Vertebral compression fractures (VCFs) are common and indicate a high future risk of additional osteoporotic fractures. However, many VCFs are unreported by radiologists, and even if reported, many patients do not receive treatment. The purpose of the study was to evaluate a new artificial intelligence (AI) algorithm for the detection of VCFs and to assess the prevalence of reported and unreported VCFs. This retrospective cohort study included patients over age 60 yr with an abdominal CT between January 18, 2019 and January 18, 2020. Images and radiology reports were reviewed to identify reported and unreported VCFs, and the images were processed by an AI algorithm. For reported VCFs, the electronic health records were reviewed regarding subsequent osteoporosis screening and treatment. Totally, 1112 patients were included. Of these, 187 patients (16.8%) had a VCF, of which 62 had an incident VCF and 49 had a previously unknown prevalent VCF. The radiologist reporting rate of these VCFs was 30% (33/111). For moderate and severe (grade 2-3) VCF, the AI algorithm had 85.2% sensitivity, 92.3% specificity, 57.8% positive predictive value, and 98.1% negative predictive value. Three of 30 patients with reported VCFs started osteoporosis treatment within a year. The AI algorithm had high accuracy for the detection of VCFs and could be very useful in increasing the detection rate of VCFs, as there was a substantial underdiagnosis of VCFs. However, as undertreatment in reported cases was substantial, to fully realize the potential of AI, changes to the management pathway outside of the radiology department are imperative.
{"title":"Vertebral compression fractures at abdominal CT: underdiagnosis, undertreatment, and evaluation of an AI algorithm.","authors":"Peder Wiklund, David Buchebner, Mats Geijer","doi":"10.1093/jbmr/zjae096","DOIUrl":"10.1093/jbmr/zjae096","url":null,"abstract":"<p><p>Vertebral compression fractures (VCFs) are common and indicate a high future risk of additional osteoporotic fractures. However, many VCFs are unreported by radiologists, and even if reported, many patients do not receive treatment. The purpose of the study was to evaluate a new artificial intelligence (AI) algorithm for the detection of VCFs and to assess the prevalence of reported and unreported VCFs. This retrospective cohort study included patients over age 60 yr with an abdominal CT between January 18, 2019 and January 18, 2020. Images and radiology reports were reviewed to identify reported and unreported VCFs, and the images were processed by an AI algorithm. For reported VCFs, the electronic health records were reviewed regarding subsequent osteoporosis screening and treatment. Totally, 1112 patients were included. Of these, 187 patients (16.8%) had a VCF, of which 62 had an incident VCF and 49 had a previously unknown prevalent VCF. The radiologist reporting rate of these VCFs was 30% (33/111). For moderate and severe (grade 2-3) VCF, the AI algorithm had 85.2% sensitivity, 92.3% specificity, 57.8% positive predictive value, and 98.1% negative predictive value. Three of 30 patients with reported VCFs started osteoporosis treatment within a year. The AI algorithm had high accuracy for the detection of VCFs and could be very useful in increasing the detection rate of VCFs, as there was a substantial underdiagnosis of VCFs. However, as undertreatment in reported cases was substantial, to fully realize the potential of AI, changes to the management pathway outside of the radiology department are imperative.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1113-1119"},"PeriodicalIF":5.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141430935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nephropathic cystinosis is an orphan autosomal recessive lysosomal storage disease characterized by a deficiency of cystinosin, a cystine transporter protein, leading to tissue damage, primarily in the kidney and cornea. With the introduction of cystine-depleting therapy with cysteamine and the possibility to survive to adulthood, new challenges of skeletal complications are a concern, with sparse data available regarding bone development. The aim of the current study was to gain more information on bone density and geometry in these patients. Fifty-one patients (29 males, 22 females) with genetically proven nephropathic cystinosis were clinically evaluated with a medical history, physical examination, grip strength measurements, and biochemical and imaging studies. Bone mineral density, bone geometry, and muscle cross sectional area were measured, and muscle was evaluated. Results were compared with age- and gender-specific reference data. Z-scores for height (mean [M] = -1.75, standard deviation [SD] = 1.43), weight (M = -1.67, SD = 1.29), and BMI (M = -0.98, SD = 1.29) were lower than reference data. Medullary cross-sectional area (CSA) and cortical density z-scores were not compromised (M = 0.12, SD = 1.56 and M = -0.25, SD = 1.63, respectively), but cortical CSA z-scores and Strength-Strain Index (SSI) were reduced (M = -2.16, SD = 1.08, M = -2.07, SD = 1.08). Muscular deficits were reflected by reduced z-scores for muscle CSA (M = -2.43, SD = 1.27) and grip strength (M = -3.01, SD = 1.10), along with jump force (34% lower than reference value). Multiple regression analyses indicated an association of muscle mass with medullary CSA and SSI, but not with cortical CSA. While bone density parameters were normal, bone geometry was altered, resulting in a thinner cortex with possible impact on bone strength. Muscle weakness be partially responsible for altered bone geometry and could provide a potential treatment target.
