Jianting Qiu, Fangzhou Guo, Ji Shi, Tangjun Guo, Haozhe Piao
Objectives: This study aimed to investigate the effects of Piperlongumine on Glioblastoma multiforme.
Methods: The effects of Piperlongumine on the viability and proliferation of glioma cells LN229 and A172 were measured. Changes in mitochondrial structure were observed. Cell proliferative capacity was assessed using immunofluorescence. The levels of glutathione, malondialdehyde, 4-hydroxynonenal, and intracellular reactive oxygen species were detected. The levels of ferroptosis-related proteins were detected. A plasmid transfection was performed to overexpress the nuclear factor erythroid 2-related factor 2 gene; a subcutaneous tumor model was established in nude mice to observe the in vivo inhibitory effects of Piperlongumine on Glioblastoma multiforme and the recovery effect of Fer-1. The expression levels of ferroptosis-related proteins were detected using immunohistochemistry.
Key findings: Piperlongumine inhibited the viability of glioma cells, as well as their proliferation. The ferroptosis inhibitors were able to restore the inhibitory effect of Piperlongumine on glioma cell proliferation. Forced overexpression of nuclear factor erythroid 2-related factor 2 partially reversed Piperlongumine-induced ferroptosis; Piperlongumine exhibited a significant inhibitory effect on Glioblastoma multiforme cells in vivo, which could be restored by Fer-1.
Conclusions: Piperlongumine inhibits Glioblastoma multiforme proliferation by inducing ferroptosis in vitro and vivo model.
{"title":"Piperlongumine inhibits glioblastoma proliferation by inducing ferroptosis.","authors":"Jianting Qiu, Fangzhou Guo, Ji Shi, Tangjun Guo, Haozhe Piao","doi":"10.1093/jpp/rgae148","DOIUrl":"https://doi.org/10.1093/jpp/rgae148","url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to investigate the effects of Piperlongumine on Glioblastoma multiforme.</p><p><strong>Methods: </strong>The effects of Piperlongumine on the viability and proliferation of glioma cells LN229 and A172 were measured. Changes in mitochondrial structure were observed. Cell proliferative capacity was assessed using immunofluorescence. The levels of glutathione, malondialdehyde, 4-hydroxynonenal, and intracellular reactive oxygen species were detected. The levels of ferroptosis-related proteins were detected. A plasmid transfection was performed to overexpress the nuclear factor erythroid 2-related factor 2 gene; a subcutaneous tumor model was established in nude mice to observe the in vivo inhibitory effects of Piperlongumine on Glioblastoma multiforme and the recovery effect of Fer-1. The expression levels of ferroptosis-related proteins were detected using immunohistochemistry.</p><p><strong>Key findings: </strong>Piperlongumine inhibited the viability of glioma cells, as well as their proliferation. The ferroptosis inhibitors were able to restore the inhibitory effect of Piperlongumine on glioma cell proliferation. Forced overexpression of nuclear factor erythroid 2-related factor 2 partially reversed Piperlongumine-induced ferroptosis; Piperlongumine exhibited a significant inhibitory effect on Glioblastoma multiforme cells in vivo, which could be restored by Fer-1.</p><p><strong>Conclusions: </strong>Piperlongumine inhibits Glioblastoma multiforme proliferation by inducing ferroptosis in vitro and vivo model.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: This study aimed to explore the mechanism of Taohong Siwu decoction (THSWD) in the treatment of non-small-cell lung cancer (NSCLC) by using comprehensive analysis.
Methods: The active components and relevant targets of THSWD were analyzed by network analysis to construct the active component-target-disease network diagram. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted on the core targets by the Metascape database. Molecular docking verification was used for molecular visualization.
Key findings: A total of 69 active compounds and 114 targets were filtered in lung cancer treatment with THSWD. KEGG analysis suggested that tumor necrosis factor (TNF) signaling pathway, and apoptosis pathway played critical roles. The results of molecular docking showed that populoside_qt with IL-6, baicalein with epidermal growth factor receptor (EGFR), and luteolin with MAPK8 had the strongest binding ability. Moreover, experiment validation revealed that THSWD regulated the expression of IL-6, AKT, Cyclin D1, E-cadherin, and LC3A/B, thereby inhibiting the proliferation and migration ability, promoting apoptosis, and blocking the cell cycle of NSCLC cells.
Conclusions: The potential targets and molecular mechanisms of THSWD in the treatment of NSCLC were preliminarily revealed by a comprehensive analysis in this study, which will provide new ideas and methods for the study of the mechanism of traditional Chinese medicine in treating lung cancer.
