Pub Date : 2022-09-22DOI: 10.1186/s10086-022-02062-1
H. Ido, A. Miyatake, Yasushi Hiramatsu, K. Miyamoto
{"title":"Effects of the presence or absence and the position of glued edge joints in the lamina on the shear strength of glued laminated timber","authors":"H. Ido, A. Miyatake, Yasushi Hiramatsu, K. Miyamoto","doi":"10.1186/s10086-022-02062-1","DOIUrl":"https://doi.org/10.1186/s10086-022-02062-1","url":null,"abstract":"","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":" ","pages":"1-9"},"PeriodicalIF":2.9,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45200653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-15DOI: 10.1186/s10086-022-02061-2
Y. Horikawa
{"title":"Structural diversity of natural cellulose and related applications using delignified wood","authors":"Y. Horikawa","doi":"10.1186/s10086-022-02061-2","DOIUrl":"https://doi.org/10.1186/s10086-022-02061-2","url":null,"abstract":"","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"68 1","pages":"1-9"},"PeriodicalIF":2.9,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42537889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements of water-saturated wood of Douglas fir (Pseudotsuga menziesii) in the temperature range of 0 ℃ to 100 ℃ were focused to clarify microstructural changes within an annual ring. The following results were obtained. Thermal softening behavior caused by micro-Brownian motion of lignin was observed in both earlywood and latewood. The peaks of tanδ were found at around 95 ℃ for earlywood and at around 90 ℃ for latewood. These results suggested that the structures of lignin in the cell wall were different between earlywood and latewood. SAXS measurements of water-saturated earlywood and latewood in water were performed with precise temperature control. The scattering intensity increased with increasing temperature, indicating that the density of the matrix was reduced at higher temperature. One-dimensional SAXS intensity at the equator, which approximately represents cellulose microfibrils arrangement in the matrix, was intensively analyzed using the WoodSAS model. The result of this model fitting showed that the cellulose microfibril diameter of latewood was higher than that of earlywood. In addition, the value of interfibrillar distance decreased monotonically in the earlywood, while it decreased rapidly in the latewood from 60 ℃ to 90 ℃. The changes in the cellulose microfibril (CMF) diameter and the interfibrillar distance with increasing temperature between earlywood and latewood by SAXS measurement were different. The differences in CMF diameter and inter-fibril distance between earlywood and latewood measured by SAXS also support the hypothesis that lignin structure differs between earlywood and latewood based on the results of DMA measurements.
{"title":"Combined analysis of microstructures within an annual ring of Douglas fir (Pseudotsuga menziesii) by dynamic mechanical analysis and small angle X-ray scattering","authors":"Horiyama, Hiroaki, Kojiro, Keisuke, Okahisa, Yoko, Imai, Tomoya, Itoh, Takafumi, Furuta, Yuzo","doi":"10.1186/s10086-022-02058-x","DOIUrl":"https://doi.org/10.1186/s10086-022-02058-x","url":null,"abstract":"Dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements of water-saturated wood of Douglas fir (Pseudotsuga menziesii) in the temperature range of 0 ℃ to 100 ℃ were focused to clarify microstructural changes within an annual ring. The following results were obtained. Thermal softening behavior caused by micro-Brownian motion of lignin was observed in both earlywood and latewood. The peaks of tanδ were found at around 95 ℃ for earlywood and at around 90 ℃ for latewood. These results suggested that the structures of lignin in the cell wall were different between earlywood and latewood. SAXS measurements of water-saturated earlywood and latewood in water were performed with precise temperature control. The scattering intensity increased with increasing temperature, indicating that the density of the matrix was reduced at higher temperature. One-dimensional SAXS intensity at the equator, which approximately represents cellulose microfibrils arrangement in the matrix, was intensively analyzed using the WoodSAS model. The result of this model fitting showed that the cellulose microfibril diameter of latewood was higher than that of earlywood. In addition, the value of interfibrillar distance decreased monotonically in the earlywood, while it decreased rapidly in the latewood from 60 ℃ to 90 ℃. The changes in the cellulose microfibril (CMF) diameter and the interfibrillar distance with increasing temperature between earlywood and latewood by SAXS measurement were different. The differences in CMF diameter and inter-fibril distance between earlywood and latewood measured by SAXS also support the hypothesis that lignin structure differs between earlywood and latewood based on the results of DMA measurements.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"5 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-29DOI: 10.1186/s10086-022-02059-w
Tokimitsu Kobayashi, Y. Tobimatsu, Hiroshi Kamitakahara, T. Takano
