{"title":"Correction to: Bactericidal effect of bacteria isolated from the marine sponges Hymeniacidon perlevis and Halichondria panicea against carbapenem-resistant Acinetobacter baumannii.","authors":"","doi":"10.1093/lambio/ovae056","DOIUrl":"https://doi.org/10.1093/lambio/ovae056","url":null,"abstract":"","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum β-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.
{"title":"Rapid discrimination methods for clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using the N-terminal sequence of the flaA gene and investigation of antimicrobial resistance.","authors":"Kazufumi Miyagi, Noriaki Shimoji","doi":"10.1093/lambio/ovae052","DOIUrl":"10.1093/lambio/ovae052","url":null,"abstract":"<p><p>Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum β-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I E P Agpoon, F A Aya, K Watanabe, R M Bennett, T Aki, G R Dedeles
Yeasts are unicellular eukaryotic microorganisms extensively employed in various applications, notably as an alternative source of protein in feeds, owing to their nutritional benefits. Despite their potential, marine and mangrove yeast species used in the aquaculture industry have received little attention in the Philippines. Pichia kudriavzevii (A2B R1 ISO 3), sourced from bark samples, was selected and mass-produced due to its high protein content and amino acid profile. The dried biomass of P. kudriavzevii was incorporated into the diets of Nile tilapia (Oreochromis niloticus) juveniles at varying inclusion levels (0, 1, 2, and 4 g/kg diet) and its effect on their growth performance, body composition, and liver and intestinal morphology was assessed after 40 days of feeding. The groups that received P. kudriavzevii at a concentration of 2 g/kg diet exhibited higher final body weight, percent weight gain, and specific growth rate in comparison to the other treatment groups. Whole body proximate composition did not vary among the dietary groups. Intestinal and liver histopathology also indicated no abnormalities. These findings suggest the potential of ascomycetous P. kudriavzevii as a beneficial feed additive in Nile tilapia diets, warranting further investigation into its long-term effects and broader applications in fish culture.
酵母是一种单细胞真核微生物,由于其营养价值高,被广泛应用于各种领域,特别是作为饲料中蛋白质的替代来源。尽管其潜力巨大,但在菲律宾,用于水产养殖业的海洋和红树林酵母物种却很少受到关注。从树皮样本中提取的 Pichia kudriavzevii(A2B R1 ISO 3)因其蛋白质含量高和氨基酸组成丰富而被选中并大量生产。在尼罗罗非鱼(Oreochromis niloticus)幼鱼的日粮中添加 P. kudriavzevii 的干燥生物质,添加量(0、1、2 和 4 克/千克日粮)各不相同,喂养 40 天后,评估其对幼鱼生长性能、身体组成、肝脏和肠道形态的影响。与其他处理组相比,每公斤日粮中添加 2 克 P. kudriavzevii 的处理组的最终体重、增重率和特定生长率均较高。各饲料组的全身近似物组成没有变化。肠道和肝脏组织病理学也未发现异常。这些研究结果表明,赤霉菌 P. kudriavzevii 有可能成为尼罗罗非鱼日粮中的一种有益饲料添加剂,值得进一步研究其长期效果以及在鱼类养殖中的更广泛应用。
{"title":"Pichia kudriavzevii as feed additive in Nile tilapia (Oreochromis niloticus) diet.","authors":"I E P Agpoon, F A Aya, K Watanabe, R M Bennett, T Aki, G R Dedeles","doi":"10.1093/lambio/ovae057","DOIUrl":"10.1093/lambio/ovae057","url":null,"abstract":"<p><p>Yeasts are unicellular eukaryotic microorganisms extensively employed in various applications, notably as an alternative source of protein in feeds, owing to their nutritional benefits. Despite their potential, marine and mangrove yeast species used in the aquaculture industry have received little attention in the Philippines. Pichia kudriavzevii (A2B R1 ISO 3), sourced from bark samples, was selected and mass-produced due to its high protein content and amino acid profile. The dried biomass of P. kudriavzevii was incorporated into the diets of Nile tilapia (Oreochromis niloticus) juveniles at varying inclusion levels (0, 1, 2, and 4 g/kg diet) and its effect on their growth performance, body composition, and liver and intestinal morphology was assessed after 40 days of feeding. The groups that received P. kudriavzevii at a concentration of 2 g/kg diet exhibited higher final body weight, percent weight gain, and specific growth rate in comparison to the other treatment groups. Whole body proximate composition did not vary among the dietary groups. Intestinal and liver histopathology also indicated no abnormalities. These findings suggest the potential of ascomycetous P. kudriavzevii as a beneficial feed additive in Nile tilapia diets, warranting further investigation into its long-term effects and broader applications in fish culture.