首页 > 最新文献

EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020最新文献

英文 中文
UNITOR @ DANKMEME: Combining Convolutional Models and Transformer-based architectures for accurate MEME management unit @ DANKMEME:结合卷积模型和基于变压器的架构,实现准确的MEME管理
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.7420
Claudia Breazzano, E. Rubino, D. Croce, R. Basili
This paper describes the UNITOR system that participated to the “multimoDal Artefacts recogNition Knowledge for MEMES” (DANKMEMES) task within the context of EVALITA 2020. UNITOR implements a neural model which combines a Deep Convolutional Neural Network to encode visual information of input images and a Transformerbased architecture to encode the meaning of the attached texts. UNITOR ranked first in all subtasks, clearly confirming the robustness of the investigated neural architectures and suggesting the beneficial impact of the proposed combination strategy.
本文描述了在EVALITA 2020的背景下参与“MEMES的多模态人工制品识别知识”(DANKMEMES)任务的UNITOR系统。UNITOR实现了一个神经模型,该模型结合了深度卷积神经网络来编码输入图像的视觉信息,以及基于transform的架构来编码附加文本的含义。UNITOR在所有子任务中排名第一,清楚地证实了所研究的神经结构的鲁棒性,并表明所提出的组合策略的有益影响。
{"title":"UNITOR @ DANKMEME: Combining Convolutional Models and Transformer-based architectures for accurate MEME management","authors":"Claudia Breazzano, E. Rubino, D. Croce, R. Basili","doi":"10.4000/BOOKS.AACCADEMIA.7420","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7420","url":null,"abstract":"This paper describes the UNITOR system that participated to the “multimoDal Artefacts recogNition Knowledge for MEMES” (DANKMEMES) task within the context of EVALITA 2020. UNITOR implements a neural model which combines a Deep Convolutional Neural Network to encode visual information of input images and a Transformerbased architecture to encode the meaning of the attached texts. UNITOR ranked first in all subtasks, clearly confirming the robustness of the investigated neural architectures and suggesting the beneficial impact of the proposed combination strategy.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127682060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
PoliTeam @ AMI: Improving Sentence Embedding Similarity with Misogyny Lexicons for Automatic Misogyny Identification in Italian Tweets politteam @ AMI:提高句子嵌入与厌女词汇的相似度,用于意大利语推文中的厌女自动识别
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.6807
Giuseppe Attanasio, Eliana Pastor
We present a multi-agent classification solution for identifying misogynous and aggressive content in Italian tweets. A first agent uses modern Sentence Embedding techniques to encode tweets and a SVM classifier to produce initial labels. A second agent, based on TF-IDF and Misogyny Italian lexicons, is jointly adopted to improve the first agent on uncertain predictions. We evaluate our approach in the Automatic Misogyny Identification Shared Task of the EVALITA 2020 campaign. Results show that TF-IDF and lexicons effectively improve the supervised agent trained on sentence embeddings. Italiano. Presentiamo un classificatore multi-agente per identificare tweet italiani misogini e aggressivi. Un primo agente codifica i tweet con Sentence Embedding e una SVM per produrre le etichette iniziali. Un secondo agente, basato su TF-IDF e lessici misogini, è usato per coadiuvare il primo agente nelle predizioni incerte. Applichiamo la soluzione al task AMI della campagna EVALITA 2020. I risultati mostrano che TF-IDF e i lessici migliorano le performance del primo agente addestrato su sentence embedding.
