首页 > 最新文献

Encyclopedia of Polymer Science and Technology最新文献

英文 中文
Graphene Functionalization for Polymer Nanocomposites 聚合物纳米复合材料的石墨烯功能化
Pub Date : 2020-12-30 DOI: 10.1002/0471440264.pst670
H. Salavagione, S. Quiles-Díaz, P. Shuttleworth, G. Ellis, M. Gómez-Fatou
{"title":"Graphene Functionalization for Polymer Nanocomposites","authors":"H. Salavagione, S. Quiles-Díaz, P. Shuttleworth, G. Ellis, M. Gómez-Fatou","doi":"10.1002/0471440264.pst670","DOIUrl":"https://doi.org/10.1002/0471440264.pst670","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127024379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer Reaction Engineering 聚合物反应工程
Pub Date : 2019-11-17 DOI: 10.1002/0471440264.PST669
E. Saldívar‐Guerra
{"title":"Polymer Reaction Engineering","authors":"E. Saldívar‐Guerra","doi":"10.1002/0471440264.PST669","DOIUrl":"https://doi.org/10.1002/0471440264.PST669","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130816046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microemulsion Polymerization 微乳液聚合
Pub Date : 2019-11-17 DOI: 10.1002/9780470377949.ch6
Sahin Demirci, N. Sahiner
{"title":"Microemulsion Polymerization","authors":"Sahin Demirci, N. Sahiner","doi":"10.1002/9780470377949.ch6","DOIUrl":"https://doi.org/10.1002/9780470377949.ch6","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126466674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ring‐Opening Polymerization of α‐Amino Acid N ‐Carboxyanhydrides and Side‐Chain Functionalized Polypeptides α -氨基酸N -羧基氢化物和侧链功能化多肽的开环聚合
Pub Date : 2019-05-14 DOI: 10.1002/0471440264.PST283.PUB2
Xiaohui Fu, Jing Sun, Zhibo Li
{"title":"Ring‐Opening Polymerization of α‐Amino Acid\u0000 N\u0000 ‐Carboxyanhydrides and Side‐Chain Functionalized Polypeptides","authors":"Xiaohui Fu, Jing Sun, Zhibo Li","doi":"10.1002/0471440264.PST283.PUB2","DOIUrl":"https://doi.org/10.1002/0471440264.PST283.PUB2","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122368133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyphosphazene Polymer Polyphosphazene聚合物
Pub Date : 2019-05-14 DOI: 10.1002/0471440264.pst284.pub2
Kenneth S. Ogueri, H. Allcock, C. Laurencin
{"title":"Polyphosphazene Polymer","authors":"Kenneth S. Ogueri, H. Allcock, C. Laurencin","doi":"10.1002/0471440264.pst284.pub2","DOIUrl":"https://doi.org/10.1002/0471440264.pst284.pub2","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117312723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Polymer Composites: Reinforcing Fillers 聚合物复合材料:增强填料
Pub Date : 2019-05-14 DOI: 10.1002/0471440264.PST130.PUB2
A. Pegoretti, A. Dorigato
{"title":"Polymer Composites: Reinforcing Fillers","authors":"A. Pegoretti, A. Dorigato","doi":"10.1002/0471440264.PST130.PUB2","DOIUrl":"https://doi.org/10.1002/0471440264.PST130.PUB2","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124873314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Photopolymerization, Cationic 光聚合、阳离子
Pub Date : 2019-05-14 DOI: 10.1002/0471440264.pst491.pub2
X. Allonas
{"title":"Photopolymerization, Cationic","authors":"X. Allonas","doi":"10.1002/0471440264.pst491.pub2","DOIUrl":"https://doi.org/10.1002/0471440264.pst491.pub2","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127549641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Polymer Crystallization Kinetics 聚合物结晶动力学
Pub Date : 2019-05-14 DOI: 10.1002/0471440264.PST089.PUB2
J. Hobbs, R. Androsch, Wenbing Hu, M. L. Lorenzo, C. Schick
{"title":"Polymer Crystallization Kinetics","authors":"J. Hobbs, R. Androsch, Wenbing Hu, M. L. Lorenzo, C. Schick","doi":"10.1002/0471440264.PST089.PUB2","DOIUrl":"https://doi.org/10.1002/0471440264.PST089.PUB2","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124304632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer Characterization: Electron Paramagnetic Resonance 聚合物表征:电子顺磁共振