肾病性胱氨酸病是一种孤儿型常染色体隐性遗传溶酶体储积病,其特点是缺乏胱氨酸转运蛋白--胱抑素,从而导致组织损伤,主要是肾脏和角膜损伤。随着半胱胺胱氨酸消耗疗法的引入以及患者有可能存活至成年,骨骼并发症带来的新挑战令人担忧,而有关骨骼发育的数据却十分稀少。本研究旨在获得更多有关这些患者骨密度和几何形状的信息。研究人员对 51 名经遗传证实患有肾病性胱氨酸沉积症的患者(29 名男性,22 名女性)进行了临床评估,包括病史、体格检查、握力测量、生化和影像学研究。对骨质密度、骨骼几何形状和肌肉横截面积进行了测量,并对肌肉进行了评估。结果与特定年龄和性别的参考数据进行了比较。身高(平均值[M] = -1.75, 标准差[SD] = 1.43)、体重(平均值[M] = -1.67, 标准差[SD] = 1.29)和体重指数(平均值[M] = -0.98,标准差[SD] = 1.29)的 Z 值均低于参考数据。髓质横截面积(CSA)和皮质密度 z 值没有受到影响(分别为中=0.12,标度=1.56 和中=-0.25,标度=1.63),但皮质 CSA z 值和力量应变指数(SSI)有所降低(中=-2.16,标度=1.08,中=-2.07,标度=1.08)。肌肉缺损表现为肌肉CSA(中值=-2.43,标度值=1.27)和握力(中值=-3.01,标度值=1.10)的z值降低,以及跳跃力(比参考值低34%)降低。多元回归分析表明,肌肉质量与髓质CSA和SSI有关,但与皮质CSA无关。虽然骨密度参数正常,但骨骼几何形状发生了改变,导致皮质变薄,可能会影响骨强度。肌肉无力是导致骨几何形状改变的部分原因,可能成为潜在的治疗目标。
{"title":"Cortical impairment and reduced muscle mass in children and young adults with nephropathic cystinosis.","authors":"Susanne Bechtold-Dalla Pozza, Simon Lemster, Nadine Herzig, Katharina Vill, Ilja Dubinski, Katharina Hohenfellner","doi":"10.1093/jbmr/zjae092","DOIUrl":"10.1093/jbmr/zjae092","url":null,"abstract":"<p><p>Nephropathic cystinosis is an orphan autosomal recessive lysosomal storage disease characterized by a deficiency of cystinosin, a cystine transporter protein, leading to tissue damage, primarily in the kidney and cornea. With the introduction of cystine-depleting therapy with cysteamine and the possibility to survive to adulthood, new challenges of skeletal complications are a concern, with sparse data available regarding bone development. The aim of the current study was to gain more information on bone density and geometry in these patients. Fifty-one patients (29 males, 22 females) with genetically proven nephropathic cystinosis were clinically evaluated with a medical history, physical examination, grip strength measurements, and biochemical and imaging studies. Bone mineral density, bone geometry, and muscle cross sectional area were measured, and muscle was evaluated. Results were compared with age- and gender-specific reference data. Z-scores for height (mean [M] = -1.75, standard deviation [SD] = 1.43), weight (M = -1.67, SD = 1.29), and BMI (M = -0.98, SD = 1.29) were lower than reference data. Medullary cross-sectional area (CSA) and cortical density z-scores were not compromised (M = 0.12, SD = 1.56 and M = -0.25, SD = 1.63, respectively), but cortical CSA z-scores and Strength-Strain Index (SSI) were reduced (M = -2.16, SD = 1.08, M = -2.07, SD = 1.08). Muscular deficits were reflected by reduced z-scores for muscle CSA (M = -2.43, SD = 1.27) and grip strength (M = -3.01, SD = 1.10), along with jump force (34% lower than reference value). Multiple regression analyses indicated an association of muscle mass with medullary CSA and SSI, but not with cortical CSA. While bone density parameters were normal, bone geometry was altered, resulting in a thinner cortex with possible impact on bone strength. Muscle weakness be partially responsible for altered bone geometry and could provide a potential treatment target.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1094-1102"},"PeriodicalIF":5.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
La Li, Dai Li, Jingxian Zhu, Yiqun Wang, Feng Zhao, Jin Cheng, Rocky S Tuan, Xiaoqing Hu, Yingfang Ao
In previous studies, we have demonstrated that stress response-induced high glucocorticoid levels could be the underlying cause of traumatic heterotopic ossification (HO), and we have developed a glucocorticoid-induced ectopic mineralization (EM) mouse model by systemic administration of a high dose of dexamethasone (DEX) to animals with muscle injury induced by cardiotoxin injection. In this model, dystrophic calcification (DC) developed into HO in a cell autonomous manner. However, it is not clear how DC is formed after DEX treatment. Therefore, in this study, we aimed to explore how glucocorticoids initiate muscle EM at a cellular and molecular level. We showed that DEX treatment inhibited inflammatory cell infiltration into injured muscle but inflammatory cytokine production in the muscle was significantly increased, suggesting that other non-inflammatory muscle cell types may regulate the inflammatory response and the muscle repair process. Accompanying this phenotype, transforming growth factor β1 (TGF-β1) expression in fibro-adipogenic progenitors (FAPs) was greatly downregulated. Since TGF-β1 is a strong immune suppressor and FAP's regulatory role has a large impact on muscle repair, we hypothesized that downregulation of TGF-β1 in FAPs after DEX treatment resulted in this hyperinflammatory state and subsequent failed muscle repair and EM formation. To test our hypothesis, we utilized a transgenic mouse model to specifically knockout Tgfb1 gene in PDGFRα-positive FAPs to investigate if the transgenic mice could recapitulate the phenotype that was induced by DEX treatment. Our results showed that the transgenic mice completely phenocopied this hyperinflammatory state and spontaneously developed EM following muscle injury. On the contrary, therapeutics that enhanced TGF-β1 signaling in FAPs inhibited the inflammatory response and attenuated muscle EM. In summary, these results indicate that FAPs-derived TGF-β1 is a key molecule in regulating muscle inflammatory response and subsequent EM, and that glucocorticoids exert their effect via downregulating TGF-β1 in FAPs.
