Pub Date : 2024-04-17DOI: 10.1088/1742-5468/ad319c
Zhonghao Zhan, Weiguo Song, Jun Zhang
We propose a new model of boundary-constrained intersecting pedestrian flow based on the collision-free velocity model, named the collision-aware deflection model (CADM). The movement of pedestrians in the new model depends on the positions and velocities of other pedestrians ahead. A pedestrian walks in the desired direction at a free speed until an obstacle appears in the desired direction. When there is an obstacle in the desired direction, pedestrians tend to choose the direction with the smallest deflection angle. When the decision of a pedestrian conflicts with the movement of the nearest neighbor in front, the pedestrian stops moving. Comparing CADM with other models, the evacuation time of CADM during the simulation is very close to the time in the experiment. CADM also successfully reproduced the stripe phenomenon in boundary-constrained intersecting pedestrian streams, which was difficult to accomplish with the compared model. CADM also inherits several advantages of the original model, in that it can reproduce the corresponding self-organization phenomena in straight corridors and bottlenecks.
{"title":"Collision-aware deflection model for boundary-constrained intersecting pedestrian streams","authors":"Zhonghao Zhan, Weiguo Song, Jun Zhang","doi":"10.1088/1742-5468/ad319c","DOIUrl":"https://doi.org/10.1088/1742-5468/ad319c","url":null,"abstract":"We propose a new model of boundary-constrained intersecting pedestrian flow based on the collision-free velocity model, named the collision-aware deflection model (CADM). The movement of pedestrians in the new model depends on the positions and velocities of other pedestrians ahead. A pedestrian walks in the desired direction at a free speed until an obstacle appears in the desired direction. When there is an obstacle in the desired direction, pedestrians tend to choose the direction with the smallest deflection angle. When the decision of a pedestrian conflicts with the movement of the nearest neighbor in front, the pedestrian stops moving. Comparing CADM with other models, the evacuation time of CADM during the simulation is very close to the time in the experiment. CADM also successfully reproduced the stripe phenomenon in boundary-constrained intersecting pedestrian streams, which was difficult to accomplish with the compared model. CADM also inherits several advantages of the original model, in that it can reproduce the corresponding self-organization phenomena in straight corridors and bottlenecks.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"59 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1088/1742-5468/ad363e
S Zhou
We investigated the effective interaction potential (EIP) between charged surfaces in solvent comprised of dipole dimer molecules added with a certain amount of ionic liquid. Using classical density functional theory, the EIP is calculated and decoupled into entropic and energy terms. Unlike the traditional Asakura–Oosawa (AO) depletion model, the present entropic term can be positive or negative, depending on the entropy change associated with solvent molecule migration from bulk into slit pore. This is determined by pore congestion and disruption of the bulk dipole network. The energy term is determined by the free energy associated with hard-core repulsion and electrostatic interactions between surface charges, ion charges, and polarized charges carried by the dipole dimer molecules. The calculations in this article clearly demonstrate the variability of the entropy term, which contrasts sharply with the traditional AO depletion model, and the corrective effects of electrostatic and spatial hindrance interactions on the total EIP; we revealed several non-monotonic behaviors of the EIP and its entropic and energy terms concerning solvent bulk concentration and solvent molecule dipole moment; additionally, we demonstrated the promoting effect of dipolar solvent on the emergence of like-charge attraction, even in 1:1 electrolyte solutions. The microscopic origin of the aforementioned phenomena was analyzed to be due to the non-monotonic change of dipolar solvent adsorption with dipole moment under conditions of low solution dielectric constant. The present findings offer novel approaches and molecular-level guidance for regulating the EIP. This insight has implications for understanding fundamental processes in various fields, including biomolecule-ligand binding, activation energy barriers, ion tunneling transport, as well as the formation of hierarchical structures, such as mesophases, micro-, and nanostructures, and beyond.
