Yunqing Wang, peng lang, Boyu Ji, Yang Xu, Xiaowei Song, Jingquan Lin
{"title":"Dual-band plasmon-induced transparency based on a vanadium dioxide ring resonator terahertz metamaterial","authors":"Yunqing Wang, peng lang, Boyu Ji, Yang Xu, Xiaowei Song, Jingquan Lin","doi":"10.1364/josab.503243","DOIUrl":"https://doi.org/10.1364/josab.503243","url":null,"abstract":"","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An experiment has been proposed for laser polarization signal measurement, with the rotation angle and ellipticity being measured simultaneously. The proposed experiment is immune to signal-to-noise ratio degradation due to the finite extinction ratio of polarizing elements used to construct the composite polarization measurement setup. Noise analysis is carried out to show that the proposed scheme allows one to reach the quantum noise limit in the simultaneous measurement of the polarization angle and ellipticity. This work should be of great interest for experiments such as observation of vacuum magnetic birefringence, spin-orbital interaction, material characterization, polarization microscopy, or biomedical optics.
{"title":"Simultaneous measurement of polarization rotation angle and ellipticity at the quantum noise limit","authors":"peng yang, Boya Xie, Sheng Feng","doi":"10.1364/josab.502591","DOIUrl":"https://doi.org/10.1364/josab.502591","url":null,"abstract":"An experiment has been proposed for laser polarization signal measurement, with the rotation angle and ellipticity being measured simultaneously. The proposed experiment is immune to signal-to-noise ratio degradation due to the finite extinction ratio of polarizing elements used to construct the composite polarization measurement setup. Noise analysis is carried out to show that the proposed scheme allows one to reach the quantum noise limit in the simultaneous measurement of the polarization angle and ellipticity. This work should be of great interest for experiments such as observation of vacuum magnetic birefringence, spin-orbital interaction, material characterization, polarization microscopy, or biomedical optics.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the propagation dynamics of Airy pulses in pure-quartic dispersion media both numerically and analytically. For linear propagation, our results show that Airy pulses will keep the acceleration-free propagation behaviors under the action of pure-quartic dispersion, quite different from the case in the presence of only quadratic or cubic dispersion. Another notable observation is that the optical fields will evolve to become a symmetric-shaped pulse and the oscillatory tail is gradually suppressed over long propagation. For nonlinear propagation, the Airy pulse having high powers will be shed into multiple soliton dynamics through the physical balance between anomalous pure-quartic dispersion and the Kerr nonlinear effect.
{"title":"Acceleration-free propagation of Airy pulses in pure-quartic dispersion media","authors":"jinggui zhang, Yunwen Xu, Yajuan Tian","doi":"10.1364/josab.502958","DOIUrl":"https://doi.org/10.1364/josab.502958","url":null,"abstract":"We investigate the propagation dynamics of Airy pulses in pure-quartic dispersion media both numerically and analytically. For linear propagation, our results show that Airy pulses will keep the acceleration-free propagation behaviors under the action of pure-quartic dispersion, quite different from the case in the presence of only quadratic or cubic dispersion. Another notable observation is that the optical fields will evolve to become a symmetric-shaped pulse and the oscillatory tail is gradually suppressed over long propagation. For nonlinear propagation, the Airy pulse having high powers will be shed into multiple soliton dynamics through the physical balance between anomalous pure-quartic dispersion and the Kerr nonlinear effect.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135944808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We introduce a metasurface capable of generating multiple bound states in the continuum (BICs). Through the rotation of two LiTaO 3 columns, the symmetry protection can be broken, resulting in a quasi-BIC with a high quality factor. The multipolar analysis of each BIC confirms that the dominant pole aligns closely with the electromagnetic field. Additionally, we demonstrate the tunability of the quasi-BIC’s quality factor by modifying the Fermi level of graphene, designing a terahertz (THz)-wave modulator with a remarkable modulation depth more than 90% and a modulation range of 36 meV, 108 meV, 30 meV, 1.2 meV, and 42 meV. Furthermore, the sensing performance of the metasurface is investigated. The sensitivity of peak1 is measured at 0.41 THz/RIU, peak2 at 0.4 THz/RIU, peak3 at 1.049 THz/RIU, peak4 at 0.34 THz/RIU, and peak5 at 1.59 THz/RIU, and the figure of merit of these BICs is calculated as 455.56RIU −1 , 62.8RIU −1 , 11,655.56RIU −1 , 17,000RIU −1 , and 7,950RIU −1 , respectively. Compared with relevant studies, our metasurface demonstrates excellent performance. The results of these studies have potential applications in sensing, optical communication, and energy harvesting, and open up possibilities for efficient control and manipulation of terahertz waves.
