Fever is an increase in body temperature beyond the normal range, acting as a protective inflammatory mechanism. This article summarizes diseases with fever encountered in dental clinics, including what is known about pyrexia in coronavirus infection, and further proposes a "six steps in one" identification and analysis strategy to guide the clinical work of stomatology.
{"title":"Diagnostic strategies for diseases with fever in dental clinics.","authors":"Jian Yuan, Chuanxia Liu, Zaiye Li, Qianming Chen","doi":"10.1631/jzus.B2200369","DOIUrl":"https://doi.org/10.1631/jzus.B2200369","url":null,"abstract":"<p><p>Fever is an increase in body temperature beyond the normal range, acting as a protective inflammatory mechanism. This article summarizes diseases with fever encountered in dental clinics, including what is known about pyrexia in coronavirus infection, and further proposes a \"six steps in one\" identification and analysis strategy to guide the clinical work of stomatology.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 4","pages":"352-358"},"PeriodicalIF":0.0,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-exosomal non-coding RNAs (non-exo-ncRNAs) and exosomal ncRNAs (exo-ncRNAs) have been associated with the pathological development of myocardial infarction (MI). Accordingly, this analytical review provides an overview of current MI studies on the role of plasma non-exo/exo-ncRNAs. We summarize the features and crucial roles of ncRNAs and reveal their novel biological correlations via bioinformatics analysis. The following contributions are made: (1) we comprehensively describe the expression profile, competing endogenous RNA (ceRNA) network, and "pre-necrotic" biomarkers of non-exo/exo-ncRNAs for MI; (2) functional enrichment analysis indicates that the target genes of ncRNAs are enriched in the regulation of apoptotic signaling pathway and cellular response to chemical stress, etc.; (3) we propose an updated and comprehensive view on the mechanisms, pathophysiology, and biomarker roles of non-exo/exo-ncRNAs in MI, thereby providing a theoretical basis for the clinical management of MI.
{"title":"Promising roles of non-exosomal and exosomal non-coding RNAs in the regulatory mechanism and as diagnostic biomarkers in myocardial infarction.","authors":"Jingru Li, Haocheng Ma, Xinyu Wu, Guihu Sun, Ping Yang, Yunzhu Peng, Qixian Wang, Luqiao Wang","doi":"10.1631/jzus.B2200459","DOIUrl":"https://doi.org/10.1631/jzus.B2200459","url":null,"abstract":"<p><p>Non-exosomal non-coding RNAs (non-exo-ncRNAs) and exosomal ncRNAs (exo-ncRNAs) have been associated with the pathological development of myocardial infarction (MI). Accordingly, this analytical review provides an overview of current MI studies on the role of plasma non-exo/exo-ncRNAs. We summarize the features and crucial roles of ncRNAs and reveal their novel biological correlations via bioinformatics analysis. The following contributions are made: (1) we comprehensively describe the expression profile, competing endogenous RNA (ceRNA) network, and \"pre-necrotic\" biomarkers of non-exo/exo-ncRNAs for MI; (2) functional enrichment analysis indicates that the target genes of ncRNAs are enriched in the regulation of apoptotic signaling pathway and cellular response to chemical stress, etc.; (3) we propose an updated and comprehensive view on the mechanisms, pathophysiology, and biomarker roles of non-exo/exo-ncRNAs in MI, thereby providing a theoretical basis for the clinical management of MI.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 4","pages":"281-300"},"PeriodicalIF":0.0,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106394/pdf/JZhejiangUnivSciB-24-4-281.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elena Roca, Anna Gobetti, Giovanna Cornacchia, Oscar Vivaldi, Barbara Buffoli, Giorgio Ramorino
Neurosurgery is a highly specialized field: it often involves surgical manipulation of noble structures and cerebral retraction is frequently necessary to reach deep-seated brain lesions. There are still no reliable methods preventing possible retraction complications. The objective of this study was to design work chambers well suited for transcranial endoscopic surgery while providing safe retraction of the surrounding brain tissue. The chamber is designed to be inserted close to the intracranial point of interest; once it is best placed it can be opened. This should guarantee an appreciable workspace similar to that of current neurosurgical procedures. The experimental aspect of this study involved the use of a force sensor to evaluate the pressures exerted on the brain tissue during the retraction phase. Following pterional craniotomy, pressure measurements were made during retraction with the use of a conventional metal spatula with different inclinations. Note that, although the force values necessary for retraction and exerted on the spatula by the neurosurgeon are the same, the local pressure exerted on the parenchyma at the edge of the spatula at different inclinations varied greatly. A new method of cerebral retraction using a chamber retractor (CR) has been designed to avoid any type of complication due to spatula edge overpressures and to maintain acceptable pressure values exerted on the parenchyma.