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141437059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using soil bacteria, Pseudomonas otitidis. The bio-synthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). UV-visible spectroscopy revealed a distinct broad absorption band in the range of 443 nm, indicating the reduction of silver nitrate to AgNPs. XRD analysis provided evidence of the crystalline nature of the particles, with sharp peaks confirming their crystallinity and an average size of 82.76 nm. FTIR spectroscopy identified extracellular protein compounds as capping agents. SEM examination revealed spherical agglomeration of the crystalline AgNPs. The antimicrobial assay by a disc diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration testing revealed that the biosynthesized AgNPs showed moderate antibacterial activity against both pathogenic Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) and Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus mutans) bacterial strains. Furthermore, the AgNPs significantly disrupted the biofilm of P. aeruginosa, as confirmed by crystal violet assay and fluorescent microscopy. Overall, this study underscores the potential of microbial-synthesized nanoparticles in biomedical applications, particularly in combating pathogenic bacteria, offering a promising avenue for future research and development.
{"title":"Pseudomonas otitidis-mediated synthesis of silver nanoparticles: characterization, antimicrobial and antibiofilm potential.","authors":"Ashitha Jose, Sneha Asha, Anaswara Rani, Xavier T S, Praveen Kumar","doi":"10.1093/lambio/ovae053","DOIUrl":"10.1093/lambio/ovae053","url":null,"abstract":"<p><p>This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using soil bacteria, Pseudomonas otitidis. The bio-synthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). UV-visible spectroscopy revealed a distinct broad absorption band in the range of 443 nm, indicating the reduction of silver nitrate to AgNPs. XRD analysis provided evidence of the crystalline nature of the particles, with sharp peaks confirming their crystallinity and an average size of 82.76 nm. FTIR spectroscopy identified extracellular protein compounds as capping agents. SEM examination revealed spherical agglomeration of the crystalline AgNPs. The antimicrobial assay by a disc diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration testing revealed that the biosynthesized AgNPs showed moderate antibacterial activity against both pathogenic Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) and Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus mutans) bacterial strains. Furthermore, the AgNPs significantly disrupted the biofilm of P. aeruginosa, as confirmed by crystal violet assay and fluorescent microscopy. Overall, this study underscores the potential of microbial-synthesized nanoparticles in biomedical applications, particularly in combating pathogenic bacteria, offering a promising avenue for future research and development.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expression of Concern: The gene coding for nigrescin produced by Prevotella nigrescens ATCC 25261.","authors":"","doi":"10.1093/lambio/ovae058","DOIUrl":"10.1093/lambio/ovae058","url":null,"abstract":"","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcos P Monteiro, Hannah M Kohl, Jean-Baptiste Roullet, K Michael Gibson, Javier Ochoa-Repáraz, Andrea R Castillo
γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter of the central nervous system that impacts physical and mental health. Low GABA levels have been documented in several diseases, including multiple sclerosis and depression, and studies suggest that GABA could improve disease outcomes in those conditions. Probiotic bacteria naturally produce GABA and have been engineered to enhance its synthesis. Strains engineered thus far use inducible expression systems that require the addition of exogenous molecules, which complicates their development as therapeutics. This study aimed to overcome this challenge by engineering Lactococcus lactis with a constitutive GABA synthesis gene cassette. GABA synthesizing and transport genes (gadB and gadC) were cloned onto plasmids downstream of constitutive L. lactis promoters [P2, P5, shortened P8 (P8s)] of different strengths and transformed into L. lactis. Fold increase in gadCB expression conferred by these promoters (P2, P5, and P8s) was 322, 422, and 627, respectively, compared to the unmodified strain (P = 0.0325, P8s). GABA synthesis in the highest gadCB expressing strain, L. lactis-P8s-glutamic acid decarboxylase (GAD), was dependent on media supplementation with glutamic acid and significantly higher than the unmodified strain (P < 0.0001, 125 mM, 200 mM glutamic acid). Lactococcus lactis-P8s-GAD is poised for therapeutic testing in animal models of low-GABA-associated disease.
