Immune complexes (ICs) skew immune responses toward either a pro- or anti-inflammatory direction based on the type of stimulation. Immunoglobulin E (IgE) is associated with Th2 immune responses and known to activate innate immune cells. However, roles of antigen (Ag)-specific-IgE ICs in regulating human eosinophil responses remain elusive; therefore, this study builts upon the mechanism of which ovalbumin (Ova)-IgE ICs affects eosinophilic responses utilizing human EoL-1 cell line as a model. Eosinophils are granulocytes functioning through pattern recognition receptors (PRRs) and destructive granule contents in allergic inflammation and parasitic infections. One of the PRRs that eosinophils express is NLRC4, a member of the CARD domain containing nucleotide-binding oligomerization (NOD)-like receptor (NLR) family. Upon recognition of its specific ligand flagellin, NLRC4 inflammasome is formed and leads to the release of interleukin-1β (IL-1β). We exhibited that Ova-IgE ICs induced the NLRC4-inflammasome components, including NLRC4, caspase-1, intracellular IL-1β, and secretion of IL-1β, as well as the granule contents MMP9, TIMP1, and TIMP2 proteins via TLR2 signaling; these responses were suppressed, when NLRC4 inflammasome got actived in the presence of ICs. Furthermore, Ova-IgE ICs induced mRNA expressions of MMP9, TIMP2, and ECP and protein expressions of MMP9 and TIMP2 in EoL-1 through FcɛRII. Interestingly, TLR2 ligand and Ova-IgE ICs costimulation elevated the number of CD63+ cells, a degranulation marker, as compared to the native IgE. Collectively, our findings provide a mechanism for the impacts of Ova-IgE ICs on eosinophilic responses via NLRC4-inflammasome and may help understand eosinophil-associated diseases, including chronic eosinophilic pneumonia, eosinophilic esophagitis, eosinophilic granulomatosis, parasitic infections, allergy, and asthma.
Background: Inflammation is a major cause of hepatic tissue damage and accelerates the progression of nonalcoholic fatty liver disease (NAFLD). Amphiregulin (AREG), an epidermal growth factor receptor ligand, is associated with human liver cirrhosis and hepatocellular carcinoma. We aimed to investigate the effects of AREG on hepatic inflammation during NAFLD progression, in vivo and in vitro.
Methods: AREG gene expression was measured in the liver of mice fed a methionine choline-deficient (MCD) diet for 2 weeks. We evaluated inflammatory mediators and signaling pathways in HepG2 cells after stimulation with AREG. Nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were analyzed using an enzyme-linked immunosorbent assay and western blotting. Nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, were analyzed using western blotting.
Results: Proinflammatory cytokines (interleukin (IL)-6, IL-1β, and IL-8) and immune cell recruitment (as indicated by L3T4, F4/80, and ly6G mRNA expression) increased, and expression of AREG increased in the liver of mice fed the MCD diet. AREG significantly increased the expression of IL-6 and IL-1β and the production of NO, PGE2, and IL-8 in HepG2 cells. It also activated the protein expression of iNOS and COX-2. AREG-activated NF-κB and MAPKs signaling, and together with NF-κB and MAPKs inhibitors, AREG significantly reduced the protein expression of iNOS and COX-2.
Conclusion: AREG plays a role in hepatic inflammation by increasing iNOS and COX-2 expression via NF-κB and MAPKs signaling.
Sepsis is one of the most severe complications and causes of mortality in the clinic. It remains a great challenge with no effective treatment for clinicians worldwide. Inhibiting the release of proinflammatory cytokines during sepsis is considered as an important strategy for treating sepsis and improving survival. In the present study, we have observed the effect of dimethyl fumarate (DMF) on lipopolysaccharide- (LPS-) induced sepsis and investigated the possible mechanism. By screening a subset of the Johns Hopkins Drug Library, we identified DMF as a novel inhibitor of nitric oxide synthesis in LPS-stimulated RAW264.7 cells, suggesting that DMF could be a potential drug to treat sepsis. To further characterize the effect of DMF on LPS signaling, TNF-α, MCP-1, G-CMF, and IL-6 expression levels were determined by using cytokine array panels. In addition, an endotoxemia model with C57BL/6 mice was used to assess the in vivo efficacy of DMF on sepsis. The survival rate was assessed, and HE staining was performed to investigate histopathological damage to the organs. DMF was found to increase the survival of septic mice by 50% and attenuate organ damage, consistent with the reduction in IL-10, IL-6, and TNF-α (inflammatory cytokines) in serum. In vitro experiments revealed DMF's inhibitory effect on the phosphorylation of p65, IκB, and IKK, suggesting that the primary inhibitory effects of DMF can be attributed, at least in part, to the inhibition of phosphorylation of IκBα, IKK as well as nuclear factor-κB (NF-κB) upon LPS stimulation. The findings demonstrate that DMF dramatically inhibits NO and proinflammatory cytokine production in response to LPS and improves survival in septic mice, raising the possibility that DMF has the potential to be repurposed as a new treatment of sepsis.