{"title":"Downregulation of TGF-β1 in fibro-adipogenic progenitors initiates muscle ectopic mineralization.","authors":"La Li, Dai Li, Jingxian Zhu, Yiqun Wang, Feng Zhao, Jin Cheng, Rocky S Tuan, Xiaoqing Hu, Yingfang Ao","doi":"10.1093/jbmr/zjae097","DOIUrl":"10.1093/jbmr/zjae097","url":null,"abstract":"<p><p>In previous studies, we have demonstrated that stress response-induced high glucocorticoid levels could be the underlying cause of traumatic heterotopic ossification (HO), and we have developed a glucocorticoid-induced ectopic mineralization (EM) mouse model by systemic administration of a high dose of dexamethasone (DEX) to animals with muscle injury induced by cardiotoxin injection. In this model, dystrophic calcification (DC) developed into HO in a cell autonomous manner. However, it is not clear how DC is formed after DEX treatment. Therefore, in this study, we aimed to explore how glucocorticoids initiate muscle EM at a cellular and molecular level. We showed that DEX treatment inhibited inflammatory cell infiltration into injured muscle but inflammatory cytokine production in the muscle was significantly increased, suggesting that other non-inflammatory muscle cell types may regulate the inflammatory response and the muscle repair process. Accompanying this phenotype, transforming growth factor β1 (TGF-β1) expression in fibro-adipogenic progenitors (FAPs) was greatly downregulated. Since TGF-β1 is a strong immune suppressor and FAP's regulatory role has a large impact on muscle repair, we hypothesized that downregulation of TGF-β1 in FAPs after DEX treatment resulted in this hyperinflammatory state and subsequent failed muscle repair and EM formation. To test our hypothesis, we utilized a transgenic mouse model to specifically knockout Tgfb1 gene in PDGFRα-positive FAPs to investigate if the transgenic mice could recapitulate the phenotype that was induced by DEX treatment. Our results showed that the transgenic mice completely phenocopied this hyperinflammatory state and spontaneously developed EM following muscle injury. On the contrary, therapeutics that enhanced TGF-β1 signaling in FAPs inhibited the inflammatory response and attenuated muscle EM. In summary, these results indicate that FAPs-derived TGF-β1 is a key molecule in regulating muscle inflammatory response and subsequent EM, and that glucocorticoids exert their effect via downregulating TGF-β1 in FAPs.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1147-1161"},"PeriodicalIF":5.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141417000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingxin Xu, Manyu Zhu, Qizhi Qin, Xin Xing, Mary Archer, Sowmya Ramesh, Masnsen Cherief, Zhao Li, Benjamin Levi, Thomas L Clemens, Aaron W James
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
{"title":"Neuronal regulation of bone and tendon injury repair: a focused review.","authors":"Mingxin Xu, Manyu Zhu, Qizhi Qin, Xin Xing, Mary Archer, Sowmya Ramesh, Masnsen Cherief, Zhao Li, Benjamin Levi, Thomas L Clemens, Aaron W James","doi":"10.1093/jbmr/zjae087","DOIUrl":"10.1093/jbmr/zjae087","url":null,"abstract":"<p><p>Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1045-1060"},"PeriodicalIF":5.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141246798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
WuQiang Fan, Xiaoxu Sun, Benjamin Z Leder, Hang Lee, Thuan V Ly, Charles T Pu, Esteban Franco-Garcia, Marcy B Bolster
Inpatient zoledronic acid (IP-ZA) administered during the initial fracture hospitalization significantly improves the osteoporosis treatment rate. Clinical outcomes of IP-ZA after hip fracture remain uncertain. Here we report a cohort study that emulated a randomized controlled trial using real-world data and evaluated the risk of all-cause-mortality and radiologically confirmed subsequent new fractures among patients hospitalized for a hip fracture who had received IP-ZA as compared with propensity-matched controls. A total of 654 patients who had received IP-ZA and 6877 controls (for whom anti-osteoporosis treatment was indicated but no IP-ZA started during index hospitalization) were included in the study. The primary cohort comprised 652 IP-ZA patients (IP-ZA group) and 1926 matched