{"title":"Exploring the molecular mechanism of Taohong Siwu decoction in the treatment of non-small-cell lung cancer based on network pharmacology and molecular docking.","authors":"Yuan Qin, Jia-Ning Lian, Xin Chen, Feng-Yu Huang, Hai-Wen Chen, Tai-Wei Dong, Zuo-Lin Jin","doi":"10.1093/jpp/rgae141","DOIUrl":"https://doi.org/10.1093/jpp/rgae141","url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to explore the mechanism of Taohong Siwu decoction (THSWD) in the treatment of non-small-cell lung cancer (NSCLC) by using comprehensive analysis.</p><p><strong>Methods: </strong>The active components and relevant targets of THSWD were analyzed by network analysis to construct the active component-target-disease network diagram. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted on the core targets by the Metascape database. Molecular docking verification was used for molecular visualization.</p><p><strong>Key findings: </strong>A total of 69 active compounds and 114 targets were filtered in lung cancer treatment with THSWD. KEGG analysis suggested that tumor necrosis factor (TNF) signaling pathway, and apoptosis pathway played critical roles. The results of molecular docking showed that populoside_qt with IL-6, baicalein with epidermal growth factor receptor (EGFR), and luteolin with MAPK8 had the strongest binding ability. Moreover, experiment validation revealed that THSWD regulated the expression of IL-6, AKT, Cyclin D1, E-cadherin, and LC3A/B, thereby inhibiting the proliferation and migration ability, promoting apoptosis, and blocking the cell cycle of NSCLC cells.</p><p><strong>Conclusions: </strong>The potential targets and molecular mechanisms of THSWD in the treatment of NSCLC were preliminarily revealed by a comprehensive analysis in this study, which will provide new ideas and methods for the study of the mechanism of traditional Chinese medicine in treating lung cancer.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142836980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anshita Gupta, Renjil Joshi, Lokkanya Dewangan, Kamal Shah, Deependra Soni, Umesh K Patil, Nagendra Singh Chauhan
Objectives: A primary objective of this review is to summarize the evidence-based pharmacological applications of capsaicin, particularly its use to manage pain and treat various health conditions. A second goal of the review is to research how recent technological advances are improving the bioavailability and therapeutic index of capsaicin, as well as the development of novel capsaicin-mimetics that are able to enhance therapeutic responses in various human diseases.
Methods: In the review, numerous human clinical trials and preclinical studies are examined to determine how effective, safe, and optimal dosages of capsaicin can be used in pain management and therapeutic applications. Furthermore, it discusses capsaicin's mechanisms of action, specifically its interactions with the transient receptor potential vanilloid 1 (TRPV1) channel. As a result of this review, the potential of nanotechnology systems for bypassing the limits of capsaicin's pungency is discussed. The review takes into account individual factors such as pain tolerance and skin sensitivity.
Key findings: For topical applications, capsaicin is typically used in concentrations ranging from 0.025% to 0.1%, with higher concentrations being used under medical supervision for neuropathic pain. The formulation can come in the form of creams, gels, or patches, which provide sustained release over the course of time. A condition such as arthritis or neuropathy can be relieved with capsaicin as it depletes substance P from nerves. Neuropathy and osteoarthritis as well as musculoskeletal disorders have been treated successfully with this herbal medicine. A major mechanism through which capsaicin relieves pain is through activating TRPV1 channels, which induce calcium influx and neurotransmitter release. Additionally, it affects the transcription of genes related to pain modulation and inflammation, particularly when disease conditions or stress are present. There have been recent developments in technology to reduce capsaicin's pungency and improve its bioavailability, including nanotechnology.
Conclusions: It is proven that capsaicin is effective in pain management as well as a variety of therapeutic conditions because of its ability to deplete substance P and desensitize nerve endings. Although capsaicin is highly pungent and associated with discomfort, advancements in delivery technologies and the development of capsaicin-mimetics promise improved therapeutic outcomes. There is a great deal of complexity in the pharmacological action of capsaicin due to its interaction with TRPV1 channels and its ability to affect gene transcription. There is a need for further research and development in order to optimize capsaicin's clinical applications and to enhance its therapeutic index in a variety of human diseases.
