While there are several bottlenecks in hybrid organic–inorganic perovskite (HOIP) solar cell production steps, including composition screening, fabrication, material stability, and device performance, machine learning approaches have begun to tackle each of these issues in recent years. Different algorithms have successfully been adopted to solve the unique problems at each step of HOIP development. Specifically, high-throughput experimentation produces vast amount of training data required to effectively implement machine learning methods. Here, we present an overview of machine learning models, including linear regression, neural networks, deep learning, and statistical forecasting. Experimental examples from the literature, where machine learning is applied to HOIP composition screening, thin film fabrication, thin film characterization, and full device testing, are discussed. These paradigms give insights into the future of HOIP solar cell research. As databases expand and computational power improves, increasingly accurate predictions of the HOIP behavior are becoming possible.
{"title":"Emerging opportunities for hybrid perovskite solar cells using machine learning","authors":"Abigail R. Hering, Mansha Dubey, M. Leite","doi":"10.1063/5.0146828","DOIUrl":"https://doi.org/10.1063/5.0146828","url":null,"abstract":"While there are several bottlenecks in hybrid organic–inorganic perovskite (HOIP) solar cell production steps, including composition screening, fabrication, material stability, and device performance, machine learning approaches have begun to tackle each of these issues in recent years. Different algorithms have successfully been adopted to solve the unique problems at each step of HOIP development. Specifically, high-throughput experimentation produces vast amount of training data required to effectively implement machine learning methods. Here, we present an overview of machine learning models, including linear regression, neural networks, deep learning, and statistical forecasting. Experimental examples from the literature, where machine learning is applied to HOIP composition screening, thin film fabrication, thin film characterization, and full device testing, are discussed. These paradigms give insights into the future of HOIP solar cell research. As databases expand and computational power improves, increasingly accurate predictions of the HOIP behavior are becoming possible.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129375542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
On the background of the urgent demand to realize a decarbonized society, energy storage technology plays a key role in shifting from social activities founded on the combustion of fossil fuels to those based on renewable energy resources. Toward this end, global deployment of large-scale rechargeable batteries supplying electricity to power grids is imperative, which requires widespread commercialization of high-performance and safe batteries at a low price relying on abundant and ubiquitous source materials and a cost-efficient manufacturing process. Along this line, the trend of the battery research field is currently located at a turning point: “from Li–ion to Na–ion” and “from liquid to solid electrolyte.” From the viewpoints of the distinguished oxide solid electrolyte, Na superionic conductor (NASICON), and the long-standing progress in ceramic processing, Na–ion all-solid-state batteries (Na-ASSBs) based on NASICON and its derivatives show great promise to realize an innovative and sustainable society in the future. At this moment, however, Na-ASSBs face multifaceted and formidable challenges to overcome for practical usage, mostly relating to interfacial matters in terms of interparticle and interlayer contacts. Here, we overview the recent research progress in NASICON-based solid electrolytes (SEs) from the aspects of synthetic techniques and sintering aids, particularly focusing on the tape-casting process and glass additive. We also provide insights into how to prepare electrode layers and incorporate them with an SE layer into an ASSB cell via tape casting, with the prospect of a high-capacity multilayer-stacked ASSB analogous to the multilayer ceramic capacitors (MLCCs). In addition, the feasibility of a Na metal anode in conjunction with the NASICON-type SEs and the tape-casting process toward an MLCC-type cell configuration is discussed. In the last section, we propose our ideas about future research directions in relevant fields to achieve a breakthrough for Na-ASSBs based on NASICON.