controls (untreated group), with 71.7% female 92.1% White participants, with a mean age of 80.9 years. Cumulative all-cause mortality over the 24-month follow-up for the IP-ZA group was 12.3% and 20.7% for the untreated group (hazard ratio [HR], 0.62; 95% CI, 0.49-0.78, p < .001). A total of 585 (89.7%) patients in IP-ZA group received only a single dose of ZA during the 24 months, and the death rate of this single dose group was 13.3%, which was significantly lower than that of the untreated group (HR, 0.70; 95% CI, 0.55-0.89, p = .003). Rates of radiologically confirmed cumulative subsequent new vertebral fractures were 2.0% in the IP-ZA group and 5.4% in the untreated group (HR, 0.40; 95% CI, 0.22-0.71, p = .001). A similarly lower rate of new vertebral fractures was seen in the single dose subgroup (1.9% vs 5.4%; HR, 0.44; 95% 0.24-0.82, p = .008). IP-ZA, administered during the initial hospitalization for hip fracture, was associated with lower all-cause-mortality and risk of radiologically confirmed subsequent new vertebral fractures, and thus offers a mechanism to narrow the treatment gap in patients having sustained a hip fragility fracture.
{"title":"Zoledronic acid for hip fracture during initial hospitalization.","authors":"WuQiang Fan, Xiaoxu Sun, Benjamin Z Leder, Hang Lee, Thuan V Ly, Charles T Pu, Esteban Franco-Garcia, Marcy B Bolster","doi":"10.1093/jbmr/zjae101","DOIUrl":"10.1093/jbmr/zjae101","url":null,"abstract":"<p><p>Inpatient zoledronic acid (IP-ZA) administered during the initial fracture hospitalization significantly improves the osteoporosis treatment rate. Clinical outcomes of IP-ZA after hip fracture remain uncertain. Here we report a cohort study that emulated a randomized controlled trial using real-world data and evaluated the risk of all-cause-mortality and radiologically confirmed subsequent new fractures among patients hospitalized for a hip fracture who had received IP-ZA as compared with propensity-matched controls. A total of 654 patients who had received IP-ZA and 6877 controls (for whom anti-osteoporosis treatment was indicated but no IP-ZA started during index hospitalization) were included in the study. The primary cohort comprised 652 IP-ZA patients (IP-ZA group) and 1926 matched controls (untreated group), with 71.7% female 92.1% White participants, with a mean age of 80.9 years. Cumulative all-cause mortality over the 24-month follow-up for the IP-ZA group was 12.3% and 20.7% for the untreated group (hazard ratio [HR], 0.62; 95% CI, 0.49-0.78, p < .001). A total of 585 (89.7%) patients in IP-ZA group received only a single dose of ZA during the 24 months, and the death rate of this single dose group was 13.3%, which was significantly lower than that of the untreated group (HR, 0.70; 95% CI, 0.55-0.89, p = .003). Rates of radiologically confirmed cumulative subsequent new vertebral fractures were 2.0% in the IP-ZA group and 5.4% in the untreated group (HR, 0.40; 95% CI, 0.22-0.71, p = .001). A similarly lower rate of new vertebral fractures was seen in the single dose subgroup (1.9% vs 5.4%; HR, 0.44; 95% 0.24-0.82, p = .008). IP-ZA, administered during the initial hospitalization for hip fracture, was associated with lower all-cause-mortality and risk of radiologically confirmed subsequent new vertebral fractures, and thus offers a mechanism to narrow the treatment gap in patients having sustained a hip fragility fracture.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1061-1070"},"PeriodicalIF":5.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141475548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Tao, Wen Jiang, Hao Li, Xiaochuan Wang, Zixuan Tian, Keda Yang, Yue Zhu
The role of monocytes in postmenopausal osteoporosis is widely recognized; however, the mechanisms underlying monocyte reprogramming remain unknown. In this study, single-cell RNA sequencing (scRNA-seq) was conducted on CD14+ bone marrow monocytes obtained from 3 postmenopausal women with normal BMD and 3 women with postmenopausal osteoporosis (PMOP). Monocle2 was used to classify the monocytes into 7 distinct clusters. The proportion of cluster 1 significantly decreased in PMOP patients, while the proportion of cluster 7 increased. Further analysis via GSEA, transcription factor activity analysis, and sc-metabolic analysis revealed significant differences between clusters 1 and 7. Cluster 7 exhibited upregulated pathways associated with inflammation, immunity, and osteoclast differentiation, whereas cluster 1 demonstrated the opposite results. Monocle2, TSCAN, VECTOR, and scVelo data indicated that cluster 1 represented the initial subset and that cluster 7 represents one of the terminal subsets. BayesPrism and ssGSEA were employed to analyze the bulk transcriptome data obtained from