{"title":"Demethylation and tannin-like properties of guaiacyl/syringyl-type and syringyl-type dehydrogenation polymers using iodocyclohexane","authors":"Tokimitsu Kobayashi, Y. Tobimatsu, Hiroshi Kamitakahara, T. Takano","doi":"10.1186/s10086-022-02059-w","DOIUrl":"https://doi.org/10.1186/s10086-022-02059-w","url":null,"abstract":"","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"68 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65909248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to promote the development of environmental protection, and the usage rate of green energy utilization, a progressive, innovative laser process method employing helium assisted is proposed, which optimizes the joint cutting process under the same energy consumption. This method provides a new idea for the wood process industry. The uniqueness of this paper establishes a mathematical model to address the diffusion of helium injection and the heat transfer of the laser beam on the processed surface. From the results, it can be exhibited that the oxygen concentration reduces when the helium is injected on the processed surface. The helium could destroy the combustion-supporting conditions and decrease the combustion zone of the processed joint cutting. Thus, the carbonized area of the processed surface is reduced, which could effectively enhance the processing quality of joint cutting. Notably, the helium with injection speed forms a sweeping effect on the processed surface, which could remove parts of the carbonized particles and residues on the processed surface, as well as improve the processing quality. Comparing the traditional laser process and helium-assisted laser process, the gas-assisted laser process owns higher process quality than that of traditional laser processing and cutting. In detail, it features the advantages of smaller joint cutting width, lower surface roughness and smoother surface. Eventually, a mathematical model based on the response surface method with the evaluation criteria of the kerf width, kerf depth, and surface roughness is established to analyze the interaction of laser power, cutting speed and inert gas pressure on the response factors. Comparing the error between the predicted and experimental measurement value, and the optimized process parameters could be acquired. In this paper, the helium-assisted laser process method proposed is meaningful and encouraging, which not only obtains better processing quality, but also provides a guide for developing green industry.
{"title":"Research on the wood processing method of helium-assisted laser process","authors":"Yang, Chunmei, Tian, Xinchi, Xue, Bo, Liu, Qingwei, Zhang, Jiawei, Liu, Jiuqing, Yu, Wenji","doi":"10.1186/s10086-022-02051-4","DOIUrl":"https://doi.org/10.1186/s10086-022-02051-4","url":null,"abstract":"In order to promote the development of environmental protection, and the usage rate of green energy utilization, a progressive, innovative laser process method employing helium assisted is proposed, which optimizes the joint cutting process under the same energy consumption. This method provides a new idea for the wood process industry. The uniqueness of this paper establishes a mathematical model to address the diffusion of helium injection and the heat transfer of the laser beam on the processed surface. From the results, it can be exhibited that the oxygen concentration reduces when the helium is injected on the processed surface. The helium could destroy the combustion-supporting conditions and decrease the combustion zone of the processed joint cutting. Thus, the carbonized area of the processed surface is reduced, which could effectively enhance the processing quality of joint cutting. Notably, the helium with injection speed forms a sweeping effect on the processed surface, which could remove parts of the carbonized particles and residues on the processed surface, as well as improve the processing quality. Comparing the traditional laser process and helium-assisted laser process, the gas-assisted laser process owns higher process quality than that of traditional laser processing and cutting. In detail, it features the advantages of smaller joint cutting width, lower surface roughness and smoother surface. Eventually, a mathematical model based on the response surface method with the evaluation criteria of the kerf width, kerf depth, and surface roughness is established to analyze the interaction of laser power, cutting speed and inert gas pressure on the response factors. Comparing the error between the predicted and experimental measurement value, and the optimized process parameters could be acquired. In this paper, the helium-assisted laser process method proposed is meaningful and encouraging, which not only obtains better processing quality, but also provides a guide for developing green industry.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-23DOI: 10.1186/s10086-022-02054-1
Zhou, Xiaoxiao, Miyauchi, Ryoga, Inoue, Yuki
Wood attributes are important, because they directly affect the price persistence of wood products. Consumers consider the “aesthetic,” “traditionality,” “decay resistance,” and “scarcity” attributes important when evaluating wood. This study analyzed the impact of these four attributes on the price persistence of acoustic guitars. We obtained data from a Japanese internet auction platform and winning-bid data for two representative brands, Martin and Yamaha. We performed a quantitative analysis using the winning bid price as the dependent variable and the adoption of various wood attributes in each part of the guitar corresponding to the four attributes as explanatory variables. We found that rosewood, mahogany, palisander, and ebony have a significant impact on price persistence, and that all of them fit the four attributes of traditionality, decay resistance, scarcity, and aesthetics. We also found that traditionality was the key attribute among the four. Using wood in luxury brands without traditionality was not effective, even if other attributes were present. For mass-market brands, scarcity and decay resistance had positive effects on price persistence. The finding that scarcity and decay resistance were important only for mass-market brands can help companies understand market demand, determine product attributes, and achieve product–market fit.