{"title":"Genetically engineered Lactococcus lactis strain constitutively expresses GABA-producing genes and produces high levels of GABA.","authors":"Marcos P Monteiro, Hannah M Kohl, Jean-Baptiste Roullet, K Michael Gibson, Javier Ochoa-Repáraz, Andrea R Castillo","doi":"10.1093/lambio/ovae051","DOIUrl":"10.1093/lambio/ovae051","url":null,"abstract":"<p><p>γ-Aminobutyric acid (GABA) is an inhibitory neurotransmitter of the central nervous system that impacts physical and mental health. Low GABA levels have been documented in several diseases, including multiple sclerosis and depression, and studies suggest that GABA could improve disease outcomes in those conditions. Probiotic bacteria naturally produce GABA and have been engineered to enhance its synthesis. Strains engineered thus far use inducible expression systems that require the addition of exogenous molecules, which complicates their development as therapeutics. This study aimed to overcome this challenge by engineering Lactococcus lactis with a constitutive GABA synthesis gene cassette. GABA synthesizing and transport genes (gadB and gadC) were cloned onto plasmids downstream of constitutive L. lactis promoters [P2, P5, shortened P8 (P8s)] of different strengths and transformed into L. lactis. Fold increase in gadCB expression conferred by these promoters (P2, P5, and P8s) was 322, 422, and 627, respectively, compared to the unmodified strain (P = 0.0325, P8s). GABA synthesis in the highest gadCB expressing strain, L. lactis-P8s-glutamic acid decarboxylase (GAD), was dependent on media supplementation with glutamic acid and significantly higher than the unmodified strain (P < 0.0001, 125 mM, 200 mM glutamic acid). Lactococcus lactis-P8s-GAD is poised for therapeutic testing in animal models of low-GABA-associated disease.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187484/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141180164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mária Nováková, Veronika Vyletelová, Barbora Hlubinová, Hana Kiňová Sepová, Ľudmila Pašková
Recently, an increasing number of studies have investigated the mechanism of action of lactobacilli in the treatment of non-alcoholic fatty liver disease. Using four computational tools (NormFinder, geNorm, Delta Ct, and BestKeeper), six potential reference genes (RGs) were analyzed in the human liver cell line HepG2 cultivated 24 h in the presence of two strains of heat-killed lactobacilli, Limosilactobacillus reuteri E and Lactiplantibacillus plantarum KG4, respectively, in different cultivation media [Dulbecco´s Modified Eagle´s Medium (DMEM) high glucose or Roswell Park Memorial Institute (RPMI)]. The analysis revealed that the suitability of RG was similar between the two lactobacilli but quite different between the two media. The commonly used RGs, 18S rRNA and glyceraldehyde-3-phosphate dehydrogenase were the most unstable in DMEM high glucose. Normalization of the mRNA expression of the target gene encoding sterol regulatory element-binding protein 1c (SREBP-1c) to different RGs resulted in different expression profiles. This demonstrates that validation of candidate RGs under specific experimental conditions is crucial for the correct interpretation of quantitative polymerase chain reaction data. In addition, the choice of media has a profound impact on the effect of lactobacilli on lipogenesis at the gene expression level, as shown by the transcription factor SREBP-1c.