我们提出了一个多智能体分类解决方案,用于识别意大利语推文中的厌女和攻击性内容。第一智能体使用现代句子嵌入技术对tweet进行编码,并使用支持向量机分类器生成初始标签。基于TF-IDF和Misogyny意大利语词汇的第二个代理被联合采用,以改进第一个代理对不确定预测的处理。我们在EVALITA 2020运动的自动厌女症识别共享任务中评估了我们的方法。结果表明,TF-IDF和词典有效地改善了句子嵌入训练的监督智能体。意大利语。呈现一种非分类的、多代理的、每条身份推文的意大利式厌女攻击。利用支持向量机对推文和句子嵌入的初始化问题进行求解。第二剂,basato su TF-IDF,较弱的misogini, è usato per codiuva,第一剂,较弱的预测。应用解决方案的所有任务AMI della campagna EVALITA 2020。结果表明,TF-IDF算法在句子嵌入中具有较低的性能和较低的性能。
{"title":"PoliTeam @ AMI: Improving Sentence Embedding Similarity with Misogyny Lexicons for Automatic Misogyny Identification in Italian Tweets","authors":"Giuseppe Attanasio, Eliana Pastor","doi":"10.4000/BOOKS.AACCADEMIA.6807","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6807","url":null,"abstract":"We present a multi-agent classification solution for identifying misogynous and aggressive content in Italian tweets. A first agent uses modern Sentence Embedding techniques to encode tweets and a SVM classifier to produce initial labels. A second agent, based on TF-IDF and Misogyny Italian lexicons, is jointly adopted to improve the first agent on uncertain predictions. We evaluate our approach in the Automatic Misogyny Identification Shared Task of the EVALITA 2020 campaign. Results show that TF-IDF and lexicons effectively improve the supervised agent trained on sentence embeddings. Italiano. Presentiamo un classificatore multi-agente per identificare tweet italiani misogini e aggressivi. Un primo agente codifica i tweet con Sentence Embedding e una SVM per produrre le etichette iniziali. Un secondo agente, basato su TF-IDF e lessici misogini, è usato per coadiuvare il primo agente nelle predizioni incerte. Applichiamo la soluzione al task AMI della campagna EVALITA 2020. I risultati mostrano che TF-IDF e i lessici migliorano le performance del primo agente addestrato su sentence embedding.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115946515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Fontana-Unipi @ HaSpeeDe2: Ensemble of transformers for the Hate Speech task at Evalita (short paper) Fontana-Unipi @ HaSpeeDe2: Evalita仇恨言论任务的变形金刚集合(短文)
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.6979
Michele Fontana, Giuseppe Attardi
We describe our approach and experiments to tackle Task A of the second edition of HaSpeeDe, within the Evalita 2020 evaluation campaign. The proposed model consists in an ensemble of classifiers built from three variants of a common neural architecture. Each classifier uses contextual representations from transformers trained on Italian texts, fine tuned on the training set of the challenge. We tested the proposed model on the two official test sets, the in-domain test set containing just tweets and the out-of-domain one including also news headlines. Our submissions ranked 4th on the tweets test set and 17th on the second test set.
我们描述了我们在Evalita 2020评估活动中解决HaSpeeDe第二版任务A的方法和实验。提出的模型由由三种常见神经结构变体构建的分类器集成而成。每个分类器使用来自意大利语文本训练的转换器的上下文表示,并对挑战的训练集进行微调。我们在两个官方测试集上测试了提出的模型,域内测试集只包含tweet,域外测试集也包括新闻标题。我们的提交在推文测试集中排名第4,在第二个测试集中排名第17。
{"title":"Fontana-Unipi @ HaSpeeDe2: Ensemble of transformers for the Hate Speech task at Evalita (short paper)","authors":"Michele Fontana, Giuseppe Attardi","doi":"10.4000/BOOKS.AACCADEMIA.6979","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6979","url":null,"abstract":"We describe our approach and experiments to tackle Task A of the second edition of HaSpeeDe, within the Evalita 2020 evaluation campaign. The proposed model consists in an ensemble of classifiers built from three variants of a common neural architecture. Each classifier uses contextual representations from transformers trained on Italian texts, fine tuned on the training set of the challenge. We tested the proposed model on the two official test sets, the in-domain test set containing just tweets and the out-of-domain one including also news headlines. Our submissions ranked 4th on the tweets test set and 17th on the second test set.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131225876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
UO_4to @ TAG-it 2020: Ensemble of Machine Learning Methods (short paper) TAG-it 2020:机器学习方法集成(短论文)
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.7270
María Fernanda Artigas Herold, Daniel Castro-Castro
This paper describes the proposal presented in the TAG-it author profiling task from EVALITA 2020 for sub-task 1. The main objective is to predict gender and age of some blog users by their posts, as well as topic they wrote about. Our proposal uses an ensemble of machine learning algorithms with three of the most used classifiers and language model of the n-grams of characters represented in a Bag of Word. To face this task we presented two different strategies aimed at finding the best possible results.