{"title":"Effect of wood attributes on the price persistence of acoustic guitars","authors":"Zhou, Xiaoxiao, Miyauchi, Ryoga, Inoue, Yuki","doi":"10.1186/s10086-022-02054-1","DOIUrl":"https://doi.org/10.1186/s10086-022-02054-1","url":null,"abstract":"Wood attributes are important, because they directly affect the price persistence of wood products. Consumers consider the “aesthetic,” “traditionality,” “decay resistance,” and “scarcity” attributes important when evaluating wood. This study analyzed the impact of these four attributes on the price persistence of acoustic guitars. We obtained data from a Japanese internet auction platform and winning-bid data for two representative brands, Martin and Yamaha. We performed a quantitative analysis using the winning bid price as the dependent variable and the adoption of various wood attributes in each part of the guitar corresponding to the four attributes as explanatory variables. We found that rosewood, mahogany, palisander, and ebony have a significant impact on price persistence, and that all of them fit the four attributes of traditionality, decay resistance, scarcity, and aesthetics. We also found that traditionality was the key attribute among the four. Using wood in luxury brands without traditionality was not effective, even if other attributes were present. For mass-market brands, scarcity and decay resistance had positive effects on price persistence. The finding that scarcity and decay resistance were important only for mass-market brands can help companies understand market demand, determine product attributes, and achieve product–market fit.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"8 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Promoting wood utilization from fast-growing tree species is one solution to address supply and demand issues relating to wood resources while sequestering carbon dioxide in large quantities. Information on the quality of wood from fast-growing tree species and its relationship with changes in stem size is essential for promoting the establishment of plantations and wood utilization of fast-growing tree species. To explore the relationship between the xylem maturation process and radial growth increments of stems in fast-growing tree species, we examined radial variations in annual ring widths and wood properties in Liriodendron tulipifera in Japan. The cambial ages at which current annual increment and mean annual increment values were greatest were 4.9 years and 7.4 years, respectively. Based on radial variations evaluated by mixed-effects modeling of wood properties, all properties increased or decreased near the pith before becoming stable towards the cambium. Changing ratios of multiple wood properties at 1-year intervals became stable after a cambial age of 9 years. These results point to an ecological strategy in L. tulipifera, in which there is a tradeoff between radial growth increments and wood properties. As part of this strategy, in response to competition among individual trees within a stand, the tree produces a large volume of xylem with lower physical and mechanical properties, allowing it to increase its volume faster than that of the surrounding trees. Subsequently, it produces xylem that is more stable, with greater physical and mechanical properties. This wood forms at a slower growth rate compared to the xylem that forms at the time of initial tree growth. Based on the ecological strategy adopted by L. tulipifera, wood that forms before a cambial age of 9 years can be used for utility applications, and wood that forms after a cambial age of 9 years can be used for structural applications.
