Pub Date : 2024-08-01DOI: 10.1088/1742-5468/ad5c5d
C Chatelain
The critical behavior of a dimer model with an interaction favoring parallel dimers in each plaquette of the square lattice is studied numerically using the corner transfer matrix renormalization group algorithm. The critical exponents are known to depend on the chemical potential of vacancies, or monomers. At large average density of the latter, the phase transition becomes the first-order. We compute the scaling dimensions of both the order parameter and temperature in the second-order regime and compare them with the conjecture that the critical behavior is the same as the Ashkin–Teller model on its self-dual critical line.
{"title":"CTMRG study of the critical behavior of an interacting-dimer model","authors":"C Chatelain","doi":"10.1088/1742-5468/ad5c5d","DOIUrl":"https://doi.org/10.1088/1742-5468/ad5c5d","url":null,"abstract":"The critical behavior of a dimer model with an interaction favoring parallel dimers in each plaquette of the square lattice is studied numerically using the corner transfer matrix renormalization group algorithm. The critical exponents are known to depend on the chemical potential of vacancies, or monomers. At large average density of the latter, the phase transition becomes the first-order. We compute the scaling dimensions of both the order parameter and temperature in the second-order regime and compare them with the conjecture that the critical behavior is the same as the Ashkin–Teller model on its self-dual critical line.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"364 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1088/1742-5468/ad613b
Miguel Mena, Solmar Varela, Bertrand Berche and Ernesto Medina
Here we review a universal model for chirally induced spin-selectivity (CISS) as a standalone effect occurring in chiral molecules. We tie together the results of forward scattering in the gas phase to the results for photoelectrons in chiral self-assembled monolayers, and the more contemporary results in two terminal transport setups. We discuss the ingredients that are necessarily present in all experiments to date, which we identify as: (i) chirality, be it point, helical or configurational, (ii) the spin–orbit coupling as the spin active coupling of atomic origin, (iii) decoherence as a time-reversal symmetry breaking mechanism that avoids reciprocity relations in the linear regime and finally (iv) tunneling that accounts for the magnitude of the spin polarization effect. This proposal does not discard other mechanisms that can yield comparable spin effects related to interactions of the molecule to contacts or substrates that have been proposed but are less universal or apply to specific situations. Finally, we discuss recent results suggesting CISS as a molecular phenomenon in the realms of enantiomer selectivity, coherent electron transfer, and spin effects in chiroptical activity.
{"title":"Minimal model for chirally induced spin selectivity: spin-orbit coupling, tunneling and decoherence","authors":"Miguel Mena, Solmar Varela, Bertrand Berche and Ernesto Medina","doi":"10.1088/1742-5468/ad613b","DOIUrl":"https://doi.org/10.1088/1742-5468/ad613b","url":null,"abstract":"Here we review a universal model for chirally induced spin-selectivity (CISS) as a standalone effect occurring in chiral molecules. We tie together the results of forward scattering in the gas phase to the results for photoelectrons in chiral self-assembled monolayers, and the more contemporary results in two terminal transport setups. We discuss the ingredients that are necessarily present in all experiments to date, which we identify as: (i) chirality, be it point, helical or configurational, (ii) the spin–orbit coupling as the spin active coupling of atomic origin, (iii) decoherence as a time-reversal symmetry breaking mechanism that avoids reciprocity relations in the linear regime and finally (iv) tunneling that accounts for the magnitude of the spin polarization effect. This proposal does not discard other mechanisms that can yield comparable spin effects related to interactions of the molecule to contacts or substrates that have been proposed but are less universal or apply to specific situations. Finally, we discuss recent results suggesting CISS as a molecular phenomenon in the realms of enantiomer selectivity, coherent electron transfer, and spin effects in chiroptical activity.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"19 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1088/1742-5468/ad5c5c
Harold Erbin, Riccardo Finotello, Bio Wahabou Kpera, Vincent Lahoche and Dine Ousmane Samary
Signal detection is one of the main challenges in data science. As often happens in data analysis, the signal in the data may be corrupted by noise. There is a wide range of techniques that aim to extract the relevant degrees of freedom from data. However, some problems remain difficult. This is notably the case for signal detection in almost continuous spectra when the signal-to-noise ratio is small enough. This paper follows a recent bibliographic line, which tackles this issue with field-theoretical methods. Previous analysis focused on equilibrium Boltzmann distributions for an effective field representing the degrees of freedom of data. It was possible to establish a relation between signal detection and -symmetry breaking. In this paper, we consider a stochastic field framework inspired by the so-called ‘model A’, and show that the ability to reach, or not reach, an equilibrium state is correlated with the shape of the dataset. In particular, by studying the renormalization group of the model, we show that the weak ergodicity prescription is always broken for signals that are small enough, when the data distribution is close to the Marchenko–Pastur law. This, in particular, enables the definition of a detection threshold in the regime where the signal-to-noise ratio is small enough.