{"title":"Innovative Graphene-Dielectric Metasurface: Harnessing Bound States in the Continuum for Advanced THz-Wave Modulation and High-Sensitivity Sensing","authors":"Zhexian Li, Yunping Qi, Zhou zihao, Bing Luo, Yaqi Wang, xiang xian wang","doi":"10.1364/josab.501262","DOIUrl":"https://doi.org/10.1364/josab.501262","url":null,"abstract":"We introduce a metasurface capable of generating multiple bound states in the continuum (BICs). Through the rotation of two LiTaO 3 columns, the symmetry protection can be broken, resulting in a quasi-BIC with a high quality factor. The multipolar analysis of each BIC confirms that the dominant pole aligns closely with the electromagnetic field. Additionally, we demonstrate the tunability of the quasi-BIC’s quality factor by modifying the Fermi level of graphene, designing a terahertz (THz)-wave modulator with a remarkable modulation depth more than 90% and a modulation range of 36 meV, 108 meV, 30 meV, 1.2 meV, and 42 meV. Furthermore, the sensing performance of the metasurface is investigated. The sensitivity of peak1 is measured at 0.41 THz/RIU, peak2 at 0.4 THz/RIU, peak3 at 1.049 THz/RIU, peak4 at 0.34 THz/RIU, and peak5 at 1.59 THz/RIU, and the figure of merit of these BICs is calculated as 455.56RIU −1 , 62.8RIU −1 , 11,655.56RIU −1 , 17,000RIU −1 , and 7,950RIU −1 , respectively. Compared with relevant studies, our metasurface demonstrates excellent performance. The results of these studies have potential applications in sensing, optical communication, and energy harvesting, and open up possibilities for efficient control and manipulation of terahertz waves.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
All-fiber polarization filters have important applications in optical communication, sensing, and fiber lasing. However, the incompatibility between high extinction ratio and short interaction length is a problem for miniaturization. In addition, current passive designs make polarization filters work in a fixed wavelength band, which limits the dynamic polarization control. Here, we integrate subwavelength metal gratings on graphene-covered D-shaped single-mode fibers to achieve tunable polarization filters, whose operating bandwidth has a significant improvement over previous works. In the simulation, the x -polarized mode couples effectively with the surface plasmon polariton mode and suffers extremely high transmission loss (up to ∼38dB/mm). At the same time, the y -polarized mode remains low insertion loss of ∼0.58dB/mm. By changing the chemical potential of graphene, the loss peak of the x -polarized mode can be adjusted in the range covering the wavelength bands from 1.272 to 1.353 µm or from 1.54 to 1.612 µm, which results in an adjustable broadband filter with a high extinction ratio over 20 dB. The proposed filter provides a promising polarization control scheme for integrated devices in the fields of communication, sensing, and lasing.
{"title":"Tunable all-fiber polarization filter based on graphene-assisted metal grating for O- and C-bands","authors":"YUE WANG, Zhuo Wang, jiaqi qu, Zhi Cheng, Dongmei HUANG, Changyuan Yu","doi":"10.1364/josab.502260","DOIUrl":"https://doi.org/10.1364/josab.502260","url":null,"abstract":"All-fiber polarization filters have important applications in optical communication, sensing, and fiber lasing. However, the incompatibility between high extinction ratio and short interaction length is a problem for miniaturization. In addition, current passive designs make polarization filters work in a fixed wavelength band, which limits the dynamic polarization control. Here, we integrate subwavelength metal gratings on graphene-covered D-shaped single-mode fibers to achieve tunable polarization filters, whose operating bandwidth has a significant improvement over previous works. In the simulation, the x -polarized mode couples effectively with the surface plasmon polariton mode and suffers extremely high transmission loss (up to ∼38dB/mm). At the same time, the y -polarized mode remains low insertion loss of ∼0.58dB/mm. By changing the chemical potential of graphene, the loss peak of the x -polarized mode can be adjusted in the range covering the wavelength bands from 1.272 to 1.353 µm or from 1.54 to 1.612 µm, which results in an adjustable broadband filter with a high extinction ratio over 20 dB. The proposed filter provides a promising polarization control scheme for integrated devices in the fields of communication, sensing, and lasing.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136077412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shao-Xiong Wu, Cheng-Hua Bai, Gang Li, Chang-Shui Yu, Tiancai Zhang
Quantum entanglement and Einstein-Podolsky-Rosen (EPR) steering are valuable resources in quantum information processing. How to enhance the quantum entanglement and EPR steering of coupled optomechanical systems with a weak squeezed vacuum field are studied when the displacement of detuning induced by the mechanical mode is considered. Compared with the condition that the system interacts with a vacuum environment, the quantum entanglement and EPR steering are stronger when the squeezed vacuum field is applied. A squeezed vacuum field with a large degree is not beneficial to enhance the quantum entanglement and EPR steering. Rather than the squeezing parameter of the squeezed vacuum field, the reference phase plays a vital role in this model.