Pub Date : 2018-11-14 DOI: 10.1002/0471440264.PST511.PUB2
V. Krinichnyi
Polymers and their nanocomposites are widely used in our daily life. The field of their use is permanently expanding. They are successfully used in pharmaceutics,medical therapy, aircraft and spaceship construction, and so on (1). One of the main scientific goals is to reinforce human brain with computer ability (2). To create such a symbiotic intelligence, appropriate neurochips were planned to be developed and created. However, a convenient modern computer technology is based on three-dimensional silicon crystals, whereas human organism consists of lower dimensional biological object. So, the combination of a future computer based on organic insulating and conjugated polymers with biopolymers is expected to considerably increase the power of human apprehension. The information in such elements can be transferred through conjugated polymers, for example, transpolyacetylene (trans-PA), poly(p-phenylene) (PPP), polypyrrole (PP), polyaniline (PANI), polythiophene (PT), and their derivatives (3). Their electrical conductivity of either por n-type can be changed by more than 12 orders of magnitude by chemical or electrochemical introduction into their volume of various anions (BF4 , ClO4 , AsF − 5 , J − 3 , FeCl − 4 , MnO − 4 , and so on) or cations (Li +, K+, Na+, and so on) or cations (Li+, K+, Na+, and so on), respectively (4). The handling of charge transfer in such polymers becomes possible due to the existence in their backbone of alternating single and double bonds. This originates the appearance of midgap in their band structure as a result of the overlapping of π orbitals of monomer rings that depends on polymer structure, morphology, chain packing, and doping level y (the number of the dopant molecules per each polymer unit). Both the molecular and band structures of PT are shown in Figure 1 as an example. For this and analogous polymers, a resonance form can be derived, which corresponds to a quinoid structure. So, energetically lower and higher, benzenoid and quinoid forms can be stabilized in conjugated polymers under their chemical or electrochemical doping up to intermediate level y or irradiation (Fig. 1). As a result, the nonlinear excitations, polarons with spin S = 1⁄2 and elemental charge e, are formed on polymer chains. Their energy level lies in the midgap above the valence band (VB) and below the conducting band (CB) (Fig. 1). At the polymer doping up to intermediate level, polaron pairs may collapse and form spinless bipolarons (Fig. 1). The width of the polaron and bipolaron is 3–5 and 5–5.5 polymer units, respectively (5).With the further increase in a doping level y, bipolaron states overlap forming bipolaron
聚合物及其纳米复合材料在我们的日常生活中有着广泛的应用。它们的应用领域在不断扩大。它们成功地应用于制药、医疗、飞机和宇宙飞船建造等领域(1)。主要的科学目标之一是用计算机能力增强人脑(2)。为了创造这种共生智能,计划开发和创造适当的神经芯片。然而,方便的现代计算机技术是基于三维硅晶体的,而人体是由低维生物物体组成的。因此,基于有机绝缘和共轭聚合物与生物聚合物的未来计算机的结合有望大大提高人类的理解能力。这些元素中的信息可以通过共轭聚合物被转移,例如,transpolyacetylene (trans-PA),聚(对苯)(PPP),聚吡咯(PP)、聚苯胺(PANI), polythiophene (PT)及其衍生物(3)。他们的导电性的n型运动可以改变12个数量级以上通过化学或电化学引入各种阴离子体积(BF4, ClO4, AsF−5 J−3 FeCl−4,MnO−4,等等)或阳离子(李+,K+, Na+等)或阳离子(Li+, K+, Na+等)(4)。由于在这些聚合物的主链中存在交替的单键和双键,因此在这些聚合物中处理电荷转移成为可能。这是由于单体环的π轨道重叠导致其带结构中出现中间间隙的原因,这取决于聚合物的结构、形态、链排列和掺杂水平y(每个聚合物单元的掺杂分子数量)。PT的分子结构和能带结构如图1所示。对于这种和类似的聚合物,可以推导出一种共振形式,它对应于一个类醌结构。因此,在化学或电化学掺杂到中间能级y或辐照下,能量较低和较高的苯类和奎类化合物形式可以在共轭聚合物中稳定下来(图1)。结果,在聚合物链上形成自旋为S = 1 / 2的极化子和单质电荷e的非线性激发。它们的能级位于价带(VB)以上和导电带(CB)以下的中间间隙(图1)。在聚合物掺杂到中间能级时,极化子对可能坍缩形成无自旋双极化子(图1)。极化子和双极化子的宽度分别为3-5和5 - 5.5个聚合物单位(5)。随着掺杂能级y的进一步增加,双极化子态重叠形成双极化子