信号检测是数据科学的主要挑战之一。在数据分析中,数据中的信号经常会被噪声干扰。有多种技术旨在从数据中提取相关的自由度。然而,有些问题仍然难以解决。尤其是在信噪比足够小的情况下,几乎连续光谱中的信号检测。本文沿用了最近的文献路线,用场理论方法解决这一问题。以往的分析侧重于代表数据自由度的有效场的平衡波尔兹曼分布。我们有可能在信号探测和对称性破缺之间建立一种关系。在本文中,我们考虑了受所谓 "模型 A "启发的随机场框架,并证明了达到或未达到平衡状态的能力与数据集的形状相关。特别是,通过研究模型的重正化群,我们表明,当数据分布接近马琴科-帕斯图尔定律时,信号足够小时,弱遍历性规定总是被打破。这尤其有助于在信噪比足够小的情况下定义探测阈值。
{"title":"A functional renormalization group for signal detection and stochastic ergodicity breaking","authors":"Harold Erbin, Riccardo Finotello, Bio Wahabou Kpera, Vincent Lahoche and Dine Ousmane Samary","doi":"10.1088/1742-5468/ad5c5c","DOIUrl":"https://doi.org/10.1088/1742-5468/ad5c5c","url":null,"abstract":"Signal detection is one of the main challenges in data science. As often happens in data analysis, the signal in the data may be corrupted by noise. There is a wide range of techniques that aim to extract the relevant degrees of freedom from data. However, some problems remain difficult. This is notably the case for signal detection in almost continuous spectra when the signal-to-noise ratio is small enough. This paper follows a recent bibliographic line, which tackles this issue with field-theoretical methods. Previous analysis focused on equilibrium Boltzmann distributions for an effective field representing the degrees of freedom of data. It was possible to establish a relation between signal detection and -symmetry breaking. In this paper, we consider a stochastic field framework inspired by the so-called ‘model A’, and show that the ability to reach, or not reach, an equilibrium state is correlated with the shape of the dataset. In particular, by studying the renormalization group of the model, we show that the weak ergodicity prescription is always broken for signals that are small enough, when the data distribution is close to the Marchenko–Pastur law. This, in particular, enables the definition of a detection threshold in the regime where the signal-to-noise ratio is small enough.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"56 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1088/1742-5468/ad64bc
P D Alvarez
We present an analytic study of the Potts model partition function on the Sierpinski and Hanoi lattices, which are self-similar lattices of triangular shape with non integer Hausdorff dimension. Both lattices are examples of non-trivial thermodynamics in less than two dimensions, where mean field theory does not apply. We used and explain a method based on ideas of graph theory and renormalization group theory to derive exact equations for appropriate variables that are similar to the restricted partition functions. We benchmark our method with Metropolis Monte Carlo simulations. The analysis of fixed points reveals information of location of the Fisher zeros and we provide a conjecture about the location of zeros in terms of the boundary of the basins of attraction.