{"title":"NASICON-based all-solid-state Na–ion batteries: A perspective on manufacturing via tape-casting process","authors":"George Hasegawa, Katsuro Hayashi","doi":"10.1063/5.0151559","DOIUrl":"https://doi.org/10.1063/5.0151559","url":null,"abstract":"On the background of the urgent demand to realize a decarbonized society, energy storage technology plays a key role in shifting from social activities founded on the combustion of fossil fuels to those based on renewable energy resources. Toward this end, global deployment of large-scale rechargeable batteries supplying electricity to power grids is imperative, which requires widespread commercialization of high-performance and safe batteries at a low price relying on abundant and ubiquitous source materials and a cost-efficient manufacturing process. Along this line, the trend of the battery research field is currently located at a turning point: “from Li–ion to Na–ion” and “from liquid to solid electrolyte.” From the viewpoints of the distinguished oxide solid electrolyte, Na superionic conductor (NASICON), and the long-standing progress in ceramic processing, Na–ion all-solid-state batteries (Na-ASSBs) based on NASICON and its derivatives show great promise to realize an innovative and sustainable society in the future. At this moment, however, Na-ASSBs face multifaceted and formidable challenges to overcome for practical usage, mostly relating to interfacial matters in terms of interparticle and interlayer contacts. Here, we overview the recent research progress in NASICON-based solid electrolytes (SEs) from the aspects of synthetic techniques and sintering aids, particularly focusing on the tape-casting process and glass additive. We also provide insights into how to prepare electrode layers and incorporate them with an SE layer into an ASSB cell via tape casting, with the prospect of a high-capacity multilayer-stacked ASSB analogous to the multilayer ceramic capacitors (MLCCs). In addition, the feasibility of a Na metal anode in conjunction with the NASICON-type SEs and the tape-casting process toward an MLCC-type cell configuration is discussed. In the last section, we propose our ideas about future research directions in relevant fields to achieve a breakthrough for Na-ASSBs based on NASICON.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"472 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122064530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michalis Loizos, M. Tountas, P. Mangelis, K. Rogdakis, E. Kymakis
Effective passivation of defects is an important step toward achieving highly efficient and stable Perovskite Solar Cells (PSCs). In this work, we introduce the incorporation of two different octylammonium based spacer cations as 2D perovskite passivation layers, namely Octylammonium Bromide (OABr) and octylammonium iodide. PSCs with OABr as a 2D passivation layer demonstrated an enhanced Power Conversion Efficiency (PCE) of 21.40% (the control device has a PCE of 20.26%), resulting in a higher open circuit voltage of 40 mV. The 2D perovskite passivation layers lead to a smoother interface and a better contact with the hole transport layer, while transient photoluminescence and transient photovoltage measurements indicated reduced non-radiative recombination. Unencapsulated devices retained almost 90% of their initial PCE after 500 h of exposure under high ambient humidity conditions, confirming that the surface passivation treatment has led to improved device stability.
{"title":"Surface passivation of sequentially deposited perovskite solar cells by octylammonium spacer cations","authors":"Michalis Loizos, M. Tountas, P. Mangelis, K. Rogdakis, E. Kymakis","doi":"10.1063/5.0144330","DOIUrl":"https://doi.org/10.1063/5.0144330","url":null,"abstract":"Effective passivation of defects is an important step toward achieving highly efficient and stable Perovskite Solar Cells (PSCs). In this work, we introduce the incorporation of two different octylammonium based spacer cations as 2D perovskite passivation layers, namely Octylammonium Bromide (OABr) and octylammonium iodide. PSCs with OABr as a 2D passivation layer demonstrated an enhanced Power Conversion Efficiency (PCE) of 21.40% (the control device has a PCE of 20.26%), resulting in a higher open circuit voltage of 40 mV. The 2D perovskite passivation layers lead to a smoother interface and a better contact with the hole transport layer, while transient photoluminescence and transient photovoltage measurements indicated reduced non-radiative recombination. Unencapsulated devices retained almost 90% of their initial PCE after 500 h of exposure under high ambient humidity conditions, confirming that the surface passivation treatment has led to improved device stability.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130315900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite the extensive research in Li-rich layered oxides (LLOs), which are promising candidates for high-energy density cathodes, their cycle life still cannot meet the real-world application requirements. The poor cycle performance arises from the electrolyte decomposition at high voltage, resulting in damage and subsequent surface-initiated conversion of the cathode from layered to spinel phase. This problem is even more challenging for Co-free LLO cathodes. Here, we report a one-pot synthesis of in situ carbonate-coated nanostructured Co-free LLO (Li2CO3@LLO) through a polyol-assisted method. This inorganic coating suppresses oxygen release, provides good Li–ion transport, and protects the cathode from adverse reactions with the electrolyte. The obtained material exhibits excellent long-term stability, with 76% capacity retention after 1000 cycles at a 0.2 C rate without any Co addition, demonstrating a path forward for using LLOs as a next-generation Li–ion battery cathode.