本文描述了在EVALITA 2020的TAG-it作者分析任务中为子任务1提出的建议。主要目的是通过博客用户的帖子以及他们所写的话题来预测他们的性别和年龄。我们的建议使用了一套机器学习算法,其中包括三种最常用的分类器和一个单词袋中表示的n个字符图的语言模型。为了面对这一任务,我们提出了两种不同的策略,旨在找到可能的最佳结果。
{"title":"UO_4to @ TAG-it 2020: Ensemble of Machine Learning Methods (short paper)","authors":"María Fernanda Artigas Herold, Daniel Castro-Castro","doi":"10.4000/BOOKS.AACCADEMIA.7270","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7270","url":null,"abstract":"This paper describes the proposal presented in the TAG-it author profiling task from EVALITA 2020 for sub-task 1. The main objective is to predict gender and age of some blog users by their posts, as well as topic they wrote about. Our proposal uses an ensemble of machine learning algorithms with three of the most used classifiers and language model of the n-grams of characters represented in a Bag of Word. To face this task we presented two different strategies aimed at finding the best possible results.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"241 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131550968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) By1510 @ HaSpeeDe 2:社交媒体数据中意大利语仇恨言论的识别(短文)
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.6942
T. Deng, Yang Bai, Hongbing Dai
English. Hate speech detection has become a crucial mission in many fields. This paper introduces the system of team By1510. In this work, we participate in the HaSpeeDe 2 (Hate Speech Detection) shared task which is organized within Evalita 2020(The Final Workshop of the 7th evaluation campaign). In order to obtain more abundant semantic information, we combine the original output of BERT-Ita and the hidden state outputs of BERT-Ita. We take part in task A. Our model achieves an F1 score of 77.66% (6/27) in the tweets test set and our model achieves an F1 score of 66.38% (14/27) in the news headlines test set. Italiano. L’ individuazione dell’ incitamento allodio diventata una missione cruciale in molti campi. Questo articolo introduce il sistema del team By1510. In questo lavoro, partecipiamo al task HaSpeeDe 2 che stato organizzato allinterno di Evalita 2020. Per ottenere informazioni semantiche pi abbondanti abbiamo combinato loutput originale di BERT Ita e gli output di hidden state di BERT Ita. Il sistema presentato partecipa al task A. Il nostro modello ottiene un punteggio F1 di 77.66% (6/27) sui dati di test da Twitter e un punteggio F1 di 66.38% (14/27) sui dati di test contenenti titoli di quotidiano. Copyright c © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
英语。仇恨言论检测已成为许多领域的一项重要任务。本文介绍了团队By1510系统。在这项工作中,我们参与了在Evalita 2020(第七次评估活动的最终研讨会)中组织的HaSpeeDe 2(仇恨言论检测)共享任务。为了获得更丰富的语义信息,我们将BERT-Ita的原始输出和BERT-Ita的隐藏状态输出结合起来。我们参加任务a。我们的模型在tweets测试集中获得了77.66%(6/27)的F1分数,在news headlines测试集中获得了66.38%(14/27)的F1分数。意大利语。我的“个性”和“激励”都是为了实现我们的使命。Questo articolo介绍了il系统模型团队By1510。为了解决这个问题,参与性任务将在2020年的所有评估期间组织起来。根据不同的信息语义,将abbond和abbiamo相结合,输出原始状态的BERT - Ita和隐藏状态的BERT - Ita。i nostro modelello ottiene un punteggio F1 di 77.66% (6/27) sui dati di test da Twitter e un punteggio F1 di 66.38% (14/27) sui dati di test contententi titoli di quotidiano。本文版权所有c©2020。在知识共享许可国际署名4.0 (CC BY 4.0)下允许使用。
{"title":"By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper)","authors":"T. Deng, Yang Bai, Hongbing Dai","doi":"10.4000/BOOKS.AACCADEMIA.6942","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6942","url":null,"abstract":"English. Hate speech detection has become a crucial mission in many fields. This paper introduces the system of team By1510. In this work, we participate in the HaSpeeDe 2 (Hate Speech Detection) shared task which is organized within Evalita 2020(The Final Workshop of the 7th evaluation campaign). In order to obtain more abundant semantic information, we combine the original output of BERT-Ita and the hidden state outputs of BERT-Ita. We take part in task A. Our model achieves an F1 score of 77.66% (6/27) in the tweets test set and our model achieves an F1 score of 66.38% (14/27) in the news headlines test set. Italiano. L’ individuazione dell’ incitamento allodio diventata una missione cruciale in molti campi. Questo articolo introduce il sistema del team By1510. In questo lavoro, partecipiamo al task HaSpeeDe 2 che stato organizzato allinterno di Evalita 2020. Per ottenere informazioni semantiche pi abbondanti abbiamo combinato loutput originale di BERT Ita e gli output di hidden state di BERT Ita. Il sistema presentato partecipa al task A. Il nostro modello ottiene un punteggio F1 di 77.66% (6/27) sui dati di test da Twitter e un punteggio F1 di 66.38% (14/27) sui dati di test contenenti titoli di quotidiano. Copyright c © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"127 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113987147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1