Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2020.100024
Stephan Hirschi, David Kalbermatter, Zöhre Ucurum, Dimitrios Fotiadis
The green-light absorbing proteorhodopsin (GPR) is the prototype of bacterial light-driven proton pumps. It has been the focus of continuous research since its discovery 20 years ago and has sparked the development and application of various biophysical techniques. However, a certain controversy and ambiguity about the oligomeric assembly of GPR still remains. We present here the first tag-free purification of pentameric GPR. The combination of ion exchange and size exclusion chromatography yields homogeneous and highly pure untagged pentamers from GPR overexpressing Escherichia coli. The presented purification procedure provides native-like protein and excludes the need for affinity purification tags. Importantly, three-dimensional protein crystals of GPR were successfully grown and analyzed by X-ray crystallography. These results together with data from single particle cryo-electron microscopy provide direct evidence for the pentameric stoichiometry of purified GPR.
{"title":"Cryo-electron microscopic and X-ray crystallographic analysis of the light-driven proton pump proteorhodopsin reveals a pentameric assembly","authors":"Stephan Hirschi, David Kalbermatter, Zöhre Ucurum, Dimitrios Fotiadis","doi":"10.1016/j.yjsbx.2020.100024","DOIUrl":"10.1016/j.yjsbx.2020.100024","url":null,"abstract":"<div><p>The green-light absorbing proteorhodopsin (GPR) is the prototype of bacterial light-driven proton pumps. It has been the focus of continuous research since its discovery 20 years ago and has sparked the development and application of various biophysical techniques. However, a certain controversy and ambiguity about the oligomeric assembly of GPR still remains. We present here the first tag-free purification of pentameric GPR. The combination of ion exchange and size exclusion chromatography yields homogeneous and highly pure untagged pentamers from GPR overexpressing <em>Escherichia coli</em>. The presented purification procedure provides native-like protein and excludes the need for affinity purification tags. Importantly, three-dimensional protein crystals of GPR were successfully grown and analyzed by X-ray crystallography. These results together with data from single particle cryo-electron microscopy provide direct evidence for the pentameric stoichiometry of purified GPR.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38137187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2019.100018
Sukritee Bhaskar , David L. Steer , Ruchi Anand , Santosh Panjikar
Thiolases are a well characterized family of enzymes with two distinct categories: degradative, β-ketoadipyl-CoA thiolases and biosynthetic, acetoacetyl-CoA thiolases. Both classes share an identical catalytic triad but catalyze reactions in opposite directions. Moreover, it is established that in contrast to the biosynthetic thiolases the degradative thiolases can accept substrates with broad chain lengths. Hitherto, no residue or structural pattern has been recognized that might help to discern the two thiolases, here we exploit, a tetrameric degradative thiolase from Pseudomonas putida KT2440 annotated as PcaF, as a model system to understand features which distinguishes the two classes using structural studies and bioinformatics analyses. Degradative thiolases have different active site architecture when compared to biosynthetic thiolases, demonstrating the dissimilar chemical nature of the active site architecture. Both thiolases deploy different “anchoring residues” to tether the large Coenzyme A (CoA) or CoA derivatives. Interestingly, the H356 of the catalytic triad in PcaF is directly involved in tethering the CoA/CoA derivatives into the active site and we were able to trap a gridlocked thiolase structure of the H356A mutant, where the CoA was found to be covalently linked to the catalytic cysteine residue, inhibiting the overall reaction. Further, X-ray structures with two long chain CoA derivatives, hexanal-CoA and octanal-CoA helped in delineating the long tunnel of 235 Å2 surface area in PcaF and led to identification of a unique covering loop exclusive to degradative thiolases that plays an active role in determining the tunnel length and the nature of the binding substrate.