{"title":"Capsaicin: pharmacological applications and prospects for drug designing.","authors":"Anshita Gupta, Renjil Joshi, Lokkanya Dewangan, Kamal Shah, Deependra Soni, Umesh K Patil, Nagendra Singh Chauhan","doi":"10.1093/jpp/rgae150","DOIUrl":"https://doi.org/10.1093/jpp/rgae150","url":null,"abstract":"<p><strong>Objectives: </strong>A primary objective of this review is to summarize the evidence-based pharmacological applications of capsaicin, particularly its use to manage pain and treat various health conditions. A second goal of the review is to research how recent technological advances are improving the bioavailability and therapeutic index of capsaicin, as well as the development of novel capsaicin-mimetics that are able to enhance therapeutic responses in various human diseases.</p><p><strong>Methods: </strong>In the review, numerous human clinical trials and preclinical studies are examined to determine how effective, safe, and optimal dosages of capsaicin can be used in pain management and therapeutic applications. Furthermore, it discusses capsaicin's mechanisms of action, specifically its interactions with the transient receptor potential vanilloid 1 (TRPV1) channel. As a result of this review, the potential of nanotechnology systems for bypassing the limits of capsaicin's pungency is discussed. The review takes into account individual factors such as pain tolerance and skin sensitivity.</p><p><strong>Key findings: </strong>For topical applications, capsaicin is typically used in concentrations ranging from 0.025% to 0.1%, with higher concentrations being used under medical supervision for neuropathic pain. The formulation can come in the form of creams, gels, or patches, which provide sustained release over the course of time. A condition such as arthritis or neuropathy can be relieved with capsaicin as it depletes substance P from nerves. Neuropathy and osteoarthritis as well as musculoskeletal disorders have been treated successfully with this herbal medicine. A major mechanism through which capsaicin relieves pain is through activating TRPV1 channels, which induce calcium influx and neurotransmitter release. Additionally, it affects the transcription of genes related to pain modulation and inflammation, particularly when disease conditions or stress are present. There have been recent developments in technology to reduce capsaicin's pungency and improve its bioavailability, including nanotechnology.</p><p><strong>Conclusions: </strong>It is proven that capsaicin is effective in pain management as well as a variety of therapeutic conditions because of its ability to deplete substance P and desensitize nerve endings. Although capsaicin is highly pungent and associated with discomfort, advancements in delivery technologies and the development of capsaicin-mimetics promise improved therapeutic outcomes. There is a great deal of complexity in the pharmacological action of capsaicin due to its interaction with TRPV1 channels and its ability to affect gene transcription. There is a need for further research and development in order to optimize capsaicin's clinical applications and to enhance its therapeutic index in a variety of human diseases.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Ouyang, Jianhua Wu, Xizhuo Hu, Changfu Liu, Dan Zhou
Objectives: This review endeavors to elucidate the complex interplay underlying diseases associated with ferroptosis and to delineate the multifaceted mechanisms by which triterpenoid and steroidal saponins modulate this form of cell death.
Methods: A meticulous examination of the literature was undertaken, drawing from an array of databases including Web of Science, PubMed, and Wiley Library, with a focus on the keywords "ferroptosis," "saponin," "cancer," "inflammation," "natural products," and "signaling pathways."
Key findings: Ferroptosis represents a distinctive mode of cell death that holds considerable promise for the development of innovative therapeutic strategies targeting a wide range of diseases, especially cancer and inflammatory disorders. This review reveals the nuanced interactions between saponins and critical signaling pathways, including system Xc--GSH-GPX4, Nrf2, p53, and mTOR. These interactions highlight the dual capacity of saponins to modulate ferroptosis, thereby offering fresh perspectives for therapeutic intervention.
Conclusions: The insights garnered from this review significantly advance our comprehension of the dynamic relationship between saponins and ferroptosis. By shedding light on these mechanisms, this work sets the stage for leveraging these insights in the creation of pioneering approaches to disease treatment, marking a significant stride in the evolution of therapeutic modalities.
目的:本文旨在阐明与铁死亡相关的潜在疾病的复杂相互作用,并描述三萜和甾体皂苷调节这种形式的细胞死亡的多方面机制。方法:对包括Web of Science、PubMed和Wiley Library在内的一系列数据库进行了细致的文献检查,重点关注关键词“ferroptosis”、“皂苷”、“癌症”、“炎症”、“天然产物”和“信号通路”。主要发现:铁下垂代表了一种独特的细胞死亡模式,它对开发针对多种疾病的创新治疗策略具有相当大的希望,特别是癌症和炎症性疾病。这篇综述揭示了皂苷和关键信号通路之间微妙的相互作用,包括系统Xc—GSH-GPX4、Nrf2、p53和mTOR。这些相互作用突出了皂苷调节铁下垂的双重能力,从而为治疗干预提供了新的视角。结论:从这篇综述中获得的见解显著地促进了我们对皂苷和铁下垂之间动态关系的理解。通过揭示这些机制,这项工作为利用这些见解来创造开拓性的疾病治疗方法奠定了基础,标志着治疗方式的重大进步。
