首页 > 最新文献

EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020最新文献

英文 中文
SSN NLP @ SardiStance : Stance Detection from Italian Tweets using RNN and Transformers (short paper) SSN NLP @ SardiStance:使用RNN和transformer从意大利语推文中进行姿态检测(短文)
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.7207
S. Kayalvizhi, D. Thenmozhi, Aravindan Chandrabose
Stance detection refers to the detection of one’s opinion about the target from their statements. The aim of sardistance task is to classify the Italian tweets into classes of favor, against or no feeling towards the target. The task has two sub-tasks : in Task A, the classification has to be done by considering only the textual meaning whereas in Task B the tweets must be classified by considering the contextual information along with the textual meaning. We have presented our solution to detect the stance utilizing only the textual meaning (Task A) using encoder-decoder model and transformers. Among these two approaches, simple transformers have performed better than the encoder-decoder model with an average F1-score of 0.4707.
立场检测是指从被测者的陈述中检测自己对被测者的看法。sardistance任务的目的是将意大利语推文分为对目标对象有好感、反对或没有好感的三类。该任务有两个子任务:在任务A中,分类必须只考虑文本含义,而在任务B中,必须考虑上下文信息和文本含义对tweet进行分类。我们已经提出了使用编码器-解码器模型和转换器仅利用文本含义检测姿态的解决方案(任务A)。在这两种方法中,简单变压器的表现优于编码器-解码器模型,平均f1得分为0.4707。
{"title":"SSN NLP @ SardiStance : Stance Detection from Italian Tweets using RNN and Transformers (short paper)","authors":"S. Kayalvizhi, D. Thenmozhi, Aravindan Chandrabose","doi":"10.4000/BOOKS.AACCADEMIA.7207","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7207","url":null,"abstract":"Stance detection refers to the detection of one’s opinion about the target from their statements. The aim of sardistance task is to classify the Italian tweets into classes of favor, against or no feeling towards the target. The task has two sub-tasks : in Task A, the classification has to be done by considering only the textual meaning whereas in Task B the tweets must be classified by considering the contextual information along with the textual meaning. We have presented our solution to detect the stance utilizing only the textual meaning (Task A) using encoder-decoder model and transformers. Among these two approaches, simple transformers have performed better than the encoder-decoder model with an average F1-score of 0.4707.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130083990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
UNITOR @ Sardistance2020: Combining Transformer-based Architectures and Transfer Learning for Robust Stance Detection UNITOR @ Sardistance2020:结合基于变压器的架构和迁移学习进行稳健的姿态检测
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.7092
Simone Giorgioni, Marcello Politi, Samir Salman, R. Basili, D. Croce
English. This paper describes the UNITOR system that participated to the Stance Detection in Italian tweets (Sardistance) task within the context of EVALITA 2020. UNITOR implements a transformer-based architecture whose accuracy is improved by adopting a Transfer Learning technique. In particular, this work investigates the possible contribution of three auxiliary tasks related to Stance Detection, i.e., Sentiment Detection, Hate Speech Detection and Irony Detection. Moreover, UNITOR relies on an additional dataset automatically downloaded and labeled through distant supervision. The UNITOR system ranked first in Task A within the competition. This confirms the effectiveness of Transformer-based architectures and the beneficial impact of the adopted strategies. Italiano. Questo lavoro descrive UNITOR, uno dei sistemi partecipanti allo Stance Detection in Italian tweet (SardiStance) task. UNITOR implementa un’architettura neurale basata su Transformer, la cui accuratezza viene migliorata applicando un metodo di Transfer Learning, che sfrutta le informazioni di tre task ausiliari, ovvero Sentiment Detection, Hate Speech Detection e Irony Detection. Inoltre, l’addestramento di UNITOR puó contare su un insieme di dati scaricati ed etichettati automaticamente applicando un semplice metodo di Distant Supervision. Il sistema si é classificato al primo posto nella competizione, confermando l’efficacia delle architetture basate su Transformer e il contributo delle strategie
英语。本文描述了在EVALITA 2020背景下参与意大利语推文姿态检测(Sardistance)任务的UNITOR系统。UNITOR实现了一个基于变压器的体系结构,通过采用迁移学习技术提高了其准确性。特别地,这项工作研究了与姿态检测相关的三个辅助任务的可能贡献,即情感检测,仇恨言论检测和讽刺检测。此外,UNITOR依赖于通过远程监督自动下载和标记的额外数据集。UNITOR系统在竞赛中获得Task A第一名。这证实了基于transformer的架构的有效性以及所采用策略的有益影响。意大利语。描述UNITOR, undei系统参与了允许姿态检测的意大利语推特(SardiStance)任务。UNITOR实现了基于Transformer的神经网络架构,基于迁移学习(Transfer Learning)的迁移学习(Transfer Learning),基于迁移学习(Transfer Learning)的迁移学习(Transfer Learning),基于迁移学习(Transfer Learning)的迁移学习(Transfer Learning),基于迁移学习(transvero Sentiment Detection)的迁移学习(transvero Sentiment Detection),仇恨语音检测(Hate Speech Detection)和反语检测(Irony Detection)。因此,对UNITOR puó的管理包含了对远程监控的管理数据、自动化应用程序的管理数据和远程监控的管理方法。我的系统是一个经典的、最具竞争力的、最具效率的、以变压器为基础的、最具竞争力的系统,这将有助于我们的战略