the GEO database. The observed alterations in the proportions of 1 and 7 were validated and found to have diagnostic significance. CD16 serves as the marker gene for cluster 7, thus leading to an increased proportion of CD16+ monocytes in women with PMOP. Flow cytometry was used to assess the consistency of outcomes with those of the bioinformatic analysis. Subsequently, an additional scRNA-seq analysis was conducted on bone marrow mononuclear cells obtained from 3 patients with PMOP and 3 postmenopausal women with normal BMD. The differential proportions of cluster 1 and cluster 7 were once again confirmed, with the pathological effect of cluster 7 may attribute to cell-cell communication. The scRNA-seq findings suggest that an imbalance in monocyte subsets is a characteristic feature of PMOP. These findings elucidate the limitations of utilizing bulk transcriptome data for detecting alterations in monocytes, which may influence novel research inquiries.
{"title":"Single-cell RNA sequencing reveals that an imbalance in monocyte subsets rather than changes in gene expression patterns is a feature of postmenopausal osteoporosis.","authors":"Lin Tao, Wen Jiang, Hao Li, Xiaochuan Wang, Zixuan Tian, Keda Yang, Yue Zhu","doi":"10.1093/jbmr/zjae065","DOIUrl":"10.1093/jbmr/zjae065","url":null,"abstract":"<p><p>The role of monocytes in postmenopausal osteoporosis is widely recognized; however, the mechanisms underlying monocyte reprogramming remain unknown. In this study, single-cell RNA sequencing (scRNA-seq) was conducted on CD14+ bone marrow monocytes obtained from 3 postmenopausal women with normal BMD and 3 women with postmenopausal osteoporosis (PMOP). Monocle2 was used to classify the monocytes into 7 distinct clusters. The proportion of cluster 1 significantly decreased in PMOP patients, while the proportion of cluster 7 increased. Further analysis via GSEA, transcription factor activity analysis, and sc-metabolic analysis revealed significant differences between clusters 1 and 7. Cluster 7 exhibited upregulated pathways associated with inflammation, immunity, and osteoclast differentiation, whereas cluster 1 demonstrated the opposite results. Monocle2, TSCAN, VECTOR, and scVelo data indicated that cluster 1 represented the initial subset and that cluster 7 represents one of the terminal subsets. BayesPrism and ssGSEA were employed to analyze the bulk transcriptome data obtained from the GEO database. The observed alterations in the proportions of 1 and 7 were validated and found to have diagnostic significance. CD16 serves as the marker gene for cluster 7, thus leading to an increased proportion of CD16+ monocytes in women with PMOP. Flow cytometry was used to assess the consistency of outcomes with those of the bioinformatic analysis. Subsequently, an additional scRNA-seq analysis was conducted on bone marrow mononuclear cells obtained from 3 patients with PMOP and 3 postmenopausal women with normal BMD. The differential proportions of cluster 1 and cluster 7 were once again confirmed, with the pathological effect of cluster 7 may attribute to cell-cell communication. The scRNA-seq findings suggest that an imbalance in monocyte subsets is a characteristic feature of PMOP. These findings elucidate the limitations of utilizing bulk transcriptome data for detecting alterations in monocytes, which may influence novel research inquiries.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"980-993"},"PeriodicalIF":5.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140848317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William D Leslie, Neil Binkley, John T Schousboe, Barbara C Silva, Didier Hans
Individuals with type 2 diabetes have lower trabecular bone score (TBS) and increased fracture risk despite higher bone mineral density. However, measures of trabecular microarchitecture from high-resolution peripheral computed tomography are not lower in type 2 diabetes. We hypothesized that confounding effects of abdominal tissue thickness may explain this discrepancy, since central obesity is a risk factor for diabetes and also artifactually lowers TBS. This hypothesis was tested in individuals aged 40 years and older from a large DXA registry, stratified by sex and diabetes status. When DXA-measured abdominal tissue thickness was not included as a covariate, men without diabetes had lower TBS than women without diabetes (mean difference -0.074, P < .001). TBS was lower in women with versus without diabetes (mean difference -0.037, P < .001), and men with versus without diabetes (mean difference -0.007, P = .042). When adjusted for tissue thickness these findings reversed, TBS became greater in men versus women without diabetes (mean difference +0.053, P < .001), in women with versus without diabetes (mean