{"title":"An expandable chamber for safe brain retraction: new technologies in the field of transcranial endoscopic surgery.","authors":"Elena Roca, Anna Gobetti, Giovanna Cornacchia, Oscar Vivaldi, Barbara Buffoli, Giorgio Ramorino","doi":"10.1631/jzus.B2200557","DOIUrl":"https://doi.org/10.1631/jzus.B2200557","url":null,"abstract":"<p><p>Neurosurgery is a highly specialized field: it often involves surgical manipulation of noble structures and cerebral retraction is frequently necessary to reach deep-seated brain lesions. There are still no reliable methods preventing possible retraction complications. The objective of this study was to design work chambers well suited for transcranial endoscopic surgery while providing safe retraction of the surrounding brain tissue. The chamber is designed to be inserted close to the intracranial point of interest; once it is best placed it can be opened. This should guarantee an appreciable workspace similar to that of current neurosurgical procedures. The experimental aspect of this study involved the use of a force sensor to evaluate the pressures exerted on the brain tissue during the retraction phase. Following pterional craniotomy, pressure measurements were made during retraction with the use of a conventional metal spatula with different inclinations. Note that, although the force values necessary for retraction and exerted on the spatula by the neurosurgeon are the same, the local pressure exerted on the parenchyma at the edge of the spatula at different inclinations varied greatly. A new method of cerebral retraction using a chamber retractor (CR) has been designed to avoid any type of complication due to spatula edge overpressures and to maintain acceptable pressure values exerted on the parenchyma.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 4","pages":"326-335"},"PeriodicalIF":0.0,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106399/pdf/JZhejiangUnivSciB-24-4-326.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9693131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.
{"title":"Effects of rumen microorganisms on the decomposition of recycled straw residue.","authors":"Kailun Song, Zicheng Zhou, Jinhai Leng, Songwen Fang, Chunhuo Zhou, Guorong Ni, Lichun Kang, Xin Yin","doi":"10.1631/jzus.B2200504","DOIUrl":"https://doi.org/10.1631/jzus.B2200504","url":null,"abstract":"<p><p>Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 4","pages":"336-344"},"PeriodicalIF":0.0,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106401/pdf/JZhejiangUnivSciB-24-4-336.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luhong Shen, Yang Yang, Jiuliang Zhang, Lanjie Feng, Qing Zhou
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
{"title":"Diacylated anthocyanins from purple sweet potato (<i>Ipomoea</i><i>batatas</i> L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet.","authors":"Luhong Shen, Yang Yang, Jiuliang Zhang, Lanjie Feng, Qing Zhou","doi":"10.1631/jzus.B2200587","DOIUrl":"https://doi.org/10.1631/jzus.B2200587","url":null,"abstract":"<p><p>Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10206221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alcoholic liver disease (ALD) is the most frequent liver disease worldwide, resulting in severe harm to personal health and posing a serious burden to public health. Based on the reported antioxidant and anti-inflammatory capacities of scutellarin (SCU), this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration (10, 25, and 50 mg/kg). The results indicated that SCU could lessen serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the histopathological changes in acute alcoholic liver; it reduced alcohol-induced malondialdehyde (MDA) content and increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activity. Furthermore, SCU decreased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β messenger RNA (mRNA) expression levels, weakened inducible nitric oxide synthase (iNOS) activity, and inhibited nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation. Mechanistically, SCU suppressed cytochrome P450 family 2 subfamily E member 1 (CYP2E1) upregulation triggered by alcohol, increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB (NF-κB)-α (IκBα) as well as activation of NF-κB by mediating the protein kinase B (AKT) and p38 mitogen-activated protein kinase (MAPK) pathways. These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.