{"title":"Exact partition function of the Potts model on the Sierpinski gasket and the Hanoi lattice","authors":"P D Alvarez","doi":"10.1088/1742-5468/ad64bc","DOIUrl":"https://doi.org/10.1088/1742-5468/ad64bc","url":null,"abstract":"We present an analytic study of the Potts model partition function on the Sierpinski and Hanoi lattices, which are self-similar lattices of triangular shape with non integer Hausdorff dimension. Both lattices are examples of non-trivial thermodynamics in less than two dimensions, where mean field theory does not apply. We used and explain a method based on ideas of graph theory and renormalization group theory to derive exact equations for appropriate variables that are similar to the restricted partition functions. We benchmark our method with Metropolis Monte Carlo simulations. The analysis of fixed points reveals information of location of the Fisher zeros and we provide a conjecture about the location of zeros in terms of the boundary of the basins of attraction.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"74 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1088/1742-5468/ad5c5a
M Romero-Bastida and A Poceros Varela
In this work, we conduct an extensive study of the asymmetric heat flow, i.e. thermal rectification, present in the two-segment Frenkel Kontorova model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. We have considered systems with both high and low asymmetry and determined that, in the weak-coupling limit, thermal rectification is larger when NNN interactions are relevant. The behavior of the heat fluxes as a function of the coupling strength between the two segments is largely consistent with a well-defined rectification for larger system sizes. The local heat fluxes present a very different behavior for systems with high and low asymmetry. The results of this work may help in the design of molecular bridges, which have recently been shown to be able to function as thermal rectification devices.
{"title":"Thermal rectification in segmented Frenkel–Kontorova lattices with asymmetric next-nearest-neighbor interactions","authors":"M Romero-Bastida and A Poceros Varela","doi":"10.1088/1742-5468/ad5c5a","DOIUrl":"https://doi.org/10.1088/1742-5468/ad5c5a","url":null,"abstract":"In this work, we conduct an extensive study of the asymmetric heat flow, i.e. thermal rectification, present in the two-segment Frenkel Kontorova model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. We have considered systems with both high and low asymmetry and determined that, in the weak-coupling limit, thermal rectification is larger when NNN interactions are relevant. The behavior of the heat fluxes as a function of the coupling strength between the two segments is largely consistent with a well-defined rectification for larger system sizes. The local heat fluxes present a very different behavior for systems with high and low asymmetry. The results of this work may help in the design of molecular bridges, which have recently been shown to be able to function as thermal rectification devices.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"120 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1088/1742-5468/ad57b1
Guido Caldarelli, Andrea Gabrielli, Tommaso Gili and Pablo Villegas
The renormalization group (RG) constitutes a fundamental framework in modern theoretical physics. It allows the study of many systems showing states with large-scale correlations and their classification into a relatively small set of universality classes. The RG is the most powerful tool for investigating organizational scales within dynamic systems. However, the application of RG techniques to complex networks has presented significant challenges, primarily due to the intricate interplay of correlations on multiple scales. Existing approaches have relied on hypotheses involving hidden geometries and based on embedding complex networks into hidden metric spaces. Here, we present a practical overview of the recently introduced Laplacian RG (LRG) for heterogeneous networks. First, we present a brief overview that justifies the use of the Laplacian as a natural extension of well-known field theories to analyze spatial disorder. We then draw an analogy to traditional real-space RG procedures, explaining how the LRG generalizes the concept of ‘Kadanoff supernodes’ as block nodes that span multiple scales. These supernodes help mitigate the effects of cross-scale correlations due to small-world properties. Additionally, we rigorously define the LRG procedure in momentum space in the spirit of the Wilson RG. Finally, we show different analyses for the evolution of network properties along the LRG flow following structural changes when the network is properly reduced.