{"title":"Decoding the power of saponins in ferroptosis regulation and disease intervention: a review.","authors":"Min Ouyang, Jianhua Wu, Xizhuo Hu, Changfu Liu, Dan Zhou","doi":"10.1093/jpp/rgae144","DOIUrl":"https://doi.org/10.1093/jpp/rgae144","url":null,"abstract":"<p><strong>Objectives: </strong>This review endeavors to elucidate the complex interplay underlying diseases associated with ferroptosis and to delineate the multifaceted mechanisms by which triterpenoid and steroidal saponins modulate this form of cell death.</p><p><strong>Methods: </strong>A meticulous examination of the literature was undertaken, drawing from an array of databases including Web of Science, PubMed, and Wiley Library, with a focus on the keywords \"ferroptosis,\" \"saponin,\" \"cancer,\" \"inflammation,\" \"natural products,\" and \"signaling pathways.\"</p><p><strong>Key findings: </strong>Ferroptosis represents a distinctive mode of cell death that holds considerable promise for the development of innovative therapeutic strategies targeting a wide range of diseases, especially cancer and inflammatory disorders. This review reveals the nuanced interactions between saponins and critical signaling pathways, including system Xc--GSH-GPX4, Nrf2, p53, and mTOR. These interactions highlight the dual capacity of saponins to modulate ferroptosis, thereby offering fresh perspectives for therapeutic intervention.</p><p><strong>Conclusions: </strong>The insights garnered from this review significantly advance our comprehension of the dynamic relationship between saponins and ferroptosis. By shedding light on these mechanisms, this work sets the stage for leveraging these insights in the creation of pioneering approaches to disease treatment, marking a significant stride in the evolution of therapeutic modalities.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objectives: The clinical application of Pazopanib (Paz) is often accompanied by hepatotoxicity. However, the mechanisms of hepatic toxicity induced by pazopanib are not entirely clarified.
Methods: Male C57BL/6J mice were treated with pazopanib every day for 2, 4, or 8 weeks. Transcriptomics and metabolomics analyses of liver tissues were performed. In vitro experiments were carried out to estimate cell viability, apoptosis, and autophagy in L02 cells after Paz treatment. We also examined apoptosis and autophagy-related genes under 4-PBA, l-ornithine, nor-NOHA treatments, and HSPA5 knockdown.
Key findings: Repeated Paz treatment for 8 weeks resulted in more severe hypofunction of the liver in mice. Moreover, Paz treatment inhibited L02 cells cell viability in a dose-dependent manner. We also discovered activation of endoplasmic reticulum stress, apoptosis, and autophagy in Paz-treated L02 cells, as evidenced by the boosted expression of HSPA5, p-IRE1α, ATF4, ATF6, p-eIF2α, LC3, Beclin-1, and a decrease of phosphorylated PI3K, AKT, and mTOR levels. Moreover, 4-PBA, l-ornithine, and HSPA5 knockdown inhibited apoptosis and autophagy, while nor-NOHA weakened the effects of HSPA5 knockdown on apoptosis in Paz-treated L02 cells.
Conclusions: In summary, our study revealed that Paz-induced liver toxicity is related to HSPA5 expression and l-ornithine metabolism pathway in mice.
{"title":"Activation of HSPA5 contributes to pazopanib-induced hepatotoxicity through l-ornithine metabolism pathway and endoplasmic reticulum stress.","authors":"Jian Chen, Tieming Zhu, Yaping Deng, Jinliang Chen, Guojun Jiang, Qiaojun He","doi":"10.1093/jpp/rgae130","DOIUrl":"https://doi.org/10.1093/jpp/rgae130","url":null,"abstract":"<p><strong>Objectives: </strong>The clinical application of Pazopanib (Paz) is often accompanied by hepatotoxicity. However, the mechanisms of hepatic toxicity induced by pazopanib are not entirely clarified.</p><p><strong>Methods: </strong>Male C57BL/6J mice were treated with pazopanib every day for 2, 4, or 8 weeks. Transcriptomics and metabolomics analyses of liver tissues were performed. In vitro experiments were carried out to estimate cell viability, apoptosis, and autophagy in L02 cells after Paz treatment. We also examined apoptosis and autophagy-related genes under 4-PBA, l-ornithine, nor-NOHA treatments, and HSPA5 knockdown.</p><p><strong>Key findings: </strong>Repeated Paz treatment for 8 weeks resulted in more severe hypofunction of the liver in mice. Moreover, Paz treatment inhibited L02 cells cell viability in a dose-dependent manner. We also discovered activation of endoplasmic reticulum stress, apoptosis, and autophagy in Paz-treated L02 cells, as evidenced by the boosted expression of HSPA5, p-IRE1α, ATF4, ATF6, p-eIF2α, LC3, Beclin-1, and a decrease of phosphorylated PI3K, AKT, and mTOR levels. Moreover, 4-PBA, l-ornithine, and HSPA5 knockdown inhibited apoptosis and autophagy, while nor-NOHA weakened the effects of HSPA5 knockdown on apoptosis in Paz-treated L02 cells.</p><p><strong>Conclusions: </strong>In summary, our study revealed that Paz-induced liver toxicity is related to HSPA5 expression and l-ornithine metabolism pathway in mice.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Advanced glycation end products/receptor for AGEs (AGE/RAGE) signaling has a well-established role in the etiology of diabetic-related cardiovascular disorders. The purpose of the study was to elucidate the role of chrysin, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, against ischemia/reperfusion (IR) injury in diabetic rats and its functional interaction with the AGE/RAGE signaling pathway.
