首页 > 最新文献

Journal of Survey Statistics and Methodology最新文献

英文 中文
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac006
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac006","DOIUrl":"https://doi.org/10.1093/jssam/smac006","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac019
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac019","DOIUrl":"https://doi.org/10.1093/jssam/smac019","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac020
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac020","DOIUrl":"https://doi.org/10.1093/jssam/smac020","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac017
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac017","DOIUrl":"https://doi.org/10.1093/jssam/smac017","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac021
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac021","DOIUrl":"https://doi.org/10.1093/jssam/smac021","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"172 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac013
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac013","DOIUrl":"https://doi.org/10.1093/jssam/smac013","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61007181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac010
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac010","DOIUrl":"https://doi.org/10.1093/jssam/smac010","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac018
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac018","DOIUrl":"https://doi.org/10.1093/jssam/smac018","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
OUP accepted manuscript OUP接受稿件
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-01-01 DOI: 10.1093/jssam/smac007
{"title":"OUP accepted manuscript","authors":"","doi":"10.1093/jssam/smac007","DOIUrl":"https://doi.org/10.1093/jssam/smac007","url":null,"abstract":"","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"1 1","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61006193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multiple Imputation with Massive Data: An Application to the Panel Study of Income Dynamics. 海量数据的多重输入:在收入动态面板研究中的应用。
IF 2.1 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2021-10-19 eCollection Date: 2023-02-01 DOI: 10.1093/jssam/smab038
Yajuan Si, Steve Heeringa, David Johnson, Roderick J A Little, Wenshuo Liu, Fabian Pfeffer, Trivellore Raghunathan

Multiple imputation (MI) is a popular and well-established method for handling missing data in multivariate data sets, but its practicality for use in massive and complex data sets has been questioned. One such data set is the Panel Study of Income Dynamics (PSID), a longstanding and extensive survey of household income and wealth in the United States. Missing data for this survey are currently handled using traditional hot deck methods because of the simple implementation; however, the univariate hot deck results in large random wealth fluctuations. MI is effective but faced with operational challenges. We use a sequential regression/chained-equation approach, using the software IVEware, to multiply impute cross-sectional wealth data in the 2013 PSID, and compare analyses of the resulting imputed data with those from the current hot deck approach. Practical difficulties, such as non-normally distributed variables, skip patterns, categorical variables with many levels, and multicollinearity, are described together with our approaches to overcoming them. We evaluate the imputation quality and validity with internal diagnostics and external benchmarking data. MI produces improvements over the existing hot deck approach by helping preserve correlation structures, such as the associations between PSID wealth components and the relationships between the household net worth and sociodemographic factors, and facilitates completed data analyses with general purposes. MI incorporates highly predictive covariates into imputation models and increases efficiency. We recommend the practical implementation of MI and expect greater gains when the fraction of missing information is large.

多重插值(Multiple imputation, MI)是一种处理多元数据集缺失数据的常用方法,但其在大规模复杂数据集中的实用性一直受到质疑。收入动态小组研究(PSID)就是这样一组数据,这是一项长期而广泛的美国家庭收入和财富调查。由于执行简单,目前使用传统的热甲板方法处理该调查的缺失数据;然而,单变量热牌会导致财富的大随机波动。MI是有效的,但面临着操作上的挑战。我们使用顺序回归/链式方程方法,使用IVEware软件,将2013年PSID中的估算截面财富数据相乘,并将所得估算数据与当前热甲板方法的分析结果进行比较。实际困难,如非正态分布变量,跳跃模式,分类变量与许多层次,多重共线性,描述了我们的方法来克服它们。我们通过内部诊断和外部基准数据来评估imputation的质量和有效性。MI通过帮助保存相关结构(例如PSID财富组成部分之间的关联以及家庭净资产与社会人口因素之间的关系),对现有的热甲板方法进行了改进,并促进了具有一般用途的完整数据分析。人工智能将高度预测的协变量整合到估算模型中,提高了效率。我们推荐MI的实际实现,并期望在丢失信息的比例较大时获得更大的收益。
{"title":"Multiple Imputation with Massive Data: An Application to the Panel Study of Income Dynamics.","authors":"Yajuan Si, Steve Heeringa, David Johnson, Roderick J A Little, Wenshuo Liu, Fabian Pfeffer, Trivellore Raghunathan","doi":"10.1093/jssam/smab038","DOIUrl":"10.1093/jssam/smab038","url":null,"abstract":"<p><p>Multiple imputation (MI) is a popular and well-established method for handling missing data in multivariate data sets, but its practicality for use in massive and complex data sets has been questioned. One such data set is the Panel Study of Income Dynamics (PSID), a longstanding and extensive survey of household income and wealth in the United States. Missing data for this survey are currently handled using traditional hot deck methods because of the simple implementation; however, the univariate hot deck results in large random wealth fluctuations. MI is effective but faced with operational challenges. We use a sequential regression/chained-equation approach, using the software IVEware, to multiply impute cross-sectional wealth data in the 2013 PSID, and compare analyses of the resulting imputed data with those from the current hot deck approach. Practical difficulties, such as non-normally distributed variables, skip patterns, categorical variables with many levels, and multicollinearity, are described together with our approaches to overcoming them. We evaluate the imputation quality and validity with internal diagnostics and external benchmarking data. MI produces improvements over the existing hot deck approach by helping preserve correlation structures, such as the associations between PSID wealth components and the relationships between the household net worth and sociodemographic factors, and facilitates completed data analyses with general purposes. MI incorporates highly predictive covariates into imputation models and increases efficiency. We recommend the practical implementation of MI and expect greater gains when the fraction of missing information is large.</p>","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":"11 1","pages":"260-283"},"PeriodicalIF":2.1,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874997/pdf/smab038.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10584238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Journal of Survey Statistics and Methodology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1