同位素记录时经常出现的情况一样”(这两段引文均来自Hughes等人,2020年,第178页)。间冰期条件下也观察到类似的现象,尽管程度可能更大。由于大多数陆地记录来自地层背景,缺乏从荷尔斯泰因期到埃米期的温暖阶段的叠加,因此地层分类总体上仍然不确定(Stebich et al, 2020)。鉴于这一框架,我们项目的一个基本目标是为罗德伯格(ROD11)的72.8米长的沉积物记录建立一个独立的数值时间控制,目的是规避与摆动匹配相关的挑战。Van Beirendonck和Verbruggen (2025a)在总结中更新世古环境研究的基础上,提出了ROD11最古老的间冰期与MIS 7e的相关性,他们完全基于花粉记录,将其与MIS 7e联系在一起,而不是与MIS 11联系在一起,这与Schläfli等人(2023)和Zolitschka等人(2024)形成对比。Van Beirendonck和Verbruggen (2025b,本期)在PANGAEA数据库中获得了一套关于ROD11的代理数据,他们的解释得到了支持,即ROD11记录的所有富有机质(间冰期)沉积物剖面都应与MIS 7有关,而Schläfli等人(2023)则反对这一说法。下一节将为Zolitschka等人(2024)基于独立的地质年代学数据建立的时间框架提供依据。发光测年法是一种可以直接测定沉积物沉积时间的数值方法。在过去的25年里,这种方法已经被确立为一种常用的技术。然而,其应用主要局限于最大年龄为150ka的沉积物,因为发光信号在一定年龄时表现出饱和效应。 这种现象与所使用的天然剂量计(石英或长石)的特定性质有关,它根据样品的特定矿物学性质以及剂量率(即产生发光信号的放射性水平)而变化。在这种情况下,重要的是要注意发光测年包括一系列彼此半独立的不同技术。石英是典型的矿物选择,因为它在沉积物运输过程中被日光快速重置,随着时间的推移具有明显的稳定性。然而,已经证明石英通常表现出相对较低的特征饱和剂量,从而将其利用限制在约150 ka (cf, Murray et al., 2021)。因此,它可能导致在接近Eemian时低估沉积的真实年龄(Lowick et al., 2010)。相比之下,长石的发光信号具有较高的饱和剂量,因此具有较高的定年极限。然而,这个信号对日光照射不太敏感(即,更难重置),并且与稳定性问题有关。测年方案的最新发展可以通过在逐渐升高的温度下使用后续刺激来克服信号稳定性问题(Buylaert et al., 2009;Li and Li, 2011)。Rodderberg记录由四个富含有机物的叠合部分组成,这些叠合部分被解释为反映间冰期条件。我们利用细粒石英(4-11µm, 19个日期)和多矿物组分(67个日期)对ROD11整个剖面的40个样品采用了不同的发光测年方法。在后一种情况下,信号主要由长石发射。在莱布尼茨应用地球物理研究所(LIAG)进行的初步研究中,Zhang等人(2024)采用了多技术方法,结合广泛的实验研究,表征了所研究材料的物理发光特性。应用技术包括石英光激发发光(OSL);Huntley et al., 1985),在225°C下测量的后红外激发发光(pIRIR225;Buylaert et al., 2009),脉冲pIRIR150 (Schmidt et al., 2011),以及Li和Li(2011)之后从多高温(MET) pIRIR方案衍生的pIRIR250。石英和多矿物组分的测定年龄可追溯到45 ka。超过这个年龄,石英年代开始被低估,超过约120 ka后没有进一步增加。相比之下,多矿物组分测定的年龄增加到约250 ka,随后出现大量分散,年龄没有进一步增加。缺乏年龄随深度增加的现象,以及当量剂量值接近2D0(一个表明达到饱和的值)的事实,可以解释为使用ROD11的测年程序接近测年上限(饱和度)(Zhang et al., 2024)。最古老的最小年龄约为250 ka,位于37.5 m处,标志着富有机物(间冰期)沉积物经过长时间的无机沉积物的形成。这与深海记录中确定的243 ka时MIS 7e的开始时间一致(Lisiecki和Raymo, 2005)。因此,低于这个年龄的其余35米沉积物的年龄一定大于250 ka。在LIAG进行研究的同时,弗莱堡大学(UFR)的实验室测试了MET pIRIR方法的一个略有不同的版本,并将其应用于莱茵河地区的河流和风成沉积物(Schwahn等人,2023;Gegg et al., 2024, 2025)。考虑到这些研究的时间范围可以追溯到大约500 ka,我们认为将这种方法应用于岩心RO
{"title":"Middle Pleistocene chronology of the sediment sequence from Rodderberg, Germany, Numerical dating versus wiggle matching: A reply","authors":"Bernd Zolitschka, Frank Preusser, Junjie Zhang, Felix Bittmann","doi":"10.1002/jqs.3727","DOIUrl":"https://doi.org/10.1002/jqs.3727","url":null,"abstract":"<p>Middle to Late Pleistocene glacial–interglacial cycles appear to closely follow Milankovich cyclicity. This cyclicity has been observed to exert a discernible influence on both marine and terrestrial environments (EPICA community members, <span>2004</span>; Lisiecki and Raymo, <span>2005</span>). While the marine realm provides quasi-continuous sediment records back into the Tertiary, terrestrial environmental archives are more complex, often fragmentary, and commonly provide evidence of one interglacial only (Hughes et al., <span>2020</span>). Sequences comprising multiple interglacials in superposition are uncommon, with notable examples including crater lake (de Beaulieu et al., <span>2001</span>; Rohrmüller et al., <span>2017</span>; Stebich et