{"title":"Impact of culture medium on the interpretation of qRT-PCR data in HepG2 incubated with lactobacilli.","authors":"Mária Nováková, Veronika Vyletelová, Barbora Hlubinová, Hana Kiňová Sepová, Ľudmila Pašková","doi":"10.1093/lambio/ovae050","DOIUrl":"10.1093/lambio/ovae050","url":null,"abstract":"<p><p>Recently, an increasing number of studies have investigated the mechanism of action of lactobacilli in the treatment of non-alcoholic fatty liver disease. Using four computational tools (NormFinder, geNorm, Delta Ct, and BestKeeper), six potential reference genes (RGs) were analyzed in the human liver cell line HepG2 cultivated 24 h in the presence of two strains of heat-killed lactobacilli, Limosilactobacillus reuteri E and Lactiplantibacillus plantarum KG4, respectively, in different cultivation media [Dulbecco´s Modified Eagle´s Medium (DMEM) high glucose or Roswell Park Memorial Institute (RPMI)]. The analysis revealed that the suitability of RG was similar between the two lactobacilli but quite different between the two media. The commonly used RGs, 18S rRNA and glyceraldehyde-3-phosphate dehydrogenase were the most unstable in DMEM high glucose. Normalization of the mRNA expression of the target gene encoding sterol regulatory element-binding protein 1c (SREBP-1c) to different RGs resulted in different expression profiles. This demonstrates that validation of candidate RGs under specific experimental conditions is crucial for the correct interpretation of quantitative polymerase chain reaction data. In addition, the choice of media has a profound impact on the effect of lactobacilli on lipogenesis at the gene expression level, as shown by the transcription factor SREBP-1c.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hamza Armghan Noushahi, Aamir Hamid Khan, Hamza Ali Khan, Marcin Kiedrzyński, Adnan Akbar, Raheel Shahzad, Sri Koerniati, Abdulwahed Fahad Alrefaei, Shaohua Shu
Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l-1, PA content peaking at 1.25 mg g-1, and a total PA yield of 4.76 g l-1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.
茯苓(Wolfiporia cocos)是一种用途广泛的真菌,因其在中药(TCM)中的营养和治疗功效而备受赞誉,在制药和工业应用方面具有巨大潜力。在这项研究中,我们旨在优化液体发酵技术和培养基成分,以最大限度地提高菌丝生物量(MB)产量、茯苓酸(PA)浓度和整体茯苓酸产量。此外,我们还利用定量实时聚合酶链式反应(qRT-PCR)对 PA 和 MB 生物合成相关基因的表达水平进行了量化,从而研究了我们发现的分子基础。在优化的发酵条件下,取得了显著的结果,甲基溴的最大含量达到 6.68 g L-1,PA 的最高含量为 1.25 mg g-1,PA 的总产量为 4.76 g L-1。值得注意的是,在四个受检基因中,角鲨烯单加氧酶(SQE)在优化条件下以 0.06 的比率表现出更高的表达量。此外,在碳水化合物活性酶(CAZymes)领域,糖苷水解酶 16(GH16)家族在 21 个比率下表现出较高的表达水平,尤其是在甲基溴生产过程中。这项研究加深了人们对 W.cocos 产生甲基溴和 PA 的遗传机制的了解,突出了 SQE 和 GH16 CAZymes 的作用。
{"title":"Optimizing liquid fermentation for Wolfiporia cocos: gene expression and biosynthesis of pachymic acid and mycelial biomass.","authors":"Hamza Armghan Noushahi, Aamir Hamid Khan, Hamza Ali Khan, Marcin Kiedrzyński, Adnan Akbar, Raheel Shahzad, Sri Koerniati, Abdulwahed Fahad Alrefaei, Shaohua Shu","doi":"10.1093/lambio/ovae054","DOIUrl":"10.1093/lambio/ovae054","url":null,"abstract":"<p><p>Wolfiporia cocos, a versatile fungus acclaimed for its nutritional and therapeutic benefits in Traditional Chinese Medicine, holds immense potential for pharmaceutical and industrial applications. In this study, we aimed to optimize liquid fermentation techniques and culture medium composition to maximize mycelial biomass (MB) yield, pachymic acid (PA) concentration, and overall PA production. Additionally, we investigated the molecular basis of our findings by quantifying the expression levels of genes associated with PA and MB biosynthesis using quantitative real-time polymerase chain reaction. Under the optimized fermentation conditions, significant results were achieved, with maximum MB reaching 6.68 g l-1, PA content peaking at 1.25 mg g-1, and a total PA yield of 4.76 g l-1. Notably, among the four examined genes, squalene monooxygenase, exhibited enhanced expression at 0.06 ratio under the optimized conditions. Furthermore, within the realm of carbohydrate-active enzymes, the glycoside hydrolases 16 family displayed elevated expression levels at 21 ratios, particularly during MB production. This study enhances understanding of genetic mechanism governing MB and PA production in W. cocos, highlighting the roles of squalene monooxygenase and glycoside hydrolases 16 carbohydrate-active enzymes.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agnieszka Daca, Lidia Piechowicz, Katarzyna Wiśniewska, Ewa Bryl, Jacek M Witkowski, Tomasz Jarzembowski