Methods: A single intraperitoneal injection of streptozotocin (STZ, 70 mg/kg) was administered to rats for induction of diabetes. Rats having blood glucose levels more than 300 mg/dl following a 72 hr STZ injection were classified as diabetic. PPAR-γ antagonist GW9662 (1 mg/kg, i.p.), chrysin (60 mg/kg, p.o.), or both were administered to diabetic rats for 4 weeks. On the 29th day, rats were given ischemia for 45 min and then reperfusion for 1 hr to induce myocardial infarction (MI).
Key findings: Pretreatment with chrysin significantly improved hemodynamic status, ventricular functions, and cardiac injury markers in diabetic myocardium. Increased PPAR-γ/Nrf2 and decreased RAGE protein expressions were linked to this improvement. Chrysin pretreatment resulted in the upregulation of endogenous antioxidants and reduced TBARS levels. Moreover, chrysin significantly decreased inflammation and apoptosis in diabetic myocardium.
Conclusion: PPAR-γ/Nrf2 co-activation by chrysin ameliorated IR-induced MI in diabetic rats, possibly via modulating AGE/RAGE signaling.
{"title":"Modulation of PPAR-γ/Nrf2 and AGE/RAGE signaling contributes to the chrysin cardioprotection against myocardial damage following ischemia/reperfusion in diabetic rats.","authors":"Neha Rani, Dharamvir Singh Arya","doi":"10.1093/jpp/rgae140","DOIUrl":"https://doi.org/10.1093/jpp/rgae140","url":null,"abstract":"<p><strong>Objective: </strong>Advanced glycation end products/receptor for AGEs (AGE/RAGE) signaling has a well-established role in the etiology of diabetic-related cardiovascular disorders. The purpose of the study was to elucidate the role of chrysin, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, against ischemia/reperfusion (IR) injury in diabetic rats and its functional interaction with the AGE/RAGE signaling pathway.</p><p><strong>Methods: </strong>A single intraperitoneal injection of streptozotocin (STZ, 70 mg/kg) was administered to rats for induction of diabetes. Rats having blood glucose levels more than 300 mg/dl following a 72 hr STZ injection were classified as diabetic. PPAR-γ antagonist GW9662 (1 mg/kg, i.p.), chrysin (60 mg/kg, p.o.), or both were administered to diabetic rats for 4 weeks. On the 29th day, rats were given ischemia for 45 min and then reperfusion for 1 hr to induce myocardial infarction (MI).</p><p><strong>Key findings: </strong>Pretreatment with chrysin significantly improved hemodynamic status, ventricular functions, and cardiac injury markers in diabetic myocardium. Increased PPAR-γ/Nrf2 and decreased RAGE protein expressions were linked to this improvement. Chrysin pretreatment resulted in the upregulation of endogenous antioxidants and reduced TBARS levels. Moreover, chrysin significantly decreased inflammation and apoptosis in diabetic myocardium.</p><p><strong>Conclusion: </strong>PPAR-γ/Nrf2 co-activation by chrysin ameliorated IR-induced MI in diabetic rats, possibly via modulating AGE/RAGE signaling.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Liu, Yuying Wang, Ling Han, Xing Li, Yan Zhong, Jilin Zhou, Xiyun Fei, Min Peng, Jixin Duan, Zhijun Zhong
Purpose: This work elucidated the therapeutic effect and mechanism of ginsenoside Rb1 on intracerebral hemorrhage (ICH).
Methods: ICH rat models were treated by ginsenoside Rb1. Modified neurological deficit score, and Y-maze and Morris water-maze tests were performed on rats. Hippocampal neuronal damage was observed by Nissl staining. Rat primary astrocytes were exposed to ginsenoside Rb1, Hemin, and lipopolysaccharide (LPS). TNF-α, IL-1β, and IL-6 levels were assessed via enzyme-linked immunosorbent assay. TLR4/NF-kB pathway activity was appraised by Western blot. Immunofluorescence staining was for hippocampal glial fibrillary acidic protein (GFAP) expression and P65 protein location in hippocampus and astrocytes.