{"title":"In situ cathode-electrolyte interphase enables high cycling stability of Co-free Li-rich layered cathodes","authors":"P. Vahdatkhah, S. Sadrnezhaad, O. Voznyy","doi":"10.1063/5.0150919","DOIUrl":"https://doi.org/10.1063/5.0150919","url":null,"abstract":"Despite the extensive research in Li-rich layered oxides (LLOs), which are promising candidates for high-energy density cathodes, their cycle life still cannot meet the real-world application requirements. The poor cycle performance arises from the electrolyte decomposition at high voltage, resulting in damage and subsequent surface-initiated conversion of the cathode from layered to spinel phase. This problem is even more challenging for Co-free LLO cathodes. Here, we report a one-pot synthesis of in situ carbonate-coated nanostructured Co-free LLO (Li2CO3@LLO) through a polyol-assisted method. This inorganic coating suppresses oxygen release, provides good Li–ion transport, and protects the cathode from adverse reactions with the electrolyte. The obtained material exhibits excellent long-term stability, with 76% capacity retention after 1000 cycles at a 0.2 C rate without any Co addition, demonstrating a path forward for using LLOs as a next-generation Li–ion battery cathode.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133617357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Iacono, M. Scuderi, Maria Laura Amoruso, A. Gulino, F. Ruffino, S. Mirabella
Efficient and sustainable materials are requested to overcome the actual major issues related to green energy production. Ni/NiO nanoparticles (NPs, 2–4 nm in size) produced by Pulsed Laser Ablation in Liquid (PLAL) are reported as highly efficient and stable electrocatalysts for oxygen evolution reaction (OER) in water splitting applications. Ni/NiO NPs dispersions are obtained by ablating a Ni target immersed in deionized water with an Nd:YAG nanosecond pulsed laser. NPs size and density were driven by laser energy fluence (ranging from 8 to 10 J cm−2) and shown to have an impact on OER performance. Ni/NiO NPs were characterized by scanning and transmission electron microscopy, x-ray diffraction, photoemission spectroscopy, and Rutherford back-scattering spectrometry. By drop-casting onto graphene paper, anode electrodes were fabricated for electrochemical water splitting in alkaline electrolytes. The extrinsic and intrinsic catalytic performances for OER have been quantified, achieving an overpotential of 308 mV (at a current density of 10 mA cm−2) and unprecedented mass activity of more than 16 A mg−1, using NPs synthesized with the highest and lowest laser energy fluence, respectively. The impact of NPs’ size and density on OER performances has been clarified, opening the way for PLAL synthesis as a promising technique for highly efficient nano-electrocatalysts production.