al., <span>2020</span>) and tectonic lake records (Donders et al., <span>2021</span>). Moreover, the majority of Central European records was analysed with a purely palaeobotanical (pollen) approach and their chronologies are typically based on wiggle matching (cyclostratigraphy), employing the global marine stable isotope stack (LR04) as a reference (Lisiecki and Raymo, <span>2005</span>). Despite the prevailing consensus that pollen records offer primary regional, rather than local, signals, there is the possibility that they may be incomplete or influenced by site-specific conditions. This potential limitation renders interregional correlation a challenging endeavour. The presence of regional variations in vegetation patterns, in conjunction with the absence of independent dating methodologies, further complicates stratigraphic classifications. These factors give rise to debates and controversial discussions surrounding the nature of Middle Pleistocene environmental variability.</p><p>This assertion is particularly pertinent in the context of the discourse surrounding the palynologically defined Holsteinian interglacial in Central Europe. The initial correlation of this interglacial was with marine isotope stage (MIS) 7 (Caspers et al., <span>1995</span>). However, subsequent studies moved it further back in time, to MIS 9 (Geyh and Müller, <span>2005</span>; Litt et al., <span>2007</span>), and finally to MIS 11 (Nitychoruk et al., <span>2006</span>; Koutsodendris et al., <span>2013</span>; Lauer et al., <span>2020</span>; Fernández Arias et al., <span>2023</span>; Schläfli et al., <span>2023</span>). However, the temporal position of glacial advances in Central Europe and especially of intervening interglacials (cf., Van Beirendonck and Verbruggen, <span>2025a</span>) remains a scientific controversy. Furthermore, direct numerical dating of the Holsteinian is yet limited to a very few case studies. Thus, ‘the lesson being that simple, one-to-one, uncritical correlations with terrestrial, and in particular with the marine isotope sequences, hold many potentially serious pitfalls for the unwary’. This is even more complicated because ‘the fact that 100 ka glacial–interglacial cycles produced glac","PeriodicalId":16929,"journal":{"name":"Journal of Quaternary Science","volume":"40 5","pages":"916-921"},"PeriodicalIF":1.9,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jqs.3727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MIS 7!? Comment on Zolitschka et al. (2024) Stratigraphy and dating of Middle Pleistocene sediments from Rodderberg, Germany. Journal of Quaternary Science, 39(7), 1011–1030","authors":"Filip Van Beirendonck, Cyriel Verbruggen","doi":"10.1002/jqs.3726","DOIUrl":"https://doi.org/10.1002/jqs.3726","url":null,"abstract":"","PeriodicalId":16929,"journal":{"name":"Journal of Quaternary Science","volume":"40 5","pages":"913-915"},"PeriodicalIF":1.9,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144598630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}