Patients who have suffered an atypical femoral fracture while on bisphosphonates or denosumab may continue to be at risk for typical osteoporotic fractures. There are no studies to provide guidance on safe treatment for such patients. Instead, using an illustrative case, 5 principles of management are provided that may lead to decreased osteoporotic fracture risk. The first principle is to discontinue the anti-resorptive medications, which may be challenging in the patient on denosumab because of rebound vertebral fractures reported in patients stopping denosumab. The second principle is to maximize non-pharmacologic management to reduce falls and fractures. Home safety, other methods of fall risk reduction, adequate nutrition, and an exercise prescription should help reduce fracture risk. Investigating potential secondary causes of osteoporosis, particularly if the original workup was not comprehensive, is the third principle because treatment of some specific causes may lower fracture risk. Reviewing the medication list is the fourth principle, with the goal of eliminating drugs that may increase fracture risk; and considering thiazides for some patients, which may lower fracture risk. Finally, some patients may benefit from anabolic therapy. One potential (but not FDA-approved) method is to use long-term cyclic teriparatide or abaloparatide on a three-months on, three-months off schedule. Tailoring the approach to each patient is important, based on the five clinical principles, in the absence of evidence-based management recommendations.
{"title":"Treating Osteoporosis in Patients with Atypical Femoral Fracture.","authors":"Robert A Adler","doi":"10.1093/jbmr/zjae150","DOIUrl":"10.1093/jbmr/zjae150","url":null,"abstract":"<p><p>Patients who have suffered an atypical femoral fracture while on bisphosphonates or denosumab may continue to be at risk for typical osteoporotic fractures. There are no studies to provide guidance on safe treatment for such patients. Instead, using an illustrative case, 5 principles of management are provided that may lead to decreased osteoporotic fracture risk. The first principle is to discontinue the anti-resorptive medications, which may be challenging