difference +0.008, P < .001), and in men with versus without diabetes (mean difference +0.014, P < .001). During mean 8.7 years observation, incident major osteoporotic fractures were seen in 7048 (9.6%). Adjusted for multiple covariates except tissue thickness, TBS predicted fracture in all subgroups with no significant diabetes interaction. When further adjusted for tissue thickness, HR per SD lower TBS remained significant and even increased slightly. In conclusion, TBS predicts fractures independent of other clinical risk factors in both women and men, with and without diabetes. Excess abdominal tissue thickness in men and individuals with type 2 diabetes may artifactually lower TBS using the current algorithm, which reverses after accounting for tissue thickness. This supports ongoing efforts to update the TBS algorithm to directly account for the effects of abdominal tissue thickness for improved fracture risk prediction.
{"title":"Effect of abdominal tissue thickness on trabecular bone score and fracture risk in adults with diabetes: the Manitoba BMD registry.","authors":"William D Leslie, Neil Binkley, John T Schousboe, Barbara C Silva, Didier Hans","doi":"10.1093/jbmr/zjae073","DOIUrl":"10.1093/jbmr/zjae073","url":null,"abstract":"<p><p>Individuals with type 2 diabetes have lower trabecular bone score (TBS) and increased fracture risk despite higher bone mineral density. However, measures of trabecular microarchitecture from high-resolution peripheral computed tomography are not lower in type 2 diabetes. We hypothesized that confounding effects of abdominal tissue thickness may explain this discrepancy, since central obesity is a risk factor for diabetes and also artifactually lowers TBS. This hypothesis was tested in individuals aged 40 years and older from a large DXA registry, stratified by sex and diabetes status. When DXA-measured abdominal tissue thickness was not included as a covariate, men without diabetes had lower TBS than women without diabetes (mean difference -0.074, P < .001). TBS was lower in women with versus without diabetes (mean difference -0.037, P < .001), and men with versus without diabetes (mean difference -0.007, P = .042). When adjusted for tissue thickness these findings reversed, TBS became greater in men versus women without diabetes (mean difference +0.053, P < .001), in women with versus without diabetes (mean difference +0.008, P < .001), and in men with versus without diabetes (mean difference +0.014, P < .001). During mean 8.7 years observation, incident major osteoporotic fractures were seen in 7048 (9.6%). Adjusted for multiple covariates except tissue thickness, TBS predicted fracture in all subgroups with no significant diabetes interaction. When further adjusted for tissue thickness, HR per SD lower TBS remained significant and even increased slightly. In conclusion, TBS predicts fractures independent of other clinical risk factors in both women and men, with and without diabetes. Excess abdominal tissue thickness in men and individuals with type 2 diabetes may artifactually lower TBS using the current algorithm, which reverses after accounting for tissue thickness. This supports ongoing efforts to update the TBS algorithm to directly account for the effects of abdominal tissue thickness for improved fracture risk prediction.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"877-884"},"PeriodicalIF":5.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vitamin D-dependent rickets (VDDR) is a group of genetic disorders characterized by early-onset rickets due to deficiency of active vitamin D or a failure to respond to activated vitamin D. VDDR is divided into several subtypes according to the corresponding causative genes. Here we described a new type of autosomal dominant VDDR in a Chinese pedigree. The proband and his mother had severe bone malformations, dentin abnormalities, and lower serum 25 hydroxyvitamin D3 (25[OH]D3) and phosphate levels. The proband slightly responded to a high dose of vitamin D3 instead of a daily low dose of vitamin D3. Whole-exome sequencing, bioinformatic analysis, PCR, and Sanger sequencing identified a nonsense mutation in CYP4A22 (c.900delG). The overexpressed wild-type CYP4A22 mainly localized in endoplasmic reticulum and Golgi apparatus, and synthesized 25(OH)D3 in HepG2 cells. The overexpressed CYP4A22 mutant increased the expression of CYP2R1 and produced little 25(OH)D3 with vitamin D3 supplementation, which was reduced by CYP2R1 siRNA treatment. We concluded that CYP4A22 functions as a new kind of 25-hydroxylases for vitamin D3. Loss-of-function mutations in CYP4A22 lead to a new type of VDDR type 1 (VDDR1C). CYP2R1 and CYP4A22 may have some genetic compensation responding to nonsense-mediated mRNA decay effect of each other.