Persistent oxidative stress and inflammation contribute causally to smooth muscle cell (SMC) proliferation and migration, the characteristic features of vascular proliferative diseases. Oxidatively modified low-density lipoproteins (OxLDL) elevate oxidative stress levels, inflammatory responses, and matrix metallopeptidase (MMP) activation, resulting ultimately in SMC migration, proliferation, and phenotype change. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Empagliflozin is an SGLT2 inhibitor and exerts pleiotropic cardiovascular protective effects, including antioxidant and anti-inflammatory effects. Here, we investigated (i) whether OxLDL regulates RECK expression, (ii) whether ectopic expression of RECK reverses OxLDL-induced SMC migration and proliferation, and (iii) whether pretreatment with empagliflozin reverses OxLDL-induced RECK suppression, MMP activation, and SMC migration, proliferation, and differentiation. Indeed, results show that OxLDL at pathophysiological concentration promotes SMC migration and proliferation via NF-κB/miR-30b-dependent RECK suppression. Moreover, OxLDL changed the SMC phenotype to a more pro-inflammatory type, and this effect is blunted by RECK overexpression. Further, treatment with empagliflozin reversed OxLDL-induced miR-30b induction, RECK suppression, MMP activation, SMC migration, proliferation, and proinflammatory phenotype changes. OxLDL-induced cardiotrophin (CT)-1 expression and CT-1 stimulated SMC proliferation and migration in part via leukemia inhibitory factor receptor (LIFR) and glycoprotein 130 (gp130). Ectopic expression of RECK inhibited these effects by physically associating with LIFR and gp130, as evidenced by immunoprecipitation/immunoblotting and double immunofluorescence. Importantly, empagliflozin inhibited CT-1-induced mitogenic and migratory effects. Together, these results suggest the therapeutic potential of sustaining RECK expression or empagliflozin in vascular diseases characterized by SMC proliferation and migration.
[This retracts the article DOI: 10.1155/2022/5741114.].
Objective: To determine prognostic role of endothelial progenitor cells (EPCs) in intensive care patients with acute myocardial infarction (AMI).
Materials and methods: From December 2018 to July 2021, a total of 91 eligible patients with AMI were consecutively examined in a single intensive care unit (ICU) in China. Patients with a history of acute coronary artery disease were excluded from the study. Samples were collected within 24 hr of onset of symptoms. EPCs, defined as coexpression of CD34+/CD133+ cells or CD133+/CD34+/KDR+, were studied using flow cytometry and categorized by quartiles. Based on the 28-days mortality outcome, the patients were further divided into two groups: death and survival. The study incorporated various variables, including cardiovascular risk factors such as body mass index, hypertension, diabetes, hypercholesterolemia, atherosclerotic burden, and medication history, as well as clinical characteristics such as APACHEⅡscore, central venous-arterial carbon dioxide difference (GAP), homocysteine, creatinine, C-reactive protein, HbAlc, and cardiac index. Cox regression analysis was employed to conduct a multivariate analysis.
Results: A total of 91 patients with AMI who were admitted to the ICU were deemed eligible for inclusion in the study. Among these patients, 23 (25.3%) died from various causes during the follow-up period. The counts of EPCs were found to be significantly higher in the survival group compared to the death group (P < 0.05). In the univariate analysis, it was observed that the 28-days mortality rate was associated with the several factors, including the APACHEⅡscore (P=0.00), vasoactive inotropic score (P=0.03), GAP (P=0.00), HCY (P=0.00), creatinine (P=0.00), C-reactive protein (P=0.00), HbAlc (P=0.00), CI (P=0.01), quartiles of CD34+/CD133+ cells (P=0.00), and quartiles of CD34+/CD133+/KDR+ cells (P=0.00). CD34+/CD133+/KDR+ cells retained statistical significance in Cox regression models even after controlling for clinical variables (HR: 6.258 × 10-10 and P=0.001). Nevertheless, no significant correlation was observed between CD34+/CD133+ cells and all-cause mortality.