Results: In rats after ICH, ginsenoside Rb1 ameliorated neurological impairment and hippocampal neuronal damage; improved learning and memory ability; reduced brain water content; decreasedhippocampal TNF-α, IL-1β, and IL-6; inactivated TLR4/NF-kB pathway; and declined hippocampal GFAP expression. In rat primary astrocytes exposed to Hemin, ginsenoside Rb1 declined TNF-α, IL-1β, and IL-6; inactivated TLR4/NF-kB pathway; and hindered P65 protein entry into nucleus. However, these functions of ginsenoside Rb1 on the Hemin-induced astrocytes were abolished by LPS.
Conclusion: Ginsenoside Rb1 has promising future for clinical ICH treatment, which exerts therapeutic effect on ICH by ameliorating hippocampal neuroinflammation via inactivating the TLR4/NF-kB pathway.
目的:阐明人参皂苷Rb1对脑出血(ICH)的治疗作用及机制:方法:用人参皂苷 Rb1 治疗 ICH 大鼠模型。方法:用人参皂苷Rb1治疗ICH大鼠模型,对大鼠进行改良神经功能缺损评分、Y迷宫和Morris水迷宫试验。通过 Nissl 染色观察海马神经元损伤。大鼠原代星形胶质细胞暴露于人参皂苷 Rb1、血宁和脂多糖(LPS)。通过酶联免疫吸附试验评估 TNF-α、IL-1β 和 IL-6 的水平。TLR4/NF-kB 通路活性通过 Western 印迹进行评估。免疫荧光染色用于检测海马胶质纤维酸性蛋白(GFAP)的表达以及P65蛋白在海马和星形胶质细胞中的位置:结果:人参皂苷 Rb1能改善大鼠 ICH 后的神经功能损伤和海马神经元损伤;提高学习和记忆能力;降低脑含水量;减少海马 TNF-α、IL-1β 和 IL-6;灭活 TLR4/NF-kB 通路;降低海马 GFAP 表达。在暴露于 Hemin 的大鼠原发性星形胶质细胞中,人参皂苷 Rb1 可降低 TNF-α、IL-1β 和 IL-6,使 TLR4/NF-kB 通路失活,并阻碍 P65 蛋白进入细胞核。然而,人参皂苷 Rb1 对 Hemin 诱导的星形胶质细胞的这些作用被 LPS 所取消:结论:人参皂苷 Rb1 通过激活 TLR4/NF-kB 通路改善海马神经炎症,对 ICH 具有治疗作用,有望应用于临床 ICH 治疗。
{"title":"Ginsenoside Rb1 ameliorates hippocampal neuroinflammation in rats after intracerebral hemorrhage by inactivating the TLR4/NF-kB pathway.","authors":"Xi Liu, Yuying Wang, Ling Han, Xing Li, Yan Zhong, Jilin Zhou, Xiyun Fei, Min Peng, Jixin Duan, Zhijun Zhong","doi":"10.1093/jpp/rgae145","DOIUrl":"https://doi.org/10.1093/jpp/rgae145","url":null,"abstract":"<p><strong>Purpose: </strong>This work elucidated the therapeutic effect and mechanism of ginsenoside Rb1 on intracerebral hemorrhage (ICH).</p><p><strong>Methods: </strong>ICH rat models were treated by ginsenoside Rb1. Modified neurological deficit score, and Y-maze and Morris water-maze tests were performed on rats. Hippocampal neuronal damage was observed by Nissl staining. Rat primary astrocytes were exposed to ginsenoside Rb1, Hemin, and lipopolysaccharide (LPS). TNF-α, IL-1β, and IL-6 levels were assessed via enzyme-linked immunosorbent assay. TLR4/NF-kB pathway activity was appraised by Western blot. Immunofluorescence staining was for hippocampal glial fibrillary acidic protein (GFAP) expression and P65 protein location in hippocampus and astrocytes.</p><p><strong>Results: </strong>In rats after ICH, ginsenoside Rb1 ameliorated neurological impairment and hippocampal neuronal damage; improved learning and memory ability; reduced brain water content; decreasedhippocampal TNF-α, IL-1β, and IL-6; inactivated TLR4/NF-kB pathway; and declined hippocampal GFAP expression. In rat primary astrocytes exposed to Hemin, ginsenoside Rb1 declined TNF-α, IL-1β, and IL-6; inactivated TLR4/NF-kB pathway; and hindered P65 protein entry into nucleus. However, these functions of ginsenoside Rb1 on the Hemin-induced astrocytes were abolished by LPS.</p><p><strong>Conclusion: </strong>Ginsenoside Rb1 has promising future for clinical ICH treatment, which exerts therapeutic effect on ICH by ameliorating hippocampal neuroinflammation via inactivating the TLR4/NF-kB pathway.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142729722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenkai Zhang, Zhiyong Liu, Liming Luo, Lei Xu, Qiuting Ma, Shuai Huang, Tao Hong
Background: To explore the blood components of ginger volatile oil (GVO) after gastric perfusion in rats and its different metabolites from blank serum and the network pharmacological analysis and preliminary verification of the main components against breast cancer.
