U. Kraft, Malgorzata Nguyen, C. Nielsen, I. Mcculloch, H. Sirringhaus
{"title":"Off-state bias stress stability in polymer transistors: An often overlooked prerequisite","authors":"U. Kraft, Malgorzata Nguyen, C. Nielsen, I. Mcculloch, H. Sirringhaus","doi":"10.1117/12.2594161","DOIUrl":"https://doi.org/10.1117/12.2594161","url":null,"abstract":"","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"115 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134554312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemists have the capability to tune the electronic, redox, and optical properties of π-conjugated molecules and polymers, which in turn are used as the building blocks to develop organic semiconductors. In these materials, the nature of the molecular-scale solid-state packing arrangement dictates performance, rendering knowledge as to how materials processing impacts these arrangements critical. Currently, there exist few hard-and-fast rules that combine molecular design and process conditions in the discovery of new organic semiconductors, as the understanding that links these domains is quite limited. Here, we will discuss the development of data-enabled tools, including an open-access database dedicated to crystalline organic semiconductors, that aim to seek out physicochemical understanding across the multiple physical and chemical scales that dictate performance and offer machine-based discovery and design of new generations of organic semiconductors.
{"title":"Towards data-enabled discovery and design of organic semiconductors","authors":"C. Risko","doi":"10.1117/12.2593717","DOIUrl":"https://doi.org/10.1117/12.2593717","url":null,"abstract":"Chemists have the capability to tune the electronic, redox, and optical properties of π-conjugated molecules and polymers, which in turn are used as the building blocks to develop organic semiconductors. In these materials, the nature of the molecular-scale solid-state packing arrangement dictates performance, rendering knowledge as to how materials processing impacts these arrangements critical. Currently, there exist few hard-and-fast rules that combine molecular design and process conditions in the discovery of new organic semiconductors, as the understanding that links these domains is quite limited. Here, we will discuss the development of data-enabled tools, including an open-access database dedicated to crystalline organic semiconductors, that aim to seek out physicochemical understanding across the multiple physical and chemical scales that dictate performance and offer machine-based discovery and design of new generations of organic semiconductors.","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127273691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vertical organic field effect transistors (VOFET) and vertical static induction transistor (VSIT) have shown the advances of large on-current, high compatibility with sensors, ease of solution-processing and good mechanical flexibility. However, there has been no concise and explicit theories for these transistors. Here, we draw the physical images of the mechanisms, derive the electrostatic potentials, and propose the simple current-voltage relations for these vertical organic transistors. The theory has been verified by numerical simulation and are consistent with experimental results. The theories also provide guidances for device designing toward sharp turn-on properties, a large on-off ratio and good saturation degree.
{"title":"Device physics of organic vertical transistors based on conductive network electrodes","authors":"Chuan Liu","doi":"10.1117/12.2597195","DOIUrl":"https://doi.org/10.1117/12.2597195","url":null,"abstract":"Vertical organic field effect transistors (VOFET) and vertical static induction transistor (VSIT) have shown the advances of large on-current, high compatibility with sensors, ease of solution-processing and good mechanical flexibility. However, there has been no concise and explicit theories for these transistors. Here, we draw the physical images of the mechanisms, derive the electrostatic potentials, and propose the simple current-voltage relations for these vertical organic transistors. The theory has been verified by numerical simulation and are consistent with experimental results. The theories also provide guidances for device designing toward sharp turn-on properties, a large on-off ratio and good saturation degree.","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116781826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
My talk will deal with processing and characterization of conducting polymer films and devices for flexible, stretchable and healable transistors. Self-healing electronic materials are highly relevant for application in biology and sustainable electronics. We observed mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, by blending with other polymers, the films are transformed into autonomic self-healing materials without the need of external stimulation. This reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bio-implanted electronics, placing conducting polymers on the front line for healing applications in bioelectronics.
{"title":"Flexible, stretchable, and healable transistors","authors":"F. Cicoira","doi":"10.1117/12.2597258","DOIUrl":"https://doi.org/10.1117/12.2597258","url":null,"abstract":"My talk will deal with processing and characterization of conducting polymer films and devices for flexible, stretchable and healable transistors. \u0000Self-healing electronic materials are highly relevant for application in biology and sustainable electronics. We observed mechanical and electrical healability of PEDOT:PSS thin films. Upon reaching a certain thickness (about 1 µm), PEDOT:PSS thin films damaged with a sharp blade can be healed by simply wetting the damaged area with water. The process is rapid, with a response time on the order of 150 ms. Significantly, by blending with other polymers, the films are transformed into autonomic self-healing materials without the need of external stimulation. This reveals a new property of PEDOT:PSS and enables its immediate use in flexible and biocompatible electronics, such as electronic skin and bio-implanted electronics, placing conducting polymers on the front line for healing applications in bioelectronics.","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115031965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flexible organic transistors with submicron channel lengths and gate-to-contact overlaps","authors":"H. Klauk, U. Zschieschang","doi":"10.1117/12.2597202","DOIUrl":"https://doi.org/10.1117/12.2597202","url":null,"abstract":"","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127704780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced non-volatile attribute of FeFET based memory device via tuning of ferroelectric microstructure","authors":"D. Roy","doi":"10.1117/12.2596104","DOIUrl":"https://doi.org/10.1117/12.2596104","url":null,"abstract":"","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128004315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephanie S. Lee, Yongfan Yan, A. Shtukenberg, B. Kahr, Yuze Zhang
Crystals that twist as they grow are common but little known and introduce completely unexplored features to materials design. Here, we present growth-induced twists to molecular semiconductor crystals with the expectation that microstructure and continually precessing crystallographic orientations can modulate interactions with light, charge transport, and other optoelectronic processes. We have found that a variety of organic semiconductors and charge transfer complexes can be readily induced to grow from the melt as spherulites of tightly packed helicoidal fibrils. The twisting pitch can be controlled by the degree of undercooling after melting or through the incorporation of additives. Intriguingly, charge mobilities measured using field-effect transistor platforms have been found to increase with increasing extent of twisting. These results indicate crystal twisting to be a promising strategy for modulating the performance of optoelectronic devices.
{"title":"Twisting organic semiconductor crystals","authors":"Stephanie S. Lee, Yongfan Yan, A. Shtukenberg, B. Kahr, Yuze Zhang","doi":"10.1117/12.2595148","DOIUrl":"https://doi.org/10.1117/12.2595148","url":null,"abstract":"Crystals that twist as they grow are common but little known and introduce completely unexplored features to materials design. Here, we present growth-induced twists to molecular semiconductor crystals with the expectation that microstructure and continually precessing crystallographic orientations can modulate interactions with light, charge transport, and other optoelectronic processes. We have found that a variety of organic semiconductors and charge transfer complexes can be readily induced to grow from the melt as spherulites of tightly packed helicoidal fibrils. The twisting pitch can be controlled by the degree of undercooling after melting or through the incorporation of additives. Intriguingly, charge mobilities measured using field-effect transistor platforms have been found to increase with increasing extent of twisting. These results indicate crystal twisting to be a promising strategy for modulating the performance of optoelectronic devices.","PeriodicalId":175873,"journal":{"name":"Organic and Hybrid Field-Effect Transistors XX","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131801236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}