{"title":"CYP4A22 loss-of-function causes a new type of vitamin D-dependent rickets (VDDR1C).","authors":"Xiaohong Duan, Yanli Zhang, Taoyun Xu","doi":"10.1093/jbmr/zjae084","DOIUrl":"10.1093/jbmr/zjae084","url":null,"abstract":"<p><p>Vitamin D-dependent rickets (VDDR) is a group of genetic disorders characterized by early-onset rickets due to deficiency of active vitamin D or a failure to respond to activated vitamin D. VDDR is divided into several subtypes according to the corresponding causative genes. Here we described a new type of autosomal dominant VDDR in a Chinese pedigree. The proband and his mother had severe bone malformations, dentin abnormalities, and lower serum 25 hydroxyvitamin D3 (25[OH]D3) and phosphate levels. The proband slightly responded to a high dose of vitamin D3 instead of a daily low dose of vitamin D3. Whole-exome sequencing, bioinformatic analysis, PCR, and Sanger sequencing identified a nonsense mutation in CYP4A22 (c.900delG). The overexpressed wild-type CYP4A22 mainly localized in endoplasmic reticulum and Golgi apparatus, and synthesized 25(OH)D3 in HepG2 cells. The overexpressed CYP4A22 mutant increased the expression of CYP2R1 and produced little 25(OH)D3 with vitamin D3 supplementation, which was reduced by CYP2R1 siRNA treatment. We concluded that CYP4A22 functions as a new kind of 25-hydroxylases for vitamin D3. Loss-of-function mutations in CYP4A22 lead to a new type of VDDR type 1 (VDDR1C). CYP2R1 and CYP4A22 may have some genetic compensation responding to nonsense-mediated mRNA decay effect of each other.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"967-979"},"PeriodicalIF":5.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dongwook Yeo, Elizabeth L Zars Fisher, Sundeep Khosla, Joshua N Farr, Jennifer J Westendorf
Histone deacetylase 3 (Hdac3) is an epigenetic regulator of gene expression and interacts with skeletal transcription factors such as Runx2. We previously reported that conditional deletion of Hdac3 in Osterix-Cre recombinase-expressing osteoprogenitor cells (Hdac3 CKOOsx) caused osteopenia and increased marrow adiposity, both hallmarks of skeletal aging. We also showed that Runx2+ cells within osteogenic cultures of Hdac3-depleted bone marrow stromal cells (BMSCs) contain lipid droplets (LDs). Cellular senescence, a nonproliferative metabolically active state, is associated with increased marrow adiposity, bone loss, and aging. In this study, we sought to determine if Hdac3 depleted Runx2+ pre-osteoblasts from young mice exhibit chromatin changes associated with early cellular senescence and how these events correlate with the appearance of LDs. We first confirmed that BMSCs from Hdac3 CKOOsx mice have more Runx2 + LD+ cells compared with controls under osteogenic conditions. We then measured senescence-associated distention of satellite (SADS) DNA and telomere-associated foci (TAFs) in Hdac3 CKOOsx and control BMSCs. In situ, Runx2+ cells contained more SADS per nuclei in Hdac3 CKOOsx femora than in controls. Runx2+ BMSCs from Hdac3 CKOOsx mice also contained more SADS and TAFs per nuclei than Runx2+ cells from age-matched control mice in vitro. SADs and TAFs were present at similar levels in Runx2 + LD+ cells and Runx2 + LD- cells from Hdac3 CKOOsx mice. Hdac inhibitors also increased the number of SADS in Runx2 + LD+ and Runx2 + LD- WT BMSCs. Senolytics reduced viable cell numbers in Hdac3 CKOOsx BMSC cultures. These data demonstrate that the depletion of Hdac3 in osteochondral progenitor cells triggers LD formation and early events in cellular senescence in Runx2+ BMSCs through mutually exclusive mechanisms.
