Sonia Cabeza-Fernández, Rubí Hernández-Rojas, Angeles Casillas-Bajo, Nikiben Patel, Alerie G. de la Fuente, Hugo Cabedo, Jose A. Gomez-Sanchez
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by motor neuron death and distal axonopathy. Despite its clinical severity and profound impact in the patients and their families, many questions about its pathogenesis remain still unclear, including the role of Schwann cells and axon-glial signaling in disease progression. Upon axonal injury, upregulation of JUN transcription factor promotes Schwann cell reprogramming into a repair phenotype that favors axon regrowth and neuronal survival. To study the potential role of repair Schwann cells on motoneuron survival in amyotrophic lateral sclerosis, we generated a mouse line that over-expresses JUN in the Schwann cells of the SOD1G93A mutant, a mouse model of this disease. Then, we explored disease progression by evaluating survival, motor performance and histology of peripheral nerves and spinal cord of these mice. We found that Schwann cell JUN overexpression does not prevent axon degeneration neither motor neuron death in the SOD1G93A mice. Instead, it induces a partial demyelination of medium and large size axons, worsening motor performance and resulting in more aggressive disease phenotype.
肌萎缩侧索硬化症是一种以运动神经元死亡和远端轴突病变为特征的破坏性神经退行性疾病。尽管该病临床症状严重,对患者及其家庭影响深远,但有关其发病机制的许多问题仍不清楚,包括许旺细胞和轴突胶质细胞信号传导在疾病进展中的作用。轴突损伤后,JUN转录因子的上调会促进许旺细胞重编程为修复表型,从而有利于轴突再生和神经元存活。为了研究肌萎缩性脊髓侧索硬化症中修复许旺细胞对运动神经元存活的潜在作用,我们生成了一个小鼠品系,在该病的小鼠模型 SOD1G93A 突变体的许旺细胞中过度表达 JUN。然后,我们通过评估这些小鼠的存活率、运动表现以及外周神经和脊髓组织学来探索疾病的进展。我们发现,SOD1G93A 小鼠过表达许旺细胞 JUN 既不能防止轴突变性,也不能防止运动神经元死亡。相反,它会诱导中型和大型轴突的部分脱髓鞘,使运动表现恶化,并导致更具侵袭性的疾病表型。
{"title":"Schwann cell JUN expression worsens motor performance in an amyotrophic lateral sclerosis mouse model","authors":"Sonia Cabeza-Fernández, Rubí Hernández-Rojas, Angeles Casillas-Bajo, Nikiben Patel, Alerie G. de la Fuente, Hugo Cabedo, Jose A. Gomez-Sanchez","doi":"10.1002/glia.24604","DOIUrl":"10.1002/glia.24604","url":null,"abstract":"<p>Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by motor neuron death and distal axonopathy. Despite its clinical severity and profound impact in the patients and their families, many questions about its pathogenesis remain still unclear, including the role of Schwann cells and axon-glial signaling in disease progression. Upon axonal injury, upregulation of JUN transcription factor promotes Schwann cell reprogramming into a repair phenotype that favors axon regrowth and neuronal survival. To study the potential role of repair Schwann cells on motoneuron survival in amyotrophic lateral sclerosis, we generated a mouse line that over-expresses JUN in the Schwann cells of the SOD1<sup>G93A</sup> mutant, a mouse model of this disease. Then, we explored disease progression by evaluating survival, motor performance and histology of peripheral nerves and spinal cord of these mice. We found that Schwann cell JUN overexpression does not prevent axon degeneration neither motor neuron death in the SOD1<sup>G93A</sup> mice. Instead, it induces a partial demyelination of medium and large size axons, worsening motor performance and resulting in more aggressive disease phenotype.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 12","pages":"2178-2189"},"PeriodicalIF":5.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jens V. Andersen, Helle S. Waagepetersen, Lasse K. Bak
{"title":"In Memoriam: Arne Schousboe 1944–2024","authors":"Jens V. Andersen, Helle S. Waagepetersen, Lasse K. Bak","doi":"10.1002/glia.24608","DOIUrl":"10.1002/glia.24608","url":null,"abstract":"","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 12","pages":"2357-2359"},"PeriodicalIF":5.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Degl'Innocenti, Tino Emanuele Poloni, Valentina Medici, Francesco Olimpico, Francesco Finamore, Xhulja Profka, Karouna Bascarane, Castrese Morrone, Aldo Pastore, Carole Escartin, Liam A. McDonnell, Maria Teresa Dell'Anno
Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.