{"title":"Polymer Characterization: Electron Paramagnetic Resonance","authors":"V. Krinichnyi","doi":"10.1002/0471440264.PST511.PUB2","DOIUrl":"https://doi.org/10.1002/0471440264.PST511.PUB2","url":null,"abstract":"Polymers and their nanocomposites are widely used in our daily life. The field of their use is permanently expanding. They are successfully used in pharmaceutics,medical therapy, aircraft and spaceship construction, and so on (1). One of the main scientific goals is to reinforce human brain with computer ability (2). To create such a symbiotic intelligence, appropriate neurochips were planned to be developed and created. However, a convenient modern computer technology is based on three-dimensional silicon crystals, whereas human organism consists of lower dimensional biological object. So, the combination of a future computer based on organic insulating and conjugated polymers with biopolymers is expected to considerably increase the power of human apprehension. The information in such elements can be transferred through conjugated polymers, for example, transpolyacetylene (trans-PA), poly(p-phenylene) (PPP), polypyrrole (PP), polyaniline (PANI), polythiophene (PT), and their derivatives (3). Their electrical conductivity of either por n-type can be changed by more than 12 orders of magnitude by chemical or electrochemical introduction into their volume of various anions (BF4 , ClO4 , AsF − 5 , J − 3 , FeCl − 4 , MnO − 4 , and so on) or cations (Li +, K+, Na+, and so on) or cations (Li+, K+, Na+, and so on), respectively (4). The handling of charge transfer in such polymers becomes possible due to the existence in their backbone of alternating single and double bonds. This originates the appearance of midgap in their band structure as a result of the overlapping of π orbitals of monomer rings that depends on polymer structure, morphology, chain packing, and doping level y (the number of the dopant molecules per each polymer unit). Both the molecular and band structures of PT are shown in Figure 1 as an example. For this and analogous polymers, a resonance form can be derived, which corresponds to a quinoid structure. So, energetically lower and higher, benzenoid and quinoid forms can be stabilized in conjugated polymers under their chemical or electrochemical doping up to intermediate level y or irradiation (Fig. 1). As a result, the nonlinear excitations, polarons with spin S = 1⁄2 and elemental charge e, are formed on polymer chains. Their energy level lies in the midgap above the valence band (VB) and below the conducting band (CB) (Fig. 1). At the polymer doping up to intermediate level, polaron pairs may collapse and form spinless bipolarons (Fig. 1). The width of the polaron and bipolaron is 3–5 and 5–5.5 polymer units, respectively (5).With the further increase in a doping level y, bipolaron states overlap forming bipolaron","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115154326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermoforming of Fiber–Plastic Composites: Mechanical Tests and Simulations 纤维-塑料复合材料的热成型:力学试验和模拟
Pub Date : 2018-11-14 DOI: 10.1002/0471440264.pst371.pub2
E. Guzman-Maldonado, N. Hamila, P. Wang, P. Boisse
{"title":"Thermoforming of Fiber–Plastic Composites: Mechanical Tests and Simulations","authors":"E. Guzman-Maldonado, N. Hamila, P. Wang, P. Boisse","doi":"10.1002/0471440264.pst371.pub2","DOIUrl":"https://doi.org/10.1002/0471440264.pst371.pub2","url":null,"abstract":"","PeriodicalId":175575,"journal":{"name":"Encyclopedia of Polymer Science and Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114427022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Encyclopedia of Polymer Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1