{"title":"UNITOR @ Sardistance2020: Combining Transformer-based Architectures and Transfer Learning for Robust Stance Detection","authors":"Simone Giorgioni, Marcello Politi, Samir Salman, R. Basili, D. Croce","doi":"10.4000/BOOKS.AACCADEMIA.7092","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7092","url":null,"abstract":"English. This paper describes the UNITOR system that participated to the Stance Detection in Italian tweets (Sardistance) task within the context of EVALITA 2020. UNITOR implements a transformer-based architecture whose accuracy is improved by adopting a Transfer Learning technique. In particular, this work investigates the possible contribution of three auxiliary tasks related to Stance Detection, i.e., Sentiment Detection, Hate Speech Detection and Irony Detection. Moreover, UNITOR relies on an additional dataset automatically downloaded and labeled through distant supervision. The UNITOR system ranked first in Task A within the competition. This confirms the effectiveness of Transformer-based architectures and the beneficial impact of the adopted strategies. Italiano. Questo lavoro descrive UNITOR, uno dei sistemi partecipanti allo Stance Detection in Italian tweet (SardiStance) task. UNITOR implementa un’architettura neurale basata su Transformer, la cui accuratezza viene migliorata applicando un metodo di Transfer Learning, che sfrutta le informazioni di tre task ausiliari, ovvero Sentiment Detection, Hate Speech Detection e Irony Detection. Inoltre, l’addestramento di UNITOR puó contare su un insieme di dati scaricati ed etichettati automaticamente applicando un semplice metodo di Distant Supervision. Il sistema si é classificato al primo posto nella competizione, confermando l’efficacia delle architetture basate su Transformer e il contributo delle strategie","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131011621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
UO @ HaSpeeDe2: Ensemble Model for Italian Hate Speech Detection (short paper) UO @ HaSpeeDe2:意大利语仇恨语音检测的集成模型(短文)
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.7014
Mariano Jason Rodriguez Cisnero, Reynier Ortega Bueno
English. This document describes our participation in the Hate Speech Detection task at Evalita 2020. Our system is based on deep learning techniques, specifically RNNs and attention mechanism, mixed with transformer representations and linguistic features. In the training process a multi task learning was used to increase the system effectiveness. The results show how some of the selected features were not a good combination within the model. Nevertheless, the generalization level achieved yield encourage results.
英语。本文档描述了我们在Evalita 2020的仇恨言论检测任务中的参与情况。我们的系统基于深度学习技术,特别是rnn和注意机制,混合了转换表示和语言特征。在训练过程中,采用了多任务学习的方法来提高系统的有效性。结果表明,一些选择的特征在模型中不是一个很好的组合。然而,泛化水平取得了令人鼓舞的效果。
{"title":"UO @ HaSpeeDe2: Ensemble Model for Italian Hate Speech Detection (short paper)","authors":"Mariano Jason Rodriguez Cisnero, Reynier Ortega Bueno","doi":"10.4000/BOOKS.AACCADEMIA.7014","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7014","url":null,"abstract":"English. This document describes our participation in the Hate Speech Detection task at Evalita 2020. Our system is based on deep learning techniques, specifically RNNs and attention mechanism, mixed with transformer representations and linguistic features. In the training process a multi task learning was used to increase the system effectiveness. The results show how some of the selected features were not a good combination within the model. Nevertheless, the generalization level achieved yield encourage results.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130527307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
UO_4to @ TAG-it 2020: Ensemble of Machine Learning Methods (short paper) TAG-it 2020:机器学习方法集成(短论文)
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.7270
María Fernanda Artigas Herold, Daniel Castro-Castro
This paper describes the proposal presented in the TAG-it author profiling task from EVALITA 2020 for sub-task 1. The main objective is to predict gender and age of some blog users by their posts, as well as topic they wrote about. Our proposal uses an ensemble of machine learning algorithms with three of the most used classifiers and language model of the n-grams of characters represented in a Bag of Word. To face this task we presented two different strategies aimed at finding the best possible results.