需要高效和可持续的材料来克服与绿色能源生产有关的实际重大问题。采用脉冲激光烧蚀法制备的Ni/NiO纳米颗粒(NPs,尺寸为2 ~ 4nm)是一种高效稳定的析氧反应电催化剂。用Nd:YAG纳秒脉冲激光烧蚀浸在去离子水中的Ni靶材,获得Ni/NiO NPs色散。NPs的大小和密度受激光能量影响(范围从8到10 J cm−2),并显示出对OER性能的影响。采用扫描电镜、透射电镜、x射线衍射、光发射光谱和卢瑟福背散射光谱对Ni/NiO NPs进行了表征。采用滴铸法制备了碱性电解液中电解水的阳极电极。对OER的外在和内在催化性能进行了量化,使用最高和最低激光能量影响合成的NPs分别实现了308 mV的过电位(电流密度为10 mA cm−2)和超过16 a mg−1的前所未有的质量活性。NPs的大小和密度对OER性能的影响已经得到澄清,这为PLAL合成作为一种高效纳米电催化剂的有前途的技术开辟了道路。
{"title":"Pulsed laser ablation production of Ni/NiO nano electrocatalysts for oxygen evolution reaction","authors":"V. Iacono, M. Scuderi, Maria Laura Amoruso, A. Gulino, F. Ruffino, S. Mirabella","doi":"10.1063/5.0144600","DOIUrl":"https://doi.org/10.1063/5.0144600","url":null,"abstract":"Efficient and sustainable materials are requested to overcome the actual major issues related to green energy production. Ni/NiO nanoparticles (NPs, 2–4 nm in size) produced by Pulsed Laser Ablation in Liquid (PLAL) are reported as highly efficient and stable electrocatalysts for oxygen evolution reaction (OER) in water splitting applications. Ni/NiO NPs dispersions are obtained by ablating a Ni target immersed in deionized water with an Nd:YAG nanosecond pulsed laser. NPs size and density were driven by laser energy fluence (ranging from 8 to 10 J cm−2) and shown to have an impact on OER performance. Ni/NiO NPs were characterized by scanning and transmission electron microscopy, x-ray diffraction, photoemission spectroscopy, and Rutherford back-scattering spectrometry. By drop-casting onto graphene paper, anode electrodes were fabricated for electrochemical water splitting in alkaline electrolytes. The extrinsic and intrinsic catalytic performances for OER have been quantified, achieving an overpotential of 308 mV (at a current density of 10 mA cm−2) and unprecedented mass activity of more than 16 A mg−1, using NPs synthesized with the highest and lowest laser energy fluence, respectively. The impact of NPs’ size and density on OER performances has been clarified, opening the way for PLAL synthesis as a promising technique for highly efficient nano-electrocatalysts production.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116675426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Vakaliuk, Shaowei Song, U. Floegel-Delor, F. Werfel, K. Nielsch, Z. Ren
Magnetic levitation for the transport of people and goods using bulk superconductors and electrical power transmission using superconductors have both been demonstrated, but neither has been developed for daily use due to technological deficiencies and high costs. We envision combining the transport of people and goods and energy transmission and storage in a single system. Such a system, built on existing highway infrastructure, incorporates a superconductor guideway, allowing for simultaneous levitation of vehicles with magnetized undercarriages for rapid transport without schedule limitations and lossless transmission and storage of electricity. Incorporating liquefied hydrogen additionally allows for simultaneous cooling of the superconductor guideway and sustainable energy transport and storage. Here, we report the successful demonstration of the primary technical prerequisite, levitating a magnet above a superconductor guideway.
{"title":"A multifunctional highway system incorporating superconductor levitated vehicles and liquefied hydrogen","authors":"O. Vakaliuk, Shaowei Song, U. Floegel-Delor, F. Werfel, K. Nielsch, Z. Ren","doi":"10.1063/5.0139834","DOIUrl":"https://doi.org/10.1063/5.0139834","url":null,"abstract":"Magnetic levitation for the transport of people and goods using bulk superconductors and electrical power transmission using superconductors have both been demonstrated, but neither has been developed for daily use due to technological deficiencies and high costs. We envision combining the transport of people and goods and energy transmission and storage in a single system. Such a system, built on existing highway infrastructure, incorporates a superconductor guideway, allowing for simultaneous levitation of vehicles with magnetized undercarriages for rapid transport without schedule limitations and lossless transmission and storage of electricity. Incorporating liquefied hydrogen additionally allows for simultaneous cooling of the superconductor guideway and sustainable energy transport and storage. Here, we report the successful demonstration of the primary technical prerequisite, levitating a magnet above a superconductor guideway.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133555566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Transparent glass-ceramics of CaO–Bi2O3–B2O3 (CBBO) were fabricated using the conventional melt quench technique. X-ray diffraction and Raman spectroscopy were employed to confirm the phase of the prepared samples. Differential scanning calorimetry (DSC) was used to verify that the material was, indeed, glassy. The CBBO glass samples were subjected to heat treatment at 540 °C for 30 min and 1 h based on their crystallization temperature obtained from DSC analysis. This study focused on the piezocatalytic behavior of CBBO glass-ceramic samples. Piezocatalysis experiments were conducted on the fabricated glass-ceramic samples, and it was discovered that the samples heat-treated for 30 min (HT30m) at 540 °C showed maximum dye degradation of 61% under 240 min of ultrasonication. Experiments were repeated multiple times to confirm their reliability. Additionally, a phytotoxicity assessment was performed on the degraded dye using vigna radiata seeds. The antibacterial properties of the CBBO glass-ceramic samples were also investigated via piezocatalysis. It was discovered that the HT30m CBBO glass-ceramic sample removes 98% of Escherichia coli and 99% of Staphylococcus aureus bacteria within 120 min of ultrasonication.