Conclusions: The decreased EPCs levels, especially for CD34+/CD133+/KDR+ cells subsets, were an independent risk factor for 28-days mortality in AMI patients.
The mechanism of action of omalizumab in urticaria is still not literally known. This study examines the serum values of substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and interleukin-31 (IL-31) in patients using omalizumab. In this study, 30 patients with chronic spontaneous urticaria (CSU) who were going to be treated with omalizumab and 20 healthy volunteers took part. Demographic data, clinical data, and disease activity scores were noted. For serum SP, CGRP, NPY, and IL-31 values, 10 mL of blood were taken from the patients before starting the treatment, 3 months after the treatment, at the end of the 6th month, and from healthy volunteers all at once. The change in values measured at baseline, 3rd month, and 6th month was analyzed by the Friedman Test. The Mann-Whitney U test was used to compare the parameters obtained from the patients and control groups. The significance level was set at p=0.05. SP, CGRP, NPY, and IL-31 values were all statistically significantly lower in the CSU patient group compared to the control group. After treatment, the levels of SP and CGRP in the serum went up, and the levels of serum IL-31 went down. These changes were statistically significant. This study supports the view that omalizumab does not only affect IgE receptors but also affects mast cells through other mechanisms. According to our knowledge, this is the first study to show that omalizumab therapy and serum CGRP levels are related.
Introduction: Osteoarthritis (OA) is the most common degenerative joint disorder. Prior studies revealed that activation of NLRP3 inflammasome could promote the activation and secretion of interleukin-1β (IL-1β), which has an adverse effect on the progression of OA. Betulinic acid (BA) is a compound extract of birch, whether it can protect against OA and the mechanisms involved are still unknown.
Materials and methods: In vivo experiments, using gait analysis, ELISA, micro-CT, and scanning electron microscopy (SEM), histological staining, immunohistological (IHC) and immunofluorescence (IF) staining, and atomic force microscopy (AFM) to assess OA progression after intraperitoneal injection of 5 and 15 mg/kg BA in an OA mouse model. In vitro experiments, caspase-1, IL-1β, and the N-terminal fragment of gasdermin D (GSDMD-NT) were measured in bone marrow-derived macrophages (BMDMs) by using ELISA, western blot, and immunofluorescence staining.
Results: We demonstrated that OA progression can be postponed with intraperitoneal injection of 5 and 15 mg/kg BA in an OA mouse model. Specifically, BA postponed DMM-induced cartilage deterioration, alleviated subchondral bone sclerosis, and relieved synovial inflammation. In vitro studies, the activated NLRP3 inflammasome produces mature IL-1β by facilitating the cleavage of pro-IL-1β, and BA could inhibit the activation of NLRP3 inflammasome in BMDMs.
Conclusions: Taken together, our analyses revealed that BA attenuates OA via limiting NLRP3 inflammasome activation to decrease the IL-1β maturation and secretion.
Ulcerative colitis (UC) is the most common inflammatory bowel disease (IBD); it is incurable, and the treatment is expensive. Trans-anethole (TA), the main component of fennel, exhibits various biological activities. An increasing number of studies have demonstrated the efficacy of herbal active ingredients in the treatment of UC. This study aimed to investigate the effect and mechanism of TA in UC. In this study, we have experimented on mice with dextran sulfate sodium salt (DSS)-induced UC. The TA group was gavaged with 62.5 mg/kg TA by gavage once daily on days 8-14. To observe the effect of TA on the colon tissue, various investigations were performed, including western blot and immunohistochemistry for intestinal barrier protein expression, TUNEL staining for apoptosis, western blot, and ELISA for inflammation level, flow cytometry for Th17/Treg, LC-MS for blood bile acid content, GC-MS for blood fatty acid content, and 16s RNA for intestinal contents. TA alleviated weight loss in mice with UC; increased colon length; alleviated intestinal mucosal damage; upregulated claudin-1, occludin, and ZO-1 protein expression levels; reduced inflammatory factors in the colon and serum; and alleviated apoptosis. TA reduced fatty acid and bile acid levels by inhibiting colony abundance and reducing Th17/Treg cell differentiation in the colon. We found that TA alleviates DSS-induced UC by remodeling the intestinal flora to regulate immunity and bile acid metabolism.