{"title":"Variability of entropy force and its coupling with electrostatic and steric hindrance interactions","authors":"S Zhou","doi":"10.1088/1742-5468/ad363e","DOIUrl":"https://doi.org/10.1088/1742-5468/ad363e","url":null,"abstract":"We investigated the effective interaction potential (EIP) between charged surfaces in solvent comprised of dipole dimer molecules added with a certain amount of ionic liquid. Using classical density functional theory, the EIP is calculated and decoupled into entropic and energy terms. Unlike the traditional Asakura–Oosawa (AO) depletion model, the present entropic term can be positive or negative, depending on the entropy change associated with solvent molecule migration from bulk into slit pore. This is determined by pore congestion and disruption of the bulk dipole network. The energy term is determined by the free energy associated with hard-core repulsion and electrostatic interactions between surface charges, ion charges, and polarized charges carried by the dipole dimer molecules. The calculations in this article clearly demonstrate the variability of the entropy term, which contrasts sharply with the traditional AO depletion model, and the corrective effects of electrostatic and spatial hindrance interactions on the total EIP; we revealed several non-monotonic behaviors of the EIP and its entropic and energy terms concerning solvent bulk concentration and solvent molecule dipole moment; additionally, we demonstrated the promoting effect of dipolar solvent on the emergence of like-charge attraction, even in 1:1 electrolyte solutions. The microscopic origin of the aforementioned phenomena was analyzed to be due to the non-monotonic change of dipolar solvent adsorption with dipole moment under conditions of low solution dielectric constant. The present findings offer novel approaches and molecular-level guidance for regulating the EIP. This insight has implications for understanding fundamental processes in various fields, including biomolecule-ligand binding, activation energy barriers, ion tunneling transport, as well as the formation of hierarchical structures, such as mesophases, micro-, and nanostructures, and beyond.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"72 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study investigates the behavioral patterns of children during emergency evacuations through a dual approach comprising controlled experimental evacuations within a classroom and computational modeling via a cellular automaton (CA) model. Observations from the experiments reveal several characteristic behaviors among children, including preferences for destinations, the impact of obstacles on their movement, as well as patterns of exit utilization, running and pushing during the evacuation process. Drawing upon these empirical findings, a CA model is developed to encapsulate these observed behaviors. A novel algorithm is introduced within this model to simulate the pushing behavior of children during emergency evacuations. Numerical simulations are conducted to validate the capability of the model to replicate the observed behaviors. The simulation results confirm that the model accurately reproduces the child behavior during evacuations. Furthermore, the results indicate that the total evacuation time is directly influenced by both the proportion of children exhibiting pushing behavior and the strength of the pushing force. These insights advance our understanding of child behavior in emergency situations and have significant implications for enhancing public safety.
本研究采用双重方法研究儿童在紧急疏散过程中的行为模式,包括在教室内进行受控疏散实验和通过蜂窝自动机(CA)模型进行计算建模。实验观察发现了儿童的一些特征行为,包括对目的地的偏好、障碍物对其移动的影响,以及疏散过程中出口的利用、奔跑和推挤模式。根据这些实证研究结果,我们开发了一个 CA 模型来概括这些观察到的行为。在该模型中引入了一种新算法,用于模拟紧急疏散过程中儿童的推挤行为。为了验证模型复制观察到的行为的能力,我们进行了数值模拟。模拟结果证实,该模型准确地再现了疏散过程中的儿童行为。此外,模拟结果表明,总疏散时间直接受表现出推挤行为的儿童比例和推挤力强度的影响。这些见解加深了我们对紧急情况下儿童行为的理解,对提高公共安全具有重要意义。
{"title":"Behavioral patterns of children during emergency evacuations: a comparative analysis of experimental observations and simulation results","authors":"Liang Chen, Chen Qiao, Jian Zhang, Chuan-Zhi (Thomas) Xie, Tie-Qiao Tang, Yanyan Chen","doi":"10.1088/1742-5468/ad363b","DOIUrl":"https://doi.org/10.1088/1742-5468/ad363b","url":null,"abstract":"This study investigates the behavioral patterns of children during emergency evacuations through a dual approach comprising controlled experimental evacuations within a classroom and computational modeling via a cellular automaton (CA) model. Observations from the experiments reveal several characteristic behaviors among children, including preferences for destinations, the impact of obstacles on their movement, as well as patterns of exit utilization, running and pushing during the evacuation process. Drawing upon these empirical findings, a CA model is developed to encapsulate these observed behaviors. A novel algorithm is introduced within this model to simulate the pushing behavior of children during emergency evacuations. Numerical simulations are conducted to validate the capability of the model to replicate the observed behaviors. The simulation results confirm that the model accurately reproduces the child behavior during evacuations. Furthermore, the results indicate that the total evacuation time is directly influenced by both the proportion of children exhibiting pushing behavior and the strength of the pushing force. These insights advance our understanding of child behavior in emergency situations and have significant implications for enhancing public safety.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"44 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}