采用传统的熔体淬火工艺制备了CaO-Bi2O3-B2O3透明微晶玻璃。利用x射线衍射和拉曼光谱对制备的样品进行了物相鉴定。差示扫描量热法(DSC)被用来验证材料确实是玻璃状的。根据DSC分析得到的结晶温度,将CBBO玻璃样品在540℃下热处理30 min和1 h。本文主要研究了CBBO玻璃陶瓷样品的压催化行为。对制备的玻璃陶瓷样品进行了压电催化实验,发现在540℃下热处理30 min (HT30m)的样品在240 min的超声作用下染料降解率最高,达到61%。实验被重复多次以证实其可靠性。此外,还对使用辐射豇豆种子降解的染料进行了植物毒性评估。采用压电催化法研究了CBBO微晶玻璃的抗菌性能。结果发现,HT30m CBBO玻璃陶瓷样品在超声作用120 min内,可去除98%的大肠杆菌和99%的金黄色葡萄球菌。
{"title":"Piezocatalytic activity of CaO–Bi2O3–B2O3 glass-ceramics under ultrasonic vibrations","authors":"Chirag Porwal, V. Chauhan, R. Vaish","doi":"10.1063/5.0141938","DOIUrl":"https://doi.org/10.1063/5.0141938","url":null,"abstract":"Transparent glass-ceramics of CaO–Bi2O3–B2O3 (CBBO) were fabricated using the conventional melt quench technique. X-ray diffraction and Raman spectroscopy were employed to confirm the phase of the prepared samples. Differential scanning calorimetry (DSC) was used to verify that the material was, indeed, glassy. The CBBO glass samples were subjected to heat treatment at 540 °C for 30 min and 1 h based on their crystallization temperature obtained from DSC analysis. This study focused on the piezocatalytic behavior of CBBO glass-ceramic samples. Piezocatalysis experiments were conducted on the fabricated glass-ceramic samples, and it was discovered that the samples heat-treated for 30 min (HT30m) at 540 °C showed maximum dye degradation of 61% under 240 min of ultrasonication. Experiments were repeated multiple times to confirm their reliability. Additionally, a phytotoxicity assessment was performed on the degraded dye using vigna radiata seeds. The antibacterial properties of the CBBO glass-ceramic samples were also investigated via piezocatalysis. It was discovered that the HT30m CBBO glass-ceramic sample removes 98% of Escherichia coli and 99% of Staphylococcus aureus bacteria within 120 min of ultrasonication.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134407521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highly Li+-ion conductive and stable cross-linked network based flexible ionogels have been prepared using the thermal polymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of an ionic liquid electrolyte (ILE) composed of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid and lithium tetrafluoroborate (LiBF4) salt, and their electrochemical behavior and stability have been investigated. The cross-linked polymerization reaction of monomers is confirmed using FTIR spectra. The temperature dependence of the ionic conductivity indicates that the Li–ion transport is coupled with the segmental dynamics of polymer chains. The prepared ionogel [PEGDA:ILE = 20:80(w/wt %)] with a 30 mol. % LiBF4 salt concentration exhibits a high ionic conductivity of ∼12.59 mS cm−1 and a lithium transference number of ∼0.56 at 30 °C. The lithium plating/stripping experiments indicate the formation of a robust and conductive solid electrolyte interface at the lithium electrode surface. The all-quasi-solid-state energy storage device such as a lithium-metal battery fabricated with this ionogel delivers a high discharge specific capacity of 156 mA h g−1 at a current rate of C/20 at 30 °C and achieves 83% capacity retention at the 50th cycle.