Methods: A total of 20 male rats were randomly allocated to 10 control groups and 10 experimental groups. The administration group was given diluted GVO and the blank group was given the same amount of soybean oil (weigh 12 g of GVO diluted to 100 ml with soybean oil), the serum of rats in the given and blank groups was analyzed by gas chromatography-time-of-flight mass spectrometry, and the differential metabolites were screened and enriched, and the blood components were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS).
Results: A total of 34 different metabolites were screened, and 31 original components were identified. The content of citral in volatile oil and serum is high, and the pathway of action is also closely related to the results of network pharmacology. Cell experiments showed that both drug-containing serum and citral significantly inhibited the proliferation and lateral transfer ability of breast cancer MCF-7 cells in a concentration and time-dependent manner, flow cytometry was used to measure apoptosis, and the experimental results showed that the proportion of early and late apoptosis was significantly increased in each group compared with the control group, and the proportion of total apoptosis showed a certain concentration-dependent trend.
Conclusions: A combination of serum metabolism, network pharmacology, and experiments was employed; this study offers a significant contribution to the clarification of the material basis and molecular mechanism of GVO- medicated serum against breast cancer.
{"title":"GC-MS- and LC-TOF-MS/MS-based ginger volatile oil serum analysis and the potential mechanism of the anticancer effect of serum component citral on MCF-7 breast cancer cells.","authors":"Wenkai Zhang, Zhiyong Liu, Liming Luo, Lei Xu, Qiuting Ma, Shuai Huang, Tao Hong","doi":"10.1093/jpp/rgae116","DOIUrl":"https://doi.org/10.1093/jpp/rgae116","url":null,"abstract":"<p><strong>Background: </strong>To explore the blood components of ginger volatile oil (GVO) after gastric perfusion in rats and its different metabolites from blank serum and the network pharmacological analysis and preliminary verification of the main components against breast cancer.</p><p><strong>Methods: </strong>A total of 20 male rats were randomly allocated to 10 control groups and 10 experimental groups. The administration group was given diluted GVO and the blank group was given the same amount of soybean oil (weigh 12 g of GVO diluted to 100 ml with soybean oil), the serum of rats in the given and blank groups was analyzed by gas chromatography-time-of-flight mass spectrometry, and the differential metabolites were screened and enriched, and the blood components were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS).</p><p><strong>Results: </strong>A total of 34 different metabolites were screened, and 31 original components were identified. The content of citral in volatile oil and serum is high, and the pathway of action is also closely related to the results of network pharmacology. Cell experiments showed that both drug-containing serum and citral significantly inhibited the proliferation and lateral transfer ability of breast cancer MCF-7 cells in a concentration and time-dependent manner, flow cytometry was used to measure apoptosis, and the experimental results showed that the proportion of early and late apoptosis was significantly increased in each group compared with the control group, and the proportion of total apoptosis showed a certain concentration-dependent trend.</p><p><strong>Conclusions: </strong>A combination of serum metabolism, network pharmacology, and experiments was employed; this study offers a significant contribution to the clarification of the material basis and molecular mechanism of GVO- medicated serum against breast cancer.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142716344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nor Asyikin Nordin, Muhammad Zulfiqah Sadikan, Lidawani Lambuk, Sabarisah Hashim, Syahira Airuddin, Nur-Azida Mohd Nasir, Rohimah Mohamud, Jamal Ibrahim, Ramlah Kadir
Objectives: Glaucoma is a leading cause of permanent blindness. Despite therapeutic advancements, glaucoma management remains challenging due to limitations of conventional drug delivery, primarily topical eye drops, resulting in suboptimal outcomes and a global surge in cases. To address these issues, liposomal drug delivery has emerged as a promising approach.
Key findings: This review explores the potential of liposomal-based medications, with a particular focus on topical administration as a superior alternative to enhance therapeutic efficacy and improve patient compliance compared to existing treatments. This writing delves into the therapeutic prospects of liposomal formulations across different administration routes, as evidenced by ongoing clinical trials. Additionally, critical aspects of liposomal production and market strategies are discussed herein.
Summary: By overcoming ocular barriers and optimizing drug delivery, liposomal topical administration holds the key to significantly improving glaucoma treatment outcomes.