{"title":"Hdac3-deficiency increases senescence-associated distention of satellite DNA and telomere-associated foci in osteoprogenitor cells.","authors":"Dongwook Yeo, Elizabeth L Zars Fisher, Sundeep Khosla, Joshua N Farr, Jennifer J Westendorf","doi":"10.1093/jbmr/zjae085","DOIUrl":"10.1093/jbmr/zjae085","url":null,"abstract":"<p><p>Histone deacetylase 3 (Hdac3) is an epigenetic regulator of gene expression and interacts with skeletal transcription factors such as Runx2. We previously reported that conditional deletion of Hdac3 in Osterix-Cre recombinase-expressing osteoprogenitor cells (Hdac3 CKOOsx) caused osteopenia and increased marrow adiposity, both hallmarks of skeletal aging. We also showed that Runx2+ cells within osteogenic cultures of Hdac3-depleted bone marrow stromal cells (BMSCs) contain lipid droplets (LDs). Cellular senescence, a nonproliferative metabolically active state, is associated with increased marrow adiposity, bone loss, and aging. In this study, we sought to determine if Hdac3 depleted Runx2+ pre-osteoblasts from young mice exhibit chromatin changes associated with early cellular senescence and how these events correlate with the appearance of LDs. We first confirmed that BMSCs from Hdac3 CKOOsx mice have more Runx2 + LD+ cells compared with controls under osteogenic conditions. We then measured senescence-associated distention of satellite (SADS) DNA and telomere-associated foci (TAFs) in Hdac3 CKOOsx and control BMSCs. In situ, Runx2+ cells contained more SADS per nuclei in Hdac3 CKOOsx femora than in controls. Runx2+ BMSCs from Hdac3 CKOOsx mice also contained more SADS and TAFs per nuclei than Runx2+ cells from age-matched control mice in vitro. SADs and TAFs were present at similar levels in Runx2 + LD+ cells and Runx2 + LD- cells from Hdac3 CKOOsx mice. Hdac inhibitors also increased the number of SADS in Runx2 + LD+ and Runx2 + LD- WT BMSCs. Senolytics reduced viable cell numbers in Hdac3 CKOOsx BMSC cultures. These data demonstrate that the depletion of Hdac3 in osteochondral progenitor cells triggers LD formation and early events in cellular senescence in Runx2+ BMSCs through mutually exclusive mechanisms.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"994-1007"},"PeriodicalIF":5.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenjiarui Qin, Wenqiang Zhang, Changfeng Xiao, Yang Qu, Jinyu Xiao, Xueyao Wu, Li Zhang, Yutong Wang, Lin He, Jingwei Zhu, Wenzhi Wang, Yun Li, Lei Sun, Xia Jiang
Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.
{"title":"Shared genetic basis connects smoking behaviors and bone health: insights from a genome-wide cross-trait analysis.","authors":"Chenjiarui Qin, Wenqiang Zhang, Changfeng Xiao, Yang Qu, Jinyu Xiao, Xueyao Wu, Li Zhang, Yutong Wang, Lin He, Jingwei Zhu, Wenzhi Wang, Yun Li, Lei Sun, Xia Jiang","doi":"10.1093/jbmr/zjae082","DOIUrl":"10.1093/jbmr/zjae082","url":null,"abstract":"<p><p>Although the negative association of tobacco smoking with osteoporosis is well-documented, little is known regarding the shared genetic basis underlying these conditions. In this study, we aim to investigate a shared genetic architecture between smoking and heel estimated bone mineral density (eBMD), a reliable proxy for osteoporosis. We conducted a comprehensive genome-wide cross-trait analysis to identify genetic correlation, pleiotropic loci and causal relationship of smoking with eBMD, leveraging summary statistics of the hitherto largest genome-wide association studies conducted in European ancestry for smoking initiation (Nsmoker = 1 175 108, Nnonsmoker = 1 493 921), heaviness (cigarettes per day, N = 618 489), cessation (Ncurrent smoker = 304 244, Nformer smoker = 843 028), and eBMD (N = 426 824). A significant negative global genetic correlation was found for smoking cessation and eBMD (${r}_g$ = -0.051, P = 0.01), while we failed to identify a significant global genetic correlation of smoking initiation or heaviness with eBMD. Partitioning the whole genome into independent blocks, we observed 6 significant shared local signals for smoking and eBMD, with 22q13.1 showing the strongest regional genetic correlation. Such a genetic overlap was further supported by 71 pleiotropic loci identified in the cross-trait meta-analysis. Mendelian randomization identified no causal effect of smoking initiation (beta = -0.003 g/cm2, 95% CI = -0.033 to 0.027) or heaviness (beta = -0.017 g/cm2, 95% CI = -0.072 to 0.038) on eBMD, but a putative causal effect of genetic predisposition to being a current smoker was associated with a lower eBMD compared to former smokers (beta = -0.100 g/cm2, 95% CI = -0.181 to -0.018). Our study demonstrates a pronounced biological pleiotropy as well as a putative causal link between current smoking status and eBMD, providing novel insights into the primary prevention and modifiable intervention of osteoporosis by advocating individuals to avoid, reduce or quit smoking as early as possible.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"918-928"},"PeriodicalIF":5.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141282442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}