{"title":"Scutellarin prevents acute alcohol-induced liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and inhibiting inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.","authors":"Xiao Zhang, Zhicheng Dong, Hui Fan, Qiankun Yang, Guili Yu, Enzhuang Pan, Nana He, Xueqing Li, Panpan Zhao, Mian Fu, Jingquan Dong","doi":"10.1631/jzus.B2200612","DOIUrl":"https://doi.org/10.1631/jzus.B2200612","url":null,"abstract":"<p><p>Alcoholic liver disease (ALD) is the most frequent liver disease worldwide, resulting in severe harm to personal health and posing a serious burden to public health. Based on the reported antioxidant and anti-inflammatory capacities of scutellarin (SCU), this study investigated its protective role in male BALB/c mice with acute alcoholic liver injury after oral administration (10, 25, and 50 mg/kg). The results indicated that SCU could lessen serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and improve the histopathological changes in acute alcoholic liver; it reduced alcohol-induced malondialdehyde (MDA) content and increased glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD) activity. Furthermore, SCU decreased tumor necrosis factor-α (<i>TNF-α</i>), interleukin-6 (<i>IL-6</i>), and <i>IL-1β</i> messenger RNA (mRNA) expression levels, weakened inducible nitric oxide synthase (iNOS) activity, and inhibited nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome activation. Mechanistically, SCU suppressed cytochrome P450 family 2 subfamily E member 1 (CYP2E1) upregulation triggered by alcohol, increased the expression of oxidative stress-related nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) pathways, and suppressed the inflammation-related degradation of inhibitor of nuclear factor-κB (NF-κB)-α (IκBα) as well as activation of NF-κB by mediating the protein kinase B (AKT) and p38 mitogen-activated protein kinase (MAPK) pathways. These findings demonstrate that SCU protects against acute alcoholic liver injury via inhibiting oxidative stress by regulating the Nrf2/HO-1 pathway and suppressing inflammation by regulating the AKT, p38 MAPK/NF-κB pathways.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":" ","pages":"1-15"},"PeriodicalIF":0.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10206220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongkang Zou, Pengpeng Yue, Hankun Cao, Liqin Wu, Li Xu, Zhongzhong Liu, Shuangquan Wu, Qifa Ye
Obstructive jaundice is a common clinical symptom generally caused by bile duct stones, inflammatory hyperplasia, and tumors. It is characterized by hyperbilirubinemia and may trigger a variety of complications such as hypotension, kidney injury, endotoxemia, multiple organ dysfunction syndrome, and even death (Pavlidis and Pavlidis, 2018; Liu et al., 2021). Relieving bile duct obstruction and providing adequate drainage have been considered as the most effective therapies for obstructive jaundice. However, it has not yet been established whether it is beneficial to treat affected patients by pre-operative biliary drainage (Blacker et al., 2021). Moreover, the pathophysiological changes or mechanisms associated with the reversal of organ function following the relief of bile-duct obstruction are unclear (Huang et al., 2004). Therefore, it is necessary to establish an experimental model of reversible obstructive jaundice to simulate biliary drainage in clinical practice.