{"title":"Structural basis for differentiation between two classes of thiolase: Degradative vs biosynthetic thiolase","authors":"Sukritee Bhaskar , David L. Steer , Ruchi Anand , Santosh Panjikar","doi":"10.1016/j.yjsbx.2019.100018","DOIUrl":"10.1016/j.yjsbx.2019.100018","url":null,"abstract":"<div><p>Thiolases are a well characterized family of enzymes with two distinct categories: degradative, β-ketoadipyl-CoA thiolases and biosynthetic, acetoacetyl-CoA thiolases. Both classes share an identical catalytic triad but catalyze reactions in opposite directions. Moreover, it is established that in contrast to the biosynthetic thiolases the degradative thiolases can accept substrates with broad chain lengths. Hitherto, no residue or structural pattern has been recognized that might help to discern the two thiolases, here we exploit, a tetrameric degradative thiolase from <em>Pseudomonas putida</em> KT2440 annotated as PcaF, as a model system to understand features which distinguishes the two classes using structural studies and bioinformatics analyses. Degradative thiolases have different active site architecture when compared to biosynthetic thiolases, demonstrating the dissimilar chemical nature of the active site architecture. Both thiolases deploy different “anchoring residues” to tether the large Coenzyme A (CoA) or CoA derivatives. Interestingly, the H356 of the catalytic triad in PcaF is directly involved in tethering the CoA/CoA derivatives into the active site and we were able to trap a gridlocked thiolase structure of the H356A mutant, where the CoA was found to be covalently linked to the catalytic cysteine residue, inhibiting the overall reaction. Further, X-ray structures with two long chain CoA derivatives, hexanal-CoA and octanal-CoA helped in delineating the long tunnel of 235 Å<sup>2</sup> surface area in PcaF and led to identification of a unique covering loop exclusive to degradative thiolases that plays an active role in determining the tunnel length and the nature of the binding substrate.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100018"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2019.100018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38137266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
X-ray crystallography and NMR contain complementary information for the structural characterization of biological macromolecules. X-ray diffraction is primarily sensitive to the overall shape of the molecule, whereas NMR is mostly sensitive to the atomic detail. Their combination can therefore provide a stronger justification for the resulting structure. For their combination we have recently proposed REFMAC-NMR, which relies on primary data from both techniques for joint refinement. This possibility raises the compelling question of how far the complementarity can be extended. In this paper, we describe an integrative approach to the refinement with NMR data of four X-ray structures of hen-egg-white lysozyme, solved at atomic resolution in four different crystal forms, and we demonstrate that the outcome critically depends on the crystal form itself, reflecting the sensitivity of NMR to fine details.
{"title":"On the complementarity of X-ray and NMR data","authors":"Antonio Schirò , Azzurra Carlon , Giacomo Parigi , Garib Murshudov , Vito Calderone , Enrico Ravera , Claudio Luchinat","doi":"10.1016/j.yjsbx.2020.100019","DOIUrl":"10.1016/j.yjsbx.2020.100019","url":null,"abstract":"<div><p>X-ray crystallography and NMR contain complementary information for the structural characterization of biological macromolecules. X-ray diffraction is primarily sensitive to the overall shape of the molecule, whereas NMR is mostly sensitive to the atomic detail. Their combination can therefore provide a stronger justification for the resulting structure. For their combination we have recently proposed REFMAC-NMR, which relies on primary data from both techniques for joint refinement. This possibility raises the compelling question of how far the complementarity can be extended. In this paper, we describe an integrative approach to the refinement with NMR data of four X-ray structures of hen-egg-white lysozyme, solved at atomic resolution in four different crystal forms, and we demonstrate that the outcome critically depends on the crystal form itself, reflecting the sensitivity of NMR to fine details.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100019"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38137267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2020.100022
Jeanine F. Amacher , Lionel Brooks 3rd , Thomas H. Hampton , Dean R. Madden
Globular PDZ domains typically serve as protein–protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.
{"title":"Specificity in PDZ-peptide interaction networks: Computational analysis and review","authors":"Jeanine F. Amacher , Lionel Brooks 3rd , Thomas H. Hampton , Dean R. Madden","doi":"10.1016/j.yjsbx.2020.100022","DOIUrl":"10.1016/j.yjsbx.2020.100022","url":null,"abstract":"<div><p>Globular PDZ domains typically serve as protein–protein interaction modules that regulate a wide variety of cellular functions via recognition of short linear motifs (SLiMs). Often, PDZ mediated-interactions are essential components of macromolecular complexes, and disruption affects the entire scaffold. Due to their roles as linchpins in trafficking and signaling pathways, PDZ domains are attractive targets: both for controlling viral pathogens, which bind PDZ domains and hijack cellular machinery, as well as for developing therapies to combat human disease. However, successful therapeutic interventions that avoid off-target effects are a challenge, because each PDZ domain interacts with a number of cellular targets, and specific binding preferences can be difficult to decipher. Over twenty-five years of research has produced a wealth of data on the stereochemical preferences of individual PDZ proteins and their binding partners. Currently the field lacks a central repository for this information. Here, we provide this important resource and provide a manually curated, comprehensive list of the 271 human PDZ domains. We use individual domain, as well as recent genomic and proteomic, data in order to gain a holistic view of PDZ domains and interaction networks, arguing this knowledge is critical to optimize targeting selectivity and to benefit human health.