Our study aimed to identify markers of enterococci's virulence potential by evaluating the properties of strains of different sites of isolation. Enterococcal strains were isolated as commensals from faeces and as invasive strains from the urine and blood of patients from the University Clinical Centre, Gdańsk, Poland. Changes in monocytes' susceptibility to the cytotoxic activity of isolates of different origins and their adherence to biofilm were evaluated using a flow cytometer. The bacterial protein profile was estimated by matrix assisted laser desorption ionization-time of flight mass spectrometer. The cytotoxicity of biofilm and monocytes' adherence to it were the most accurate factors in predicting the prevalence of the strain in the specific niche. Additionally, a bacterial protein with mass-to-charge ratio (m/z) 5000 was found to be responsible for the increased bacterial cytotoxicity, while monocytes' decreased adherence to biofilm was linked with the presence of proteins either with m/z 3330 or 2435. The results illustrate that monocytes' reaction when exposed to the bacterial biofilm can be used as an estimator of pathogens' virulence potential. The observed differences in monocytes' response are explainable by the bacterial proteins' profile. Additionally, the results indicate that the features of both bacteria and monocytes impact the outcome of the infection.
{"title":"Both biofilm cytotoxicity and monocytes' adhesion may be used as estimators of enterococcal virulence.","authors":"Agnieszka Daca, Lidia Piechowicz, Katarzyna Wiśniewska, Ewa Bryl, Jacek M Witkowski, Tomasz Jarzembowski","doi":"10.1093/lambio/ovae047","DOIUrl":"10.1093/lambio/ovae047","url":null,"abstract":"<p><p>Our study aimed to identify markers of enterococci's virulence potential by evaluating the properties of strains of different sites of isolation. Enterococcal strains were isolated as commensals from faeces and as invasive strains from the urine and blood of patients from the University Clinical Centre, Gdańsk, Poland. Changes in monocytes' susceptibility to the cytotoxic activity of isolates of different origins and their adherence to biofilm were evaluated using a flow cytometer. The bacterial protein profile was estimated by matrix assisted laser desorption ionization-time of flight mass spectrometer. The cytotoxicity of biofilm and monocytes' adherence to it were the most accurate factors in predicting the prevalence of the strain in the specific niche. Additionally, a bacterial protein with mass-to-charge ratio (m/z) 5000 was found to be responsible for the increased bacterial cytotoxicity, while monocytes' decreased adherence to biofilm was linked with the presence of proteins either with m/z 3330 or 2435. The results illustrate that monocytes' reaction when exposed to the bacterial biofilm can be used as an estimator of pathogens' virulence potential. The observed differences in monocytes' response are explainable by the bacterial proteins' profile. Additionally, the results indicate that the features of both bacteria and monocytes impact the outcome of the infection.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana C Miranda-López, Ernesto Pérez-Rueda, Jorge Rojas-Vargas, Cecilia Hernández Cortez, Andres Saldaña-Padilla, Hugo G Castelán-Sánchez, Graciela Castro-Escarpulli
Porphyromonas gingivalis is a nonmotile, obligate anaerobic, Gram-negative bacterium known for its association with periodontal disease and its involvement in systemic diseases such as atherosclerosis, cardiovascular disease, colon cancer, and Alzheimer's disease. This bacterium produces several virulence factors, including capsules, fimbriae, lipopolysaccharides, proteolytic enzymes, and hemagglutinins. A comparative genomic analysis revealed the open pangenome of P. gingivalis and identified complete type IV secretion systems in strain KCOM2805 and almost complete type VI secretion systems in strains KCOM2798 and ATCC49417, which is a new discovery as previous studies did not find the proteins involved in secretion systems IV and VI. Conservation of some virulence factors between different strains was observed, regardless of their genetic diversity and origin. In addition, we performed for the first time a reconstruction analysis of the gene regulatory network, identifying transcription factors and proteins involved in the regulatory mechanisms of bacterial pathogenesis. In particular, QseB regulates the expression of hemagglutinin and arginine deaminase, while Rex may suppress the release of gingipain through interactions with PorV and the formatum/nitrate transporter. Our study highlights the central role of conserved virulence factors and regulatory pathways, particularly QseB and Rex, in P. gingivalis and provides insights into potential therapeutic targets.