{"title":"Enhancing the quantum entanglement and EPR steering of a coupled optomechanical system with a squeezed vacuum field","authors":"Shao-Xiong Wu, Cheng-Hua Bai, Gang Li, Chang-Shui Yu, Tiancai Zhang","doi":"10.1364/josab.495520","DOIUrl":"https://doi.org/10.1364/josab.495520","url":null,"abstract":"Quantum entanglement and Einstein-Podolsky-Rosen (EPR) steering are valuable resources in quantum information processing. How to enhance the quantum entanglement and EPR steering of coupled optomechanical systems with a weak squeezed vacuum field are studied when the displacement of detuning induced by the mechanical mode is considered. Compared with the condition that the system interacts with a vacuum environment, the quantum entanglement and EPR steering are stronger when the squeezed vacuum field is applied. A squeezed vacuum field with a large degree is not beneficial to enhance the quantum entanglement and EPR steering. Rather than the squeezing parameter of the squeezed vacuum field, the reference phase plays a vital role in this model.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Stefanou, Ioannis Stefanou, Evangelos Almpanis, Nikos Papanikolaou, Puneet Garg, Carsten Rockstuhl
A proper generalization of the extended boundary condition method to calculate the transition matrix, T , for electromagnetic scattering from a homogeneous and isotropic body of arbitrary shape, characterized by a periodically time-varying electric permittivity, is presented. The application of the method on a specific example of a spheroidal dielectric particle confirms that time modulation induces strong inelastic scattering, accompanied by energy transfer between the scatterer and the light field, when the difference of the incident wave frequency to a particle optical resonance matches an integer multiple of the modulation frequency. Moreover, it is shown that, for nonspherical scatterers, these effects can be selectively tuned by external means such as the polarization and the propagation direction of the incident light beam. The method is readily implementable in available dynamic multiple-scattering computer codes, and, because of its versatility and computational efficiency, it can offer new opportunities for studying more complex time-varying photonic structures.
{"title":"Light scattering by a periodically time-modulated object of arbitrary shape: The extended boundary condition method","authors":"N. Stefanou, Ioannis Stefanou, Evangelos Almpanis, Nikos Papanikolaou, Puneet Garg, Carsten Rockstuhl","doi":"10.1364/josab.502171","DOIUrl":"https://doi.org/10.1364/josab.502171","url":null,"abstract":"A proper generalization of the extended boundary condition method to calculate the transition matrix, T , for electromagnetic scattering from a homogeneous and isotropic body of arbitrary shape, characterized by a periodically time-varying electric permittivity, is presented. The application of the method on a specific example of a spheroidal dielectric particle confirms that time modulation induces strong inelastic scattering, accompanied by energy transfer between the scatterer and the light field, when the difference of the incident wave frequency to a particle optical resonance matches an integer multiple of the modulation frequency. Moreover, it is shown that, for nonspherical scatterers, these effects can be selectively tuned by external means such as the polarization and the propagation direction of the incident light beam. The method is readily implementable in available dynamic multiple-scattering computer codes, and, because of its versatility and computational efficiency, it can offer new opportunities for studying more complex time-varying photonic structures.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We have recently shown that a uniform birefringent medium exhibits a circular Bragg phenomenon that relies solely on resonant tuning of the medium’s parameters, rather than on a particular wavelength resonance, thus rendering its electromagnetic response arbitrarily broadband. The resonant condition, however, necessitated a chirality parameter equal to the average refractive index. Here, we demonstrate that non-axial wave propagation in an axially bi-anisotropic uniaxial medium also enacts such a response and, moreover, relaxes the severity of the tuning condition, offering a convenient platform for controlling both the location of the resonance and the corresponding bandwidth. Anomalous wave propagation at a singular point is additionally identified, in the vicinity of which a remarkably high and intrinsically broadband refractive index can be realized. Recent demonstrations of meta-media with giant and controllable chirality pave the path towards the realistic embodiment of a highly efficient optical modulator.