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100022"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37833891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2020.100034
Trang T. Nguyen , Vincenzo Venditti
Enzyme I (EI), which is the key enzyme to activate the bacterial phosphotransferase system, plays an important role in the regulation of several metabolic pathways and controls the biology of bacterial cells at multiple levels. The conservation and ubiquity of EI among different types of bacteria makes the enzyme a potential target for antimicrobial research. Here, we use NMR-based fragment screening to identify novel inhibitors of EI. We identify three molecular fragments that allosterically inhibit the phosphoryl transfer reaction catalyzed by EI by interacting with the enzyme at a surface pocket located more than 10 Å away from the substrate binding site. Interestingly, although the three molecules share the same binding pocket, we observe that two of the discovered EI ligands act as competitive inhibitors while the third ligand acts as a mixed inhibitor. Characterization of the EI-inhibitor complexes by NMR and Molecular Dynamics simulations reveals key interactions that perturb the fold of the active site and provides structural foundation for the different inhibitory activity of the identified molecular fragments. In particular, we show that contacts between the inhibitor and the side-chain of V292 are crucial to destabilize binding of the substrate to EI. In contrast, mixed inhibition is caused by additional contacts between the inhibitor and ⍺-helix 2 that perturb the active site structure and turnover in an allosteric manner. We expect our results to provide the basis for the development of second generation allosteric inhibitors of increased potency and to suggest novel molecular strategies to combat drug-resistant infections.
{"title":"An allosteric pocket for inhibition of bacterial Enzyme I identified by NMR-based fragment screening","authors":"Trang T. Nguyen , Vincenzo Venditti","doi":"10.1016/j.yjsbx.2020.100034","DOIUrl":"10.1016/j.yjsbx.2020.100034","url":null,"abstract":"<div><p>Enzyme I (EI), which is the key enzyme to activate the bacterial phosphotransferase system, plays an important role in the regulation of several metabolic pathways and controls the biology of bacterial cells at multiple levels. The conservation and ubiquity of EI among different types of bacteria makes the enzyme a potential target for antimicrobial research. Here, we use NMR-based fragment screening to identify novel inhibitors of EI. We identify three molecular fragments that allosterically inhibit the phosphoryl transfer reaction catalyzed by EI by interacting with the enzyme at a surface pocket located more than 10 Å away from the substrate binding site. Interestingly, although the three molecules share the same binding pocket, we observe that two of the discovered EI ligands act as competitive inhibitors while the third ligand acts as a mixed inhibitor. Characterization of the EI-inhibitor complexes by NMR and Molecular Dynamics simulations reveals key interactions that perturb the fold of the active site and provides structural foundation for the different inhibitory activity of the identified molecular fragments. In particular, we show that contacts between the inhibitor and the side-chain of V292 are crucial to destabilize binding of the substrate to EI. In contrast, mixed inhibition is caused by additional contacts between the inhibitor and ⍺-helix 2 that perturb the active site structure and turnover in an allosteric manner. We expect our results to provide the basis for the development of second generation allosteric inhibitors of increased potency and to suggest novel molecular strategies to combat drug-resistant infections.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100034"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38218713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2019.100013
Emmanuel Moebel, Charles Kervrann
We propose a statistical method to address an important issue in cryo-electron tomography image analysis: reduction of a high amount of noise and artifacts due to the presence of a missing wedge (MW) in the spectral domain. The method takes as an input a 3D tomogram derived from limited-angle tomography, and gives as an output a 3D denoised and artifact compensated volume. The artifact compensation is achieved by filling up the MW with meaningful information. To address this inverse problem, we compute a Minimum Mean Square Error (MMSE) estimator of the uncorrupted image. The underlying high-dimensional integral is computed by applying a dedicated Markov Chain Monte-Carlo (MCMC) sampling procedure based on the Metropolis-Hasting (MH) algorithm. The proposed MWR (Missing Wedge Restoration) algorithm can be used to enhance visualization or as a pre-processing step for image analysis, including segmentation and classification of macromolecules. Results are presented for both synthetic data and real 3D cryo-electron images.