在1-乙基-3-甲基咪唑四氟硼酸盐(EMIMBF4)和四氟硼酸锂盐(LiBF4)组成的离子液体电解质(ILE)存在下,采用热聚合法制备了具有高Li+导电性和稳定性的聚乙二醇二丙烯酸酯(PEGDA)柔性离子凝胶,并研究了其电化学行为和稳定性。用红外光谱证实了单体的交联聚合反应。离子电导率的温度依赖性表明,锂离子的输运与聚合物链的节段动力学相耦合。在30 mol. % LiBF4盐浓度下制备的离子凝胶[PEGDA:ILE = 20:80(w/wt %)]在30℃时表现出高离子电导率(~ 12.59 mS cm - 1)和锂转移数(~ 0.56)。锂电镀/剥离实验表明,在锂电极表面形成了坚固的导电固体电解质界面。使用该离子凝胶制备的全准固态储能装置(如锂金属电池)在30°C下,在C/20的电流速率下可提供156 mA h g - 1的高放电比容量,并且在第50次循环时可达到83%的容量保持率。
{"title":"Highly ion conductive cross-linked ionogels for all-quasi-solid-state lithium-metal batteries","authors":"P. Pal, A. Ghosh","doi":"10.1063/5.0139814","DOIUrl":"https://doi.org/10.1063/5.0139814","url":null,"abstract":"Highly Li+-ion conductive and stable cross-linked network based flexible ionogels have been prepared using the thermal polymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence of an ionic liquid electrolyte (ILE) composed of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) ionic liquid and lithium tetrafluoroborate (LiBF4) salt, and their electrochemical behavior and stability have been investigated. The cross-linked polymerization reaction of monomers is confirmed using FTIR spectra. The temperature dependence of the ionic conductivity indicates that the Li–ion transport is coupled with the segmental dynamics of polymer chains. The prepared ionogel [PEGDA:ILE = 20:80(w/wt %)] with a 30 mol. % LiBF4 salt concentration exhibits a high ionic conductivity of ∼12.59 mS cm−1 and a lithium transference number of ∼0.56 at 30 °C. The lithium plating/stripping experiments indicate the formation of a robust and conductive solid electrolyte interface at the lithium electrode surface. The all-quasi-solid-state energy storage device such as a lithium-metal battery fabricated with this ionogel delivers a high discharge specific capacity of 156 mA h g−1 at a current rate of C/20 at 30 °C and achieves 83% capacity retention at the 50th cycle.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117084386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zn–air batteries have only been used in limited applications, such as hearing aid batteries, due to their low power density and standard voltage of around 1.4 V. Therefore, to use Zn–air batteries as a drive power source in cutting-edge devices such as drones, it is essential to improve the drive voltage and output power density. Here, we propose Zn–air batteries with a high potential (∼2.25 V) and high power density (∼318 mW/cm2) by using the newly designed iron azaphthalocyanine unimolecular layer (AZUL) electrocatalyst and a tandem Zn–air battery cell. The AZUL electrocatalyst in this new type of cell had a high electrochemical stability and high oxygen reduction reaction performance in the ultralow pH region, in which Pt and other metallic and inorganic electrocatalysts cannot be used. Furthermore, the tandem-electrolyte cells had a cell voltage of over 1.0 V at a high discharge current density of 200 mA/cm2, and the output power density was 1139 mWh/g(Zn) at 100 mA/cm2 discharge.