星形胶质细胞增多症是急性和慢性神经系统疾病的共同症状,包括星形胶质细胞的形态学、蛋白质组和功能重排。在阿尔茨海默病(AD)中,反应性星形胶质细胞会形成淀粉样沉积物,并表现出与特定蛋白质(大多属于中间丝)过度表达相关的结构变化。在功能层面上,淀粉样蛋白 beta 会引发星形胶质细胞中的钙信号功能失调,从而导致慢性神经炎症的维持。因此,鉴定参与星形胶质细胞钙信号转导的细胞内参与者有助于揭示AD中星形胶质细胞反应性和功能丧失的内在机制。为了确定星形胶质细胞 CETN2 的表达和分布是否会受到神经退行性疾病的影响,我们研究了其在对照组和散发性 AD 患者中的表达模式。通过免疫印迹、免疫组织化学和靶向质谱分析,我们发现内侧星形胶质细胞 CETN2 免疫活性与神经认知功能障碍以及淀粉样沉积和神经纤维缠结的丰度呈正相关,从而凸显了 CETN2 表达与 AD 进展之间的线性关系。CETN2阳性星形胶质细胞以聚集模式分散在内侧皮层,并与反应性胶质细胞标记物STAT3、NFATc3和YKL-40共聚焦,表明其在AD诱导的星形胶质细胞增生中具有人类特异性作用。总之,我们的数据首次证明了 CETN2 是 AD 中发生重排的星形胶质细胞钙工具箱的一部分,并将 CETN2 加入了可能在疾病演变中发挥作用的蛋白质列表。
{"title":"Astrocytic centrin-2 expression in entorhinal cortex correlates with Alzheimer's disease severity","authors":"Elisa Degl'Innocenti, Tino Emanuele Poloni, Valentina Medici, Francesco Olimpico, Francesco Finamore, Xhulja Profka, Karouna Bascarane, Castrese Morrone, Aldo Pastore, Carole Escartin, Liam A. McDonnell, Maria Teresa Dell'Anno","doi":"10.1002/glia.24603","DOIUrl":"10.1002/glia.24603","url":null,"abstract":"<p>Astrogliosis is a condition shared by acute and chronic neurological diseases and includes morphological, proteomic, and functional rearrangements of astroglia. In Alzheimer's disease (AD), reactive astrocytes frame amyloid deposits and exhibit structural changes associated with the overexpression of specific proteins, mostly belonging to intermediate filaments. At a functional level, amyloid beta triggers dysfunctional calcium signaling in astrocytes, which contributes to the maintenance of chronic neuroinflammation. Therefore, the identification of intracellular players that participate in astrocyte calcium signaling can help unveil the mechanisms underlying astrocyte reactivity and loss of function in AD. We have recently identified the calcium-binding protein centrin-2 (CETN2) as a novel astrocyte marker in the human brain and, in order to determine whether astrocytic CETN2 expression and distribution could be affected by neurodegenerative conditions, we examined its pattern in control and sporadic AD patients. By immunoblot, immunohistochemistry, and targeted-mass spectrometry, we report a positive correlation between entorhinal CETN2 immunoreactivity and neurocognitive impairment, along with the abundance of amyloid depositions and neurofibrillary tangles, thus highlighting a linear relationship between CETN2 expression and AD progression. CETN2-positive astrocytes were dispersed in the entorhinal cortex with a clustered pattern and colocalized with reactive glia markers STAT3, NFATc3, and YKL-40, indicating a human-specific role in AD-induced astrogliosis. Collectively, our data provide the first evidence that CETN2 is part of the astrocytic calcium toolkit undergoing rearrangements in AD and adds CETN2 to the list of proteins that could play a role in disease evolution.</p>","PeriodicalId":174,"journal":{"name":"Glia","volume":"72 12","pages":"2158-2177"},"PeriodicalIF":5.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/glia.24603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cover Illustration: 3D remodeling of reprogrammed non-myelinated Schwann cells and their associated sympathetic axons in metaplastic pancreatic lesions compared to adjacent tissue. 3D visualization of a cleared pancreatic section from a mouse with chronic pancreatitis. The transparent purple volume encompassed a metaplastic lesion with increased density of Schwann cells (in red) and sympathetic axons (in green), while the blue volume represents adjacent tissue with minimal metaplastic and neural changes. Schwann cells were labeled with anti-GFRA3, sympathetic axons with anti-TH and metaplastic cells with anti-CK19, in cyan. (See Chauvet, S., et al, https://doi.org/10.1002/glia.24586)