{"title":"Relationship between the xylem maturation process based on radial variations in wood properties and radial growth increments of stems in a fast-growing tree species, Liriodendron tulipifera","authors":"Nezu, Ikumi, Ishiguri, Futoshi, Ohshima, Jyunichi, Yokota, Shinso","doi":"10.1186/s10086-022-02057-y","DOIUrl":"https://doi.org/10.1186/s10086-022-02057-y","url":null,"abstract":"Promoting wood utilization from fast-growing tree species is one solution to address supply and demand issues relating to wood resources while sequestering carbon dioxide in large quantities. Information on the quality of wood from fast-growing tree species and its relationship with changes in stem size is essential for promoting the establishment of plantations and wood utilization of fast-growing tree species. To explore the relationship between the xylem maturation process and radial growth increments of stems in fast-growing tree species, we examined radial variations in annual ring widths and wood properties in Liriodendron tulipifera in Japan. The cambial ages at which current annual increment and mean annual increment values were greatest were 4.9 years and 7.4 years, respectively. Based on radial variations evaluated by mixed-effects modeling of wood properties, all properties increased or decreased near the pith before becoming stable towards the cambium. Changing ratios of multiple wood properties at 1-year intervals became stable after a cambial age of 9 years. These results point to an ecological strategy in L. tulipifera, in which there is a tradeoff between radial growth increments and wood properties. As part of this strategy, in response to competition among individual trees within a stand, the tree produces a large volume of xylem with lower physical and mechanical properties, allowing it to increase its volume faster than that of the surrounding trees. Subsequently, it produces xylem that is more stable, with greater physical and mechanical properties. This wood forms at a slower growth rate compared to the xylem that forms at the time of initial tree growth. Based on the ecological strategy adopted by L. tulipifera, wood that forms before a cambial age of 9 years can be used for utility applications, and wood that forms after a cambial age of 9 years can be used for structural applications.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"160 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138528640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exudates are involved in the defense mechanism of trees; they could work against insects or microorganisms through a physical or chemical system. The main components of exudates are terpenoids. This study identified the main compounds of exudates from 13 conifers of Taiwan using gas chromatogram–mass spectrometry (GC–MS) and spectroscopic analysis. The results revealed that the main volatiles were α-pinene, β-ocimene, β-pinene, sabinene, and caryophyllene. On the other hand, the main nonvolatile compounds were diterpenoids, which were classified into three skeletons (abietane-, labdane-, and pimarane-types). Among these, abietane-type presented in Pinaceae and in most of Cupressaceae; labdane-type presented in Pinaceae and in all of Cupressaceae and Araucariaceae; pimarane-type existed in both Pinaceae and Cupressaceae. Furthermore, the epigenetics of conifers analysis results by GC–MS and heteronuclear single quantum coherence (HSQC) of nuclear magnetic resonance (NMR) fingerprints were similar to traditional taxonomy classification; it indicated that exudates chemotaxonomy by using GC–MS and HSQC profiling is a useful technology to classify the conifers. Besides, the exudates of Pinus elliottii, Pinus taiwanensis, Calocedrus macrolepis and Chamaecyparis formosensis possessed the strong antifungal activity. For white-rot fungus, Trametes versicolor, Pinus morrisonicola, Chamaecyparis obtusa, and Araucaria heterophylla exhibited the higher antifungal index. For brown-rot fungus, Laetiporus sulphureus, Pinus elliottii, Pinus morrisonicola, and Chamaecyparis formosensis revealed a good antifungal activity.