本文描述了在EVALITA 2020的TAG-it作者分析任务中为子任务1提出的建议。主要目的是通过博客用户的帖子以及他们所写的话题来预测他们的性别和年龄。我们的建议使用了一套机器学习算法,其中包括三种最常用的分类器和一个单词袋中表示的n个字符图的语言模型。为了面对这一任务,我们提出了两种不同的策略,旨在找到可能的最佳结果。
{"title":"UO_4to @ TAG-it 2020: Ensemble of Machine Learning Methods (short paper)","authors":"María Fernanda Artigas Herold, Daniel Castro-Castro","doi":"10.4000/BOOKS.AACCADEMIA.7270","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.7270","url":null,"abstract":"This paper describes the proposal presented in the TAG-it author profiling task from EVALITA 2020 for sub-task 1. The main objective is to predict gender and age of some blog users by their posts, as well as topic they wrote about. Our proposal uses an ensemble of machine learning algorithms with three of the most used classifiers and language model of the n-grams of characters represented in a Bag of Word. To face this task we presented two different strategies aimed at finding the best possible results.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"241 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131550968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper) By1510 @ HaSpeeDe 2:社交媒体数据中意大利语仇恨言论的识别(短文)
Pub Date : 1900-01-01 DOI: 10.4000/BOOKS.AACCADEMIA.6942
T. Deng, Yang Bai, Hongbing Dai
English. Hate speech detection has become a crucial mission in many fields. This paper introduces the system of team By1510. In this work, we participate in the HaSpeeDe 2 (Hate Speech Detection) shared task which is organized within Evalita 2020(The Final Workshop of the 7th evaluation campaign). In order to obtain more abundant semantic information, we combine the original output of BERT-Ita and the hidden state outputs of BERT-Ita. We take part in task A. Our model achieves an F1 score of 77.66% (6/27) in the tweets test set and our model achieves an F1 score of 66.38% (14/27) in the news headlines test set. Italiano. L’ individuazione dell’ incitamento allodio diventata una missione cruciale in molti campi. Questo articolo introduce il sistema del team By1510. In questo lavoro, partecipiamo al task HaSpeeDe 2 che stato organizzato allinterno di Evalita 2020. Per ottenere informazioni semantiche pi abbondanti abbiamo combinato loutput originale di BERT Ita e gli output di hidden state di BERT Ita. Il sistema presentato partecipa al task A. Il nostro modello ottiene un punteggio F1 di 77.66% (6/27) sui dati di test da Twitter e un punteggio F1 di 66.38% (14/27) sui dati di test contenenti titoli di quotidiano. Copyright c © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
英语。仇恨言论检测已成为许多领域的一项重要任务。本文介绍了团队By1510系统。在这项工作中,我们参与了在Evalita 2020(第七次评估活动的最终研讨会)中组织的HaSpeeDe 2(仇恨言论检测)共享任务。为了获得更丰富的语义信息,我们将BERT-Ita的原始输出和BERT-Ita的隐藏状态输出结合起来。我们参加任务a。我们的模型在tweets测试集中获得了77.66%(6/27)的F1分数,在news headlines测试集中获得了66.38%(14/27)的F1分数。意大利语。我的“个性”和“激励”都是为了实现我们的使命。Questo articolo介绍了il系统模型团队By1510。为了解决这个问题,参与性任务将在2020年的所有评估期间组织起来。根据不同的信息语义,将abbond和abbiamo相结合,输出原始状态的BERT - Ita和隐藏状态的BERT - Ita。i nostro modelello ottiene un punteggio F1 di 77.66% (6/27) sui dati di test da Twitter e un punteggio F1 di 66.38% (14/27) sui dati di test contententi titoli di quotidiano。本文版权所有c©2020。在知识共享许可国际署名4.0 (CC BY 4.0)下允许使用。
{"title":"By1510 @ HaSpeeDe 2: Identification of Hate Speech for Italian Language in Social Media Data (short paper)","authors":"T. Deng, Yang Bai, Hongbing Dai","doi":"10.4000/BOOKS.AACCADEMIA.6942","DOIUrl":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6942","url":null,"abstract":"English. Hate speech detection has become a crucial mission in many fields. This paper introduces the system of team By1510. In this work, we participate in the HaSpeeDe 2 (Hate Speech Detection) shared task which is organized within Evalita 2020(The Final Workshop of the 7th evaluation campaign). In order to obtain more abundant semantic information, we combine the original output of BERT-Ita and the hidden state outputs of BERT-Ita. We take part in task A. Our model achieves an F1 score of 77.66% (6/27) in the tweets test set and our model achieves an F1 score of 66.38% (14/27) in the news headlines test set. Italiano. L’ individuazione dell’ incitamento allodio diventata una missione cruciale in molti campi. Questo articolo introduce il sistema del team By1510. In questo lavoro, partecipiamo al task HaSpeeDe 2 che stato organizzato allinterno di Evalita 2020. Per ottenere informazioni semantiche pi abbondanti abbiamo combinato loutput originale di BERT Ita e gli output di hidden state di BERT Ita. Il sistema presentato partecipa al task A. Il nostro modello ottiene un punteggio F1 di 77.66% (6/27) sui dati di test da Twitter e un punteggio F1 di 66.38% (14/27) sui dati di test contenenti titoli di quotidiano. Copyright c © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"127 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"113987147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1