{"title":"Laplacian renormalization group: an introduction to heterogeneous coarse-graining","authors":"Guido Caldarelli, Andrea Gabrielli, Tommaso Gili and Pablo Villegas","doi":"10.1088/1742-5468/ad57b1","DOIUrl":"https://doi.org/10.1088/1742-5468/ad57b1","url":null,"abstract":"The renormalization group (RG) constitutes a fundamental framework in modern theoretical physics. It allows the study of many systems showing states with large-scale correlations and their classification into a relatively small set of universality classes. The RG is the most powerful tool for investigating organizational scales within dynamic systems. However, the application of RG techniques to complex networks has presented significant challenges, primarily due to the intricate interplay of correlations on multiple scales. Existing approaches have relied on hypotheses involving hidden geometries and based on embedding complex networks into hidden metric spaces. Here, we present a practical overview of the recently introduced Laplacian RG (LRG) for heterogeneous networks. First, we present a brief overview that justifies the use of the Laplacian as a natural extension of well-known field theories to analyze spatial disorder. We then draw an analogy to traditional real-space RG procedures, explaining how the LRG generalizes the concept of ‘Kadanoff supernodes’ as block nodes that span multiple scales. These supernodes help mitigate the effects of cross-scale correlations due to small-world properties. Additionally, we rigorously define the LRG procedure in momentum space in the spirit of the Wilson RG. Finally, we show different analyses for the evolution of network properties along the LRG flow following structural changes when the network is properly reduced.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"16 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1088/1742-5468/ad6137
Eren Metin Elçi, Timothy M Garoni
We study the autocorrelation time of the size of the cluster at the origin in discrete-time dynamical percolation. We focus on binary trees and high-dimensional tori, and show in both cases that this autocorrelation time is linear in the volume in the subcritical regime, but strictly sublinear in the volume at criticality. This establishes rigorously that the cluster size at the origin in these models exhibits critical speeding-up. The proofs involve controlling relevant Fourier coefficients. In the case of binary trees, these Fourier coefficients are studied explicitly, while for high-dimensional tori we employ a randomised algorithm argument introduced by Schramm and Steif in the context of noise sensitivity.
{"title":"Critical speeding-up in dynamical percolation","authors":"Eren Metin Elçi, Timothy M Garoni","doi":"10.1088/1742-5468/ad6137","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6137","url":null,"abstract":"We study the autocorrelation time of the size of the cluster at the origin in discrete-time dynamical percolation. We focus on binary trees and high-dimensional tori, and show in both cases that this autocorrelation time is linear in the volume in the subcritical regime, but strictly sublinear in the volume at criticality. This establishes rigorously that the cluster size at the origin in these models exhibits critical speeding-up. The proofs involve controlling relevant Fourier coefficients. In the case of binary trees, these Fourier coefficients are studied explicitly, while for high-dimensional tori we employ a randomised algorithm argument introduced by Schramm and Steif in the context of noise sensitivity.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"18 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1088/1742-5468/ad6136
Hongliu Li, Xudong Li, Weiguo Song, Jun Zhang, Jacqueline TY Lo
The influence of different motivations on pedestrian evacuation efficiency, like whether incentivizing faster moving or encouraging polite behaviors is beneficial to evacuation, and the potential existence of gender-based differences, still lacks clear answers. This study aims to narrow this gap by conducting a laboratory bottleneck evacuation experiment to investigate the influence of movement motivation and gender of pedestrians on evacuation efficiency. Our findings reveal that both bottleneck width and pedestrian motivation significantly impact the flow. For men, when the bottleneck width surpasses a threshold, high motivation increases the flow; below this threshold, it reduces the flow. For women, high motivation consistently leads to higher evacuation efficiency than normal motivation regardless of the bottleneck width. The time interval is significantly influenced by the bottleneck width, pedestrians’ gender and their interaction term. Increasing bottleneck width does not always lead to a decrease in density when men are highly motivated; while for women, wider bottlenecks alleviate congestion around the exit.
{"title":"An experimental study on the impact of motivation and gender on pedestrian movement characteristics in a bottleneck flow","authors":"Hongliu Li, Xudong Li, Weiguo Song, Jun Zhang, Jacqueline TY Lo","doi":"10.1088/1742-5468/ad6136","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6136","url":null,"abstract":"The influence of different motivations on pedestrian evacuation efficiency, like whether incentivizing faster moving or encouraging polite behaviors is beneficial to evacuation, and the potential existence of gender-based differences, still lacks clear answers. This study aims to narrow this gap by conducting a laboratory bottleneck evacuation experiment to investigate the influence of movement motivation and gender of pedestrians on evacuation efficiency. Our findings reveal that both bottleneck width and pedestrian motivation significantly impact the flow. For men, when the bottleneck width surpasses a threshold, high motivation increases the flow; below this threshold, it reduces the flow. For women, high motivation consistently leads to higher evacuation efficiency than normal motivation regardless of the bottleneck width. The time interval is significantly influenced by the bottleneck width, pedestrians’ gender and their interaction term. Increasing bottleneck width does not always lead to a decrease in density when men are highly motivated; while for women, wider bottlenecks alleviate congestion around the exit.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"14 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1088/1742-5468/ad5a78
L Möhringer, G Wolschin
An exact analytical solution of the nonlinear boson diffusion equation is presented. It accounts for the time evolution toward the Bose–Einstein equilibrium distribution through inelastic and elastic collisions in the case of constant transport coefficients. As a currently interesting application, gluon scattering in relativistic heavy-ion collisions is investigated. An estimate of the time-dependent gluon-condensate formation in overoccupied systems through number-conserving elastic scatterings in Pb–Pb collisions at relativistic energies is given.