梗阻性黄疸是一种常见的临床症状,通常由胆管结石、炎性增生和肿瘤引起。以高胆红素血症为特征,可引发多种并发症,如低血压、肾损伤、内毒素血症、多器官功能障碍综合征,甚至死亡(Pavlidis and Pavlidis, 2018;刘等人,2021)。解除胆管梗阻并提供适当的引流被认为是治疗梗阻性黄疸最有效的方法。然而,术前胆道引流对患者是否有益尚未确定(Blacker et al., 2021)。此外,胆管阻塞解除后与器官功能逆转相关的病理生理变化或机制尚不清楚(Huang et al., 2004)。因此,建立可逆性梗阻性黄疸的实验模型来模拟临床上的胆道引流是很有必要的。
{"title":"A novel ameliorated rat model of reversible obstructive jaundice.","authors":"Yongkang Zou, Pengpeng Yue, Hankun Cao, Liqin Wu, Li Xu, Zhongzhong Liu, Shuangquan Wu, Qifa Ye","doi":"10.1631/jzus.B2200421","DOIUrl":"https://doi.org/10.1631/jzus.B2200421","url":null,"abstract":"<p><p>Obstructive jaundice is a common clinical symptom generally caused by bile duct stones, inflammatory hyperplasia, and tumors. It is characterized by hyperbilirubinemia and may trigger a variety of complications such as hypotension, kidney injury, endotoxemia, multiple organ dysfunction syndrome, and even death (Pavlidis and Pavlidis, 2018; Liu et al., 2021). Relieving bile duct obstruction and providing adequate drainage have been considered as the most effective therapies for obstructive jaundice. However, it has not yet been established whether it is beneficial to treat affected patients by pre-operative biliary drainage (Blacker et al., 2021). Moreover, the pathophysiological changes or mechanisms associated with the reversal of organ function following the relief of bile-duct obstruction are unclear (Huang et al., 2004). Therefore, it is necessary to establish an experimental model of reversible obstructive jaundice to simulate biliary drainage in clinical practice.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 4","pages":"345-351"},"PeriodicalIF":0.0,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10106395/pdf/JZhejiangUnivSciB-24-4-345.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9678943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.
{"title":"Vitamin D receptor (VDR) mediates the quiescence of activated hepatic stellate cells (aHSCs) by regulating M2 macrophage exosomal smooth muscle cell-associated protein 5 (SMAP-5).","authors":"Xuwentai Liu, Yue Wu, Yanyi Li, Kaiming Li, Siyuan Hou, Ming Ding, Jingmin Tan, Zijing Zhu, Yingqi Tang, Yuming Liu, Qianhui Sun, Cong Wang, Can Zhang","doi":"10.1631/jzus.B2200383","DOIUrl":"https://doi.org/10.1631/jzus.B2200383","url":null,"abstract":"<p><p>An effective therapeutic regimen for hepatic fibrosis requires a deep understanding of the pathogenesis mechanism. Hepatic fibrosis is characterized by activated hepatic stellate cells (aHSCs) with an excessive production of extracellular matrix. Although promoted activation of HSCs by M2 macrophages has been demonstrated, the molecular mechanism involved remains ambiguous. Herein, we propose that the vitamin D receptor (VDR) involved in macrophage polarization may regulate the communication between macrophages and HSCs by changing the functions of exosomes. We confirm that activating the VDR can inhibit the effect of M2 macrophages on HSC activation. The exosomes derived from M2 macrophages can promote HSC activation, while stimulating VDR alters the protein profiles and reverses their roles in M2 macrophage exosomes. Smooth muscle cell-associated protein 5 (SMAP-5) was found to be the key effector protein in promoting HSC activation by regulating autophagy flux. Building on these results, we show that a combined treatment of a VDR agonist and a macrophage-targeted exosomal secretion inhibitor achieves an excellent anti-hepatic fibrosis effect. In this study, we aim to elucidate the association between VDR and macrophages in HSC activation. The results contribute to our understanding of the pathogenesis mechanism of hepatic fibrosis, and provide potential therapeutic targets for its treatment.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 3","pages":"248-261"},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014314/pdf/JZhejiangUnivSciB-24-3-248.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9486235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lijuan Xiong, Qian Li, Xiongjing Cao, Huangguo Xiong, Daquan Meng, Mei Zhou, Yanzhao Zhang, Xinliang He, Yupeng Zhang, Liang Tang, Yang Jin, Jiahong Xia, Yu Hu
Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. It is highly contagious and can cause death in severe cases. As reported by the World Health Organization (WHO), as of 6:36 pm Central European Summer Time (CEST), 12 August 2022, there had been 585 950 285 confirmed cases of COVID-19, including 6 425 422 deaths (WHO, 2022).