牙龈卟啉单胞菌(Porphyromonas gingivalis)是一种非运动性、必须厌氧的革兰氏阴性细菌,因其与牙周病以及动脉粥样硬化、心血管疾病、结肠癌和阿尔茨海默病等全身性疾病有关而闻名。这种细菌会产生多种毒力因子,包括胶囊、纤毛、脂多糖、蛋白水解酶和血凝素。比较基因组分析揭示了牙龈脓杆菌开放的泛基因组,在菌株 KCOM2805 中发现了完整的 IV 型分泌系统(T4SS),在菌株 KCOM2798 和 ATCC49417 中发现了几乎完整的 VI 型分泌系统(T6SS),这是一项新发现,因为以前的研究没有发现参与分泌系统 IV 和 VI 的蛋白质。我们观察到不同菌株之间的一些毒力因子是一致的,与它们的遗传多样性和来源无关。此外,我们还首次对基因调控网络(GRN)进行了重构分析,确定了参与细菌致病调控机制的转录因子和蛋白质。其中,QseB 可调控血凝素和精氨酸脱氨酶的表达,而 Rex 则可能通过与 PorV 和格式瘤/硝酸盐转运体的相互作用来抑制gingipain 的释放。我们的研究强调了保守的毒力因子和调控途径(尤其是 QseB 和 Rex)在牙龈脓疱病中的核心作用,并为潜在的治疗靶点提供了见解。
{"title":"Comprehensive comparative analysis of the periodontal pathogen Porphyromonas gingivalis: exploring the pan-genome, the reconstruction of the gene regulatory network and genome-scale metabolic network.","authors":"Diana C Miranda-López, Ernesto Pérez-Rueda, Jorge Rojas-Vargas, Cecilia Hernández Cortez, Andres Saldaña-Padilla, Hugo G Castelán-Sánchez, Graciela Castro-Escarpulli","doi":"10.1093/lambio/ovae048","DOIUrl":"10.1093/lambio/ovae048","url":null,"abstract":"<p><p>Porphyromonas gingivalis is a nonmotile, obligate anaerobic, Gram-negative bacterium known for its association with periodontal disease and its involvement in systemic diseases such as atherosclerosis, cardiovascular disease, colon cancer, and Alzheimer's disease. This bacterium produces several virulence factors, including capsules, fimbriae, lipopolysaccharides, proteolytic enzymes, and hemagglutinins. A comparative genomic analysis revealed the open pangenome of P. gingivalis and identified complete type IV secretion systems in strain KCOM2805 and almost complete type VI secretion systems in strains KCOM2798 and ATCC49417, which is a new discovery as previous studies did not find the proteins involved in secretion systems IV and VI. Conservation of some virulence factors between different strains was observed, regardless of their genetic diversity and origin. In addition, we performed for the first time a reconstruction analysis of the gene regulatory network, identifying transcription factors and proteins involved in the regulatory mechanisms of bacterial pathogenesis. In particular, QseB regulates the expression of hemagglutinin and arginine deaminase, while Rex may suppress the release of gingipain through interactions with PorV and the formatum/nitrate transporter. Our study highlights the central role of conserved virulence factors and regulatory pathways, particularly QseB and Rex, in P. gingivalis and provides insights into potential therapeutic targets.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}