{"title":"A Monte Carlo framework for missing wedge restoration and noise removal in cryo-electron tomography","authors":"Emmanuel Moebel, Charles Kervrann","doi":"10.1016/j.yjsbx.2019.100013","DOIUrl":"10.1016/j.yjsbx.2019.100013","url":null,"abstract":"<div><p>We propose a statistical method to address an important issue in cryo-electron tomography image analysis: reduction of a high amount of noise and artifacts due to the presence of a missing wedge (MW) in the spectral domain. The method takes as an input a 3D tomogram derived from limited-angle tomography, and gives as an output a 3D denoised and artifact compensated volume. The artifact compensation is achieved by filling up the MW with meaningful information. To address this inverse problem, we compute a Minimum Mean Square Error (MMSE) estimator of the uncorrupted image. The underlying high-dimensional integral is computed by applying a dedicated Markov Chain Monte-Carlo (MCMC) sampling procedure based on the Metropolis-Hasting (MH) algorithm. The proposed MWR (Missing Wedge Restoration) algorithm can be used to enhance visualization or as a pre-processing step for image analysis, including segmentation and classification of macromolecules. Results are presented for both synthetic data and real 3D cryo-electron images.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100013"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2019.100013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38137861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2020.100027
Jeroen P.M. Vrancken , Jana Aupič , Christine Addy , Roman Jerala , Jeremy R.H. Tame , Arnout R.D. Voet
Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric -propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains
{"title":"Molecular assemblies built with the artificial protein Pizza","authors":"Jeroen P.M. Vrancken , Jana Aupič , Christine Addy , Roman Jerala , Jeremy R.H. Tame , Arnout R.D. Voet","doi":"10.1016/j.yjsbx.2020.100027","DOIUrl":"10.1016/j.yjsbx.2020.100027","url":null,"abstract":"<div><p>Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric <span><math><mrow><mi>β</mi></mrow></math></span>-propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100027"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38137189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2020.100021
David Kalbermatter , Neeta Shrestha , Flavio M. Gall , Marianne Wyss , Rainer Riedl , Philippe Plattet , Dimitrios Fotiadis
Measles virus (MeV) and canine distemper virus (CDV), two members of the Morbillivirus genus, are still causing important global diseases of humans and animals, respectively. To enter target cells, morbilliviruses rely on an envelope-anchored machinery, which is composed of two interacting glycoproteins: a tetrameric receptor binding (H) protein and a trimeric fusion (F) protein. To execute membrane fusion, the F protein initially adopts a metastable, prefusion state that refolds into a highly stable postfusion conformation as the result of a finely coordinated activation process mediated by the H protein. Here, we employed cryo-electron microscopy (cryo-EM) and single particle reconstruction to elucidate the structure of the prefusion state of the CDV F protein ectodomain (solF) at 4.3 Å resolution. Stabilization of the prefusion solF trimer was achieved by fusing the GCNt trimerization sequence at the C-terminal protein region, and expressing and purifying the recombinant protein in the presence of a morbilliviral fusion inhibitor class compound. The three-dimensional cryo-EM map of prefusion CDV solF in complex with the inhibitor clearly shows density for the ligand at the protein binding site suggesting common mechanisms of membrane fusion activation and inhibition employed by different morbillivirus members.
{"title":"Cryo-EM structure of the prefusion state of canine distemper virus fusion protein ectodomain","authors":"David Kalbermatter , Neeta Shrestha , Flavio M. Gall , Marianne Wyss , Rainer Riedl , Philippe Plattet , Dimitrios Fotiadis","doi":"10.1016/j.yjsbx.2020.100021","DOIUrl":"10.1016/j.yjsbx.2020.100021","url":null,"abstract":"<div><p>Measles virus (MeV) and canine distemper virus (CDV), two members of the <em>Morbillivirus</em> genus, are still causing important global diseases of humans and animals, respectively. To enter target cells, morbilliviruses rely on an envelope-anchored machinery, which is composed of two interacting glycoproteins: a tetrameric receptor binding (H) protein and a trimeric fusion (F) protein. To execute membrane fusion, the F protein initially adopts a metastable, prefusion state that refolds into a highly stable postfusion conformation as the result of a finely coordinated activation process mediated by the H protein. Here, we employed cryo-electron microscopy (cryo-EM) and single particle reconstruction to elucidate the structure of the prefusion state of the CDV F protein ectodomain (solF) at 4.3 Å resolution. Stabilization of the prefusion solF trimer was achieved by fusing the GCNt trimerization sequence at the C-terminal protein region, and expressing and purifying the recombinant protein in the presence of a morbilliviral fusion inhibitor class compound. The three-dimensional cryo-EM map of prefusion CDV solF in complex with the inhibitor clearly shows density for the ligand at the protein binding site suggesting common mechanisms of membrane fusion activation and inhibition employed by different morbillivirus members.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100021"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38137185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2020.100020
Mengyu Wu , Gabriel C. Lander , Mark A. Herzik Jr.