{"title":"Mental health, health-related quality of life, and lung function after hospital discharge in healthcare workers with severe COVID-19: a cohort study from China.","authors":"Lijuan Xiong, Qian Li, Xiongjing Cao, Huangguo Xiong, Daquan Meng, Mei Zhou, Yanzhao Zhang, Xinliang He, Yupeng Zhang, Liang Tang, Yang Jin, Jiahong Xia, Yu Hu","doi":"10.1631/jzus.B2200423","DOIUrl":"10.1631/jzus.B2200423","url":null,"abstract":"<p><p>Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. It is highly contagious and can cause death in severe cases. As reported by the World Health Organization (WHO), as of 6:36 pm Central European Summer Time (CEST), 12 August 2022, there had been 585 950 285 confirmed cases of COVID-19, including 6 425 422 deaths (WHO, 2022).</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 3","pages":"269-274"},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9119365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziqin He, Xiaomin She, Ziyu Liu, Xing Gao, L U Lu, Julu Huang, Cheng Lu, Yan Lin, Rong Liang, Jiazhou Ye
Hepatocellular carcinoma (HCC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Surgery remains the primary and most successful therapy option for the treatment of early- and mid-stage HCCs, but the high heterogeneity of HCC renders prognostic prediction challenging. The construction of relevant prognostic models helps to stratify the prognosis of surgically treated patients and guide personalized clinical decision-making, thereby improving patient survival rates. Currently, the prognostic assessment of HCC is based on several commonly used staging systems, such as Tumor-Node-Metastasis (TNM), Cancer of the Liver Italian Program (CLIP), and Barcelona Clinic Liver Cancer (BCLC). Given the insufficiency of these staging systems and the aim to improve the accuracy of prognostic prediction, researchers have incorporated further prognostic factors, such as microvascular infiltration, and proposed some new prognostic models for HCC. To provide insights into the prospects of clinical oncology research, this review describes the commonly used HCC staging systems and new models proposed in recent years.
{"title":"Advances in post-operative prognostic models for hepatocellular carcinoma.","authors":"Ziqin He, Xiaomin She, Ziyu Liu, Xing Gao, L U Lu, Julu Huang, Cheng Lu, Yan Lin, Rong Liang, Jiazhou Ye","doi":"10.1631/jzus.B2200067","DOIUrl":"https://doi.org/10.1631/jzus.B2200067","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the most common malignancies and a leading cause of cancer-related death worldwide. Surgery remains the primary and most successful therapy option for the treatment of early- and mid-stage HCCs, but the high heterogeneity of HCC renders prognostic prediction challenging. The construction of relevant prognostic models helps to stratify the prognosis of surgically treated patients and guide personalized clinical decision-making, thereby improving patient survival rates. Currently, the prognostic assessment of HCC is based on several commonly used staging systems, such as Tumor-Node-Metastasis (TNM), Cancer of the Liver Italian Program (CLIP), and Barcelona Clinic Liver Cancer (BCLC). Given the insufficiency of these staging systems and the aim to improve the accuracy of prognostic prediction, researchers have incorporated further prognostic factors, such as microvascular infiltration, and proposed some new prognostic models for HCC. To provide insights into the prospects of clinical oncology research, this review describes the commonly used HCC staging systems and new models proposed in recent years.</p>","PeriodicalId":17601,"journal":{"name":"Journal of Zhejiang University. Science. B","volume":"24 3","pages":"191-206"},"PeriodicalIF":0.0,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014320/pdf/JZhejiangUnivSciB-24-3-191.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9116174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}