{"title":"Liposomal topical drug administration surpasses alternative methods in glaucoma therapeutics: a novel paradigm for enhanced treatment.","authors":"Nor Asyikin Nordin, Muhammad Zulfiqah Sadikan, Lidawani Lambuk, Sabarisah Hashim, Syahira Airuddin, Nur-Azida Mohd Nasir, Rohimah Mohamud, Jamal Ibrahim, Ramlah Kadir","doi":"10.1093/jpp/rgae129","DOIUrl":"https://doi.org/10.1093/jpp/rgae129","url":null,"abstract":"<p><strong>Objectives: </strong>Glaucoma is a leading cause of permanent blindness. Despite therapeutic advancements, glaucoma management remains challenging due to limitations of conventional drug delivery, primarily topical eye drops, resulting in suboptimal outcomes and a global surge in cases. To address these issues, liposomal drug delivery has emerged as a promising approach.</p><p><strong>Key findings: </strong>This review explores the potential of liposomal-based medications, with a particular focus on topical administration as a superior alternative to enhance therapeutic efficacy and improve patient compliance compared to existing treatments. This writing delves into the therapeutic prospects of liposomal formulations across different administration routes, as evidenced by ongoing clinical trials. Additionally, critical aspects of liposomal production and market strategies are discussed herein.</p><p><strong>Summary: </strong>By overcoming ocular barriers and optimizing drug delivery, liposomal topical administration holds the key to significantly improving glaucoma treatment outcomes.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Yu, Shimeng Li, Li Chen, Enbo Hu, Dan Chai, Zhichao Liu, Qianyi Zhang, Yunyun Mao, Yanfang Zhai, Kai Li, Yanhong Liu, Xiaohe Li, Honggang Zhou, Cheng Yang, Junjie Xu
Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fibrotic interstitial lung disease. The two drugs indicated for IPF have limited efficacy and there is an urgent need to develop new drugs. Thymosin β4 (Tβ4) is a natural endogenous repair factor whose antifibrotic effects have been reported. This study aimed to evaluate the effect of exogenous recombinant human thymosin beta 4 (rhTβ4) on pulmonary fibrosis.
Methods: Pulmonary fibrosis was induced in mice with bleomycin, and rhTβ4 was administrated by nebulization following three strategies: early dosing, mid-term dosing, and late dosing. The rhTβ4 efficacy was assessed by hydroxyproline, lung function, and lung histopathology. In vitro, the effects of rhTβ4 on fibroblast and lung epithelial cell phenotypes, as well as the TGF-β1 pathway, were evaluated.
Key findings: Aerosol administration of rhTβ4 could alleviate bleomycin-induced pulmonary fibrosis in mice at different stages of fibrosis. Studies conducted in vitro suggested that rhTβ4 could suppress lung fibroblasts from proliferating, migrating, and activation via regulating the TGF-β1 signalling pathway. In vitro, rhTβ4 also inhibited the epithelial-mesenchymal transition-like process of pulmonary epithelial cells.
Conclusions: This study suggests that nebulized rhTβ4 is a potential treatment for IPF.
{"title":"Inhaled exogenous thymosin beta 4 suppresses bleomycin-induced pulmonary fibrosis in mice via TGF-β1 signalling pathway.","authors":"Rui Yu, Shimeng Li, Li Chen, Enbo Hu, Dan Chai, Zhichao Liu, Qianyi Zhang, Yunyun Mao, Yanfang Zhai, Kai Li, Yanhong Liu, Xiaohe Li, Honggang Zhou, Cheng Yang, Junjie Xu","doi":"10.1093/jpp/rgae143","DOIUrl":"https://doi.org/10.1093/jpp/rgae143","url":null,"abstract":"<p><strong>Objectives: </strong>Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fibrotic interstitial lung disease. The two drugs indicated for IPF have limited efficacy and there is an urgent need to develop new drugs. Thymosin β4 (Tβ4) is a natural endogenous repair factor whose antifibrotic effects have been reported. This study aimed to evaluate the effect of exogenous recombinant human thymosin beta 4 (rhTβ4) on pulmonary fibrosis.</p><p><strong>Methods: </strong>Pulmonary fibrosis was induced in mice with bleomycin, and rhTβ4 was administrated by nebulization following three strategies: early dosing, mid-term dosing, and late dosing. The rhTβ4 efficacy was assessed by hydroxyproline, lung function, and lung histopathology. In vitro, the effects of rhTβ4 on fibroblast and lung epithelial cell phenotypes, as well as the TGF-β1 pathway, were evaluated.</p><p><strong>Key findings: </strong>Aerosol administration of rhTβ4 could alleviate bleomycin-induced pulmonary fibrosis in mice at different stages of fibrosis. Studies conducted in vitro suggested that rhTβ4 could suppress lung fibroblasts from proliferating, migrating, and activation via regulating the TGF-β1 signalling pathway. In vitro, rhTβ4 also inhibited the epithelial-mesenchymal transition-like process of pulmonary epithelial cells.</p><p><strong>Conclusions: </strong>This study suggests that nebulized rhTβ4 is a potential treatment for IPF.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142695621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}