{"title":"Exact solution of the nonlinear boson diffusion equation for gluon scattering","authors":"L Möhringer, G Wolschin","doi":"10.1088/1742-5468/ad5a78","DOIUrl":"https://doi.org/10.1088/1742-5468/ad5a78","url":null,"abstract":"An exact analytical solution of the nonlinear boson diffusion equation is presented. It accounts for the time evolution toward the Bose–Einstein equilibrium distribution through inelastic and elastic collisions in the case of constant transport coefficients. As a currently interesting application, gluon scattering in relativistic heavy-ion collisions is investigated. An estimate of the time-dependent gluon-condensate formation in overoccupied systems through number-conserving elastic scatterings in Pb–Pb collisions at relativistic energies is given.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"159 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1088/1742-5468/ad613c
Liangchang Shen, Haiyang Huang, Yushan Song and Wenguo Weng
In the process of emergency evacuation, the fall of an individual may lead to the instability of surrounding pedestrians. The evacuation routes would be obstructed by fallen pedestrians, thereby diminishing the evacuation efficiency and increasing the overall crowd risk. The purpose of this study is to explore the balance-recovery process of pedestrians under collision. The study conducted a series of experiments to obtain the total step distance and number of steps taken by individuals during the balance-recovery process under different impulses. The impulse applied by the unstable individual to the obstacle ahead for balance recovery was also measured. The gait characteristics and mechanical principles of the individuals in the balance-recovery process after collision force were analyzed. The results indicate that individuals can recover balance within a 90 cm step distance if the impulse received is in the range of 20–160 N s. The relationship between the step distance of an individual and the impulse received can be expressed as a quadratic function. When stepping is prohibited, the impulse applied by the individual to the obstacle ahead is approximately 1.85 times the impulse he received. However, if stepping is allowed, the dispersion of the impulse applied to the obstacle gradually decreases with increasing step space. Additionally, logistic regression models were constructed to calculate individual instability probabilities for different conditions based on the experimental data. These results can serve as a foundation method for evaluating the individual and group instability risk during emergency evacuation scenarios.
{"title":"Experimental study on mechanical transfer regularity and step distance of individuals under different collision impulse","authors":"Liangchang Shen, Haiyang Huang, Yushan Song and Wenguo Weng","doi":"10.1088/1742-5468/ad613c","DOIUrl":"https://doi.org/10.1088/1742-5468/ad613c","url":null,"abstract":"In the process of emergency evacuation, the fall of an individual may lead to the instability of surrounding pedestrians. The evacuation routes would be obstructed by fallen pedestrians, thereby diminishing the evacuation efficiency and increasing the overall crowd risk. The purpose of this study is to explore the balance-recovery process of pedestrians under collision. The study conducted a series of experiments to obtain the total step distance and number of steps taken by individuals during the balance-recovery process under different impulses. The impulse applied by the unstable individual to the obstacle ahead for balance recovery was also measured. The gait characteristics and mechanical principles of the individuals in the balance-recovery process after collision force were analyzed. The results indicate that individuals can recover balance within a 90 cm step distance if the impulse received is in the range of 20–160 N s. The relationship between the step distance of an individual and the impulse received can be expressed as a quadratic function. When stepping is prohibited, the impulse applied by the individual to the obstacle ahead is approximately 1.85 times the impulse he received. However, if stepping is allowed, the dispersion of the impulse applied to the obstacle gradually decreases with increasing step space. Additionally, logistic regression models were constructed to calculate individual instability probabilities for different conditions based on the experimental data. These results can serve as a foundation method for evaluating the individual and group instability risk during emergency evacuation scenarios.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"16 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}