{"title":"Rare-metal-free Zn–air batteries with ultrahigh voltage and high power density achieved by iron azaphthalocyanine unimolecular layer (AZUL) electrocatalysts and acid/alkaline tandem aqueous electrolyte cells","authors":"Kosuke Ishibashi, Koju Ito, H. Yabu","doi":"10.1063/5.0131602","DOIUrl":"https://doi.org/10.1063/5.0131602","url":null,"abstract":"Zn–air batteries have only been used in limited applications, such as hearing aid batteries, due to their low power density and standard voltage of around 1.4 V. Therefore, to use Zn–air batteries as a drive power source in cutting-edge devices such as drones, it is essential to improve the drive voltage and output power density. Here, we propose Zn–air batteries with a high potential (∼2.25 V) and high power density (∼318 mW/cm2) by using the newly designed iron azaphthalocyanine unimolecular layer (AZUL) electrocatalyst and a tandem Zn–air battery cell. The AZUL electrocatalyst in this new type of cell had a high electrochemical stability and high oxygen reduction reaction performance in the ultralow pH region, in which Pt and other metallic and inorganic electrocatalysts cannot be used. Furthermore, the tandem-electrolyte cells had a cell voltage of over 1.0 V at a high discharge current density of 200 mA/cm2, and the output power density was 1139 mWh/g(Zn) at 100 mA/cm2 discharge.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117206146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Solar energy technologies are among the most promising renewable energy sources. The massive growth of global solar generating capacity to multi-terawatt scale is now a requirement to mitigate climate change. Perovskite solar cells (PSCs) are one of the most efficient and cost-effective photovoltaic (PV) technologies with efficiencies reaching the 26% mark. They have attracted substantial interest due to their light-harvesting capacity combined with a low cost of manufacturing. However, unsolved questions of perovskite stability are still a concern, challenging the potential of widespread commercialization. Thus, it is imperative to advance in the understanding of the degradation mechanism of PSCs under in situ and operando conditions where variable and unpredictable stressors intervene, in parallel or sequentially, on the device stability. This review aims to debate the advantages behind in situ and operando characterization to complement stability-testing of PV parameters in the strive to achieve competitive stability and reproducibility in PSCs. We consider the impact of applying single and multi-stressors under constant monitoring of alterations observed in PSC components or complete devices. We outline key future research directions to achieve the long-term stability necessary for the successful commercialization of this promising PV technology.
{"title":"Monitoring the stability and degradation mechanisms of perovskite solar cells by in situ and operando characterization","authors":"Fanny Baumann, Sonia R. Raga, M. Lira-Cantú","doi":"10.1063/5.0145199","DOIUrl":"https://doi.org/10.1063/5.0145199","url":null,"abstract":"Solar energy technologies are among the most promising renewable energy sources. The massive growth of global solar generating capacity to multi-terawatt scale is now a requirement to mitigate climate change. Perovskite solar cells (PSCs) are one of the most efficient and cost-effective photovoltaic (PV) technologies with efficiencies reaching the 26% mark. They have attracted substantial interest due to their light-harvesting capacity combined with a low cost of manufacturing. However, unsolved questions of perovskite stability are still a concern, challenging the potential of widespread commercialization. Thus, it is imperative to advance in the understanding of the degradation mechanism of PSCs under in situ and operando conditions where variable and unpredictable stressors intervene, in parallel or sequentially, on the device stability. This review aims to debate the advantages behind in situ and operando characterization to complement stability-testing of PV parameters in the strive to achieve competitive stability and reproducibility in PSCs. We consider the impact of applying single and multi-stressors under constant monitoring of alterations observed in PSC components or complete devices. We outline key future research directions to achieve the long-term stability necessary for the successful commercialization of this promising PV technology.","PeriodicalId":178574,"journal":{"name":"APL Energy","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129222767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}