{"title":"Composition analysis of exudates produced by conifers grown in Taiwan and their antifungal activity","authors":"Tsao, Nai-Wen, Lin, Yen-Chi, Tseng, Yen-Hsueh, Chien, Shih-Chang, Wang, Sheng-Yang","doi":"10.1186/s10086-022-02056-z","DOIUrl":"https://doi.org/10.1186/s10086-022-02056-z","url":null,"abstract":"Exudates are involved in the defense mechanism of trees; they could work against insects or microorganisms through a physical or chemical system. The main components of exudates are terpenoids. This study identified the main compounds of exudates from 13 conifers of Taiwan using gas chromatogram–mass spectrometry (GC–MS) and spectroscopic analysis. The results revealed that the main volatiles were α-pinene, β-ocimene, β-pinene, sabinene, and caryophyllene. On the other hand, the main nonvolatile compounds were diterpenoids, which were classified into three skeletons (abietane-, labdane-, and pimarane-types). Among these, abietane-type presented in Pinaceae and in most of Cupressaceae; labdane-type presented in Pinaceae and in all of Cupressaceae and Araucariaceae; pimarane-type existed in both Pinaceae and Cupressaceae. Furthermore, the epigenetics of conifers analysis results by GC–MS and heteronuclear single quantum coherence (HSQC) of nuclear magnetic resonance (NMR) fingerprints were similar to traditional taxonomy classification; it indicated that exudates chemotaxonomy by using GC–MS and HSQC profiling is a useful technology to classify the conifers. Besides, the exudates of Pinus elliottii, Pinus taiwanensis, Calocedrus macrolepis and Chamaecyparis formosensis possessed the strong antifungal activity. For white-rot fungus, Trametes versicolor, Pinus morrisonicola, Chamaecyparis obtusa, and Araucaria heterophylla exhibited the higher antifungal index. For brown-rot fungus, Laetiporus sulphureus, Pinus elliottii, Pinus morrisonicola, and Chamaecyparis formosensis revealed a good antifungal activity.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"17 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Water stress has a significant impact on tree growth. However, the effects of watering on cambial activity and its influence on tree growth in subtropical climates is poorly understood. The present study analyzed the cambial activity on the stem of evergreen hardwood Samanea saman in response to either high frequency or low frequency watering during the pre-monsoon season in subtropical Bangladesh. We used two groups of seedlings: one group of seedlings was watered daily (high frequency watering), while the second group of seedlings was watered at 4–5-day intervals (low frequency watering). Samples for sequential observations of cambial activity by microscopy were collected from the main stems of seedlings of both groups. At the start of the experiment on March 25, 2015, during the pre-monsoon season, the cambium was inactive with no evidence of cell division. After 10 days of high frequency watering, cambial cell division and xylem differentiation were initiated. New cell plates were formed in the phloem side of the cambium. However, the cambium was inactive when low frequency watering was supplied. Supplying water in high frequency reactivated the cambium with forming small to large vessels. In contrast, the cambium remained inactive when low frequency watering was supplied throughout the experiment. These results suggest that continuous supply of water to the soil is one of the most important factors for cambial reactivation during pre-monsoon season in subtropical trees. Furthermore, our findings of artificial watering treatments might help to better understand the response of cambium to changes in precipitation patterns under natural conditions, allowing us to learn more about how cambium of subtropical trees responds to climate change.
{"title":"The effects of watering on cambial activity in the stems of evergreen hardwood (Samanea saman) during the pre-monsoon season in subtropical Bangladesh","authors":"Rahman, Md Hasnat, Begum, Shahanara, Nugroho, Widyanto Dwi, Nakaba, Satoshi, Funada, Ryo","doi":"10.1186/s10086-022-02053-2","DOIUrl":"https://doi.org/10.1186/s10086-022-02053-2","url":null,"abstract":"Water stress has a significant impact on tree growth. However, the effects of watering on cambial activity and its influence on tree growth in subtropical climates is poorly understood. The present study analyzed the cambial activity on the stem of evergreen hardwood Samanea saman in response to either high frequency or low frequency watering during the pre-monsoon season in subtropical Bangladesh. We used two groups of seedlings: one group of seedlings was watered daily (high frequency watering), while the second group of seedlings was watered at 4–5-day intervals (low frequency watering). Samples for sequential observations of cambial activity by microscopy were collected from the main stems of seedlings of both groups. At the start of the experiment on March 25, 2015, during the pre-monsoon season, the cambium was inactive with no evidence of cell division. After 10 days of high frequency watering, cambial cell division and xylem differentiation were initiated. New cell plates were formed in the phloem side of the cambium. However, the cambium was inactive when low frequency watering was supplied. Supplying water in high frequency reactivated the cambium with forming small to large vessels. In contrast, the cambium remained inactive when low frequency watering was supplied throughout the experiment. These results suggest that continuous supply of water to the soil is one of the most important factors for cambial reactivation during pre-monsoon season in subtropical trees. Furthermore, our findings of artificial watering treatments might help to better understand the response of cambium to changes in precipitation patterns under natural conditions, allowing us to learn more about how cambium of subtropical trees responds to climate change.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"34 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}