{"title":"Wavelength-Independent Bragg-like Reflection in Uniaxial Bi-Anisotropic Media","authors":"Steven. Koufidis, Martin McCall","doi":"10.1364/josab.502652","DOIUrl":"https://doi.org/10.1364/josab.502652","url":null,"abstract":"We have recently shown that a uniform birefringent medium exhibits a circular Bragg phenomenon that relies solely on resonant tuning of the medium’s parameters, rather than on a particular wavelength resonance, thus rendering its electromagnetic response arbitrarily broadband. The resonant condition, however, necessitated a chirality parameter equal to the average refractive index. Here, we demonstrate that non-axial wave propagation in an axially bi-anisotropic uniaxial medium also enacts such a response and, moreover, relaxes the severity of the tuning condition, offering a convenient platform for controlling both the location of the resonance and the corresponding bandwidth. Anomalous wave propagation at a singular point is additionally identified, in the vicinity of which a remarkably high and intrinsically broadband refractive index can be realized. Recent demonstrations of meta-media with giant and controllable chirality pave the path towards the realistic embodiment of a highly efficient optical modulator.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shangyu Zhang, Jian Dong, Wenjie Zhang, Lanxin Ma, LINHUA LIU
Light absorption enhancement in micro- and nanoparticles has garnered considerable attention through coated 2D materials, which are physically homogenized by surface conductivities and surface currents within the electromagnetic boundary conditions. However, the electromagnetic absorption through the surface channel remains unexamined, hindering a deeper understanding of the underlying mechanisms of light absorption. In this work, we analytically derive the effective cross sections of surface absorption for a 2D-material-coated sphere, based on the framework of Mie theory amended by the surface conductivity. Our theoretical analysis confirms the absorption unitarity in wrapped particles, whereby the total absorption is equivalent to the sum of surface and volume absorptions. Considering optical dispersion of a polar interior, we identify a blue shift in the resonance wavelength induced by the 2D coating, which leads to a decrease in material dissipation and thus volume absorption within the particle itself in spite of a large field enhancement inside the particle. Finally, through a realistic case of small graphene-wrapped MgO spheres, we illustrate the dominant role of the surface absorption channel on the mechanism of absorption enhancements.
{"title":"Surface absorption channels in light absorption by a 2D-material coated particle","authors":"Shangyu Zhang, Jian Dong, Wenjie Zhang, Lanxin Ma, LINHUA LIU","doi":"10.1364/josab.502612","DOIUrl":"https://doi.org/10.1364/josab.502612","url":null,"abstract":"Light absorption enhancement in micro- and nanoparticles has garnered considerable attention through coated 2D materials, which are physically homogenized by surface conductivities and surface currents within the electromagnetic boundary conditions. However, the electromagnetic absorption through the surface channel remains unexamined, hindering a deeper understanding of the underlying mechanisms of light absorption. In this work, we analytically derive the effective cross sections of surface absorption for a 2D-material-coated sphere, based on the framework of Mie theory amended by the surface conductivity. Our theoretical analysis confirms the absorption unitarity in wrapped particles, whereby the total absorption is equivalent to the sum of surface and volume absorptions. Considering optical dispersion of a polar interior, we identify a blue shift in the resonance wavelength induced by the 2D coating, which leads to a decrease in material dissipation and thus volume absorption within the particle itself in spite of a large field enhancement inside the particle. Finally, through a realistic case of small graphene-wrapped MgO spheres, we illustrate the dominant role of the surface absorption channel on the mechanism of absorption enhancements.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anton Kochetkov, Ekaterina Kocharovskaya, Efim Khazanov
The analytical expressions of the probability for a two-dimensional random function (for example, fluence of a laser beam with noise) to exceed the threshold value over a given area have been derived. The probability is fully determined only by two parameters. The first one, the product of the beam area and the squared second normalized spectral moment, has the meaning of the equivalent number of noise modes and is determined only by the spectral properties of the noise. The second parameter, on the contrary, does not depend on the noise spectrum; it is determined only by the ratio of the standard deviation to the difference between the threshold and mean values of fluence. The numerical simulations are in a good agreement with the theory. The results are generalized to several cases of practical interest.
{"title":"Impact of random spatial noise of a laser beam on the probability of fluence to exceed the threshold value","authors":"Anton Kochetkov, Ekaterina Kocharovskaya, Efim Khazanov","doi":"10.1364/josab.497901","DOIUrl":"https://doi.org/10.1364/josab.497901","url":null,"abstract":"The analytical expressions of the probability for a two-dimensional random function (for example, fluence of a laser beam with noise) to exceed the threshold value over a given area have been derived. The probability is fully determined only by two parameters. The first one, the product of the beam area and the squared second normalized spectral moment, has the meaning of the equivalent number of noise modes and is determined only by the spectral properties of the noise. The second parameter, on the contrary, does not depend on the noise spectrum; it is determined only by the ratio of the standard deviation to the difference between the threshold and mean values of fluence. The numerical simulations are in a good agreement with the theory. The results are generalized to several cases of practical interest.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135923428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}