Pub Date : 2020-02-27DOI: 10.1088/2632-2153/ABF984
Yansong Gao, P. Chaudhari
This paper employs a formal connection of machine learning with thermodynamics to characterize the quality of learnt representations for transfer learning. We discuss how information-theoretic functional such as rate, distortion and classification loss of a model lie on a convex, so-called equilibrium surface.We prescribe dynamical processes to traverse this surface under constraints, e.g., an iso-classification process that trades off rate and distortion to keep the classification loss unchanged. We demonstrate how this process can be used for transferring representations from a source dataset to a target dataset while keeping the classification loss constant. Experimental validation of the theoretical results is provided on standard image-classification datasets.
{"title":"A Free-Energy Principle for Representation Learning","authors":"Yansong Gao, P. Chaudhari","doi":"10.1088/2632-2153/ABF984","DOIUrl":"https://doi.org/10.1088/2632-2153/ABF984","url":null,"abstract":"This paper employs a formal connection of machine learning with thermodynamics to characterize the quality of learnt representations for transfer learning. We discuss how information-theoretic functional such as rate, distortion and classification loss of a model lie on a convex, so-called equilibrium surface.We prescribe dynamical processes to traverse this surface under constraints, e.g., an iso-classification process that trades off rate and distortion to keep the classification loss unchanged. We demonstrate how this process can be used for transferring representations from a source dataset to a target dataset while keeping the classification loss constant. Experimental validation of the theoretical results is provided on standard image-classification datasets.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"36 1","pages":"45004"},"PeriodicalIF":0.0,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90874562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-12-09DOI: 10.1088/2632-2153/ABFBBB
Hugo Cui, Luca Saglietti, Lenka Zdeborov'a
Active learning is a branch of machine learning that deals with problems where unlabeled data is abundant yet obtaining labels is expensive. The learning algorithm has the possibility of querying a limited number of samples to obtain the corresponding labels, subsequently used for supervised learning. In this work, we consider the task of choosing the subset of samples to be labeled from a fixed finite pool of samples. We assume the pool of samples to be a random matrix and the ground truth labels to be generated by a single-layer teacher random neural network. We employ replica methods to analyze the large deviations for the accuracy achieved after supervised learning on a subset of the original pool. These large deviations then provide optimal achievable performance boundaries for any active learning algorithm. We show that the optimal learning performance can be efficiently approached by simple message-passing active learning algorithms. We also provide a comparison with the performance of some other popular active learning strategies.
{"title":"Large deviations for the perceptron model and consequences for active learning","authors":"Hugo Cui, Luca Saglietti, Lenka Zdeborov'a","doi":"10.1088/2632-2153/ABFBBB","DOIUrl":"https://doi.org/10.1088/2632-2153/ABFBBB","url":null,"abstract":"Active learning is a branch of machine learning that deals with problems where unlabeled data is abundant yet obtaining labels is expensive. The learning algorithm has the possibility of querying a limited number of samples to obtain the corresponding labels, subsequently used for supervised learning. In this work, we consider the task of choosing the subset of samples to be labeled from a fixed finite pool of samples. We assume the pool of samples to be a random matrix and the ground truth labels to be generated by a single-layer teacher random neural network. We employ replica methods to analyze the large deviations for the accuracy achieved after supervised learning on a subset of the original pool. These large deviations then provide optimal achievable performance boundaries for any active learning algorithm. We show that the optimal learning performance can be efficiently approached by simple message-passing active learning algorithms. We also provide a comparison with the performance of some other popular active learning strategies.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"66 1","pages":"45001"},"PeriodicalIF":0.0,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74472820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}