Although the advent of direct electron detectors (DEDs) and software developments have enabled the routine use of single-particle cryogenic electron microscopy (cryo-EM) for structure determination of well-behaved specimens to high-resolution, there nonetheless remains a discrepancy between the resolutions attained for biological specimens and the information limits of modern transmission electron microscopes (TEMs). Instruments operating at 300 kV equipped with DEDs are the current paradigm for high-resolution single-particle cryo-EM, while 200 kV TEMs remain comparatively underutilized for purposes beyond sample screening. Here, we expand upon our prior work and demonstrate that one such 200 kV microscope, the Talos Arctica, equipped with a K2 DED is capable of determining structures of macromolecules to as high as ∼1.7 Å resolution. At this resolution, ordered water molecules are readily assigned and holes in aromatic residues can be clearly distinguished in the reconstructions. This work emphasizes the utility of 200 kV electrons for high-resolution single-particle cryo-EM and applications such as structure-based drug design.
{"title":"Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV","authors":"Mengyu Wu , Gabriel C. Lander , Mark A. Herzik Jr.","doi":"10.1016/j.yjsbx.2020.100020","DOIUrl":"10.1016/j.yjsbx.2020.100020","url":null,"abstract":"<div><p>Although the advent of direct electron detectors (DEDs) and software developments have enabled the routine use of single-particle cryogenic electron microscopy (cryo-EM) for structure determination of well-behaved specimens to high-resolution, there nonetheless remains a discrepancy between the resolutions attained for biological specimens and the information limits of modern transmission electron microscopes (TEMs). Instruments operating at 300 kV equipped with DEDs are the current paradigm for high-resolution single-particle cryo-EM, while 200 kV TEMs remain comparatively underutilized for purposes beyond sample screening. Here, we expand upon our prior work and demonstrate that one such 200 kV microscope, the Talos Arctica, equipped with a K2 DED is capable of determining structures of macromolecules to as high as ∼1.7 Å resolution. At this resolution, ordered water molecules are readily assigned and holes in aromatic residues can be clearly distinguished in the reconstructions. This work emphasizes the utility of 200 kV electrons for high-resolution single-particle cryo-EM and applications such as structure-based drug design.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100020"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38137268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1016/j.yjsbx.2020.100037
C.O.S. Sorzano , F. de Isidro-Gómez , E. Fernández-Giménez , D. Herreros , S. Marco , J.M. Carazo , C. Messaoudi
Electron tomography is a technique to obtain three-dimensional structural information of samples. However, the technique is limited by shifts occurring during acquisition that need to be corrected before the reconstruction process. In 2009, we proposed an approach for post-acquisition alignment of tilt series images. This approach was marker-free, based on patch tracking and integrated in free software. Here, we present improvements to the method to make it more reliable, stable and accurate. In addition, we modified the image formation model underlying the alignment procedure to include different deformations occurring during acquisition. We propose a new way to correct these computed deformations to obtain reconstructions with reduced artifacts. The new approach has demonstrated to improve the quality of the final 3D reconstruction, giving access to better defined structures for different transmission electron tomography methods: resin embedded STEM-tomography and cryo-TEM tomography. The method is freely available in TomoJ software.
{"title":"Improvements on marker-free images alignment for electron tomography","authors":"C.O.S. Sorzano , F. de Isidro-Gómez , E. Fernández-Giménez , D. Herreros , S. Marco , J.M. Carazo , C. Messaoudi","doi":"10.1016/j.yjsbx.2020.100037","DOIUrl":"10.1016/j.yjsbx.2020.100037","url":null,"abstract":"<div><p>Electron tomography is a technique to obtain three-dimensional structural information of samples. However, the technique is limited by shifts occurring during acquisition that need to be corrected before the reconstruction process. In 2009, we proposed an approach for post-acquisition alignment of tilt series images. This approach was marker-free, based on patch tracking and integrated in free software. Here, we present improvements to the method to make it more reliable, stable and accurate. In addition, we modified the image formation model underlying the alignment procedure to include different deformations occurring during acquisition. We propose a new way to correct these computed deformations to obtain reconstructions with reduced artifacts. The new approach has demonstrated to improve the quality of the final 3D reconstruction, giving access to better defined structures for different transmission electron tomography methods: resin embedded STEM-tomography and cryo-TEM tomography. The method is freely available in TomoJ software.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100037"},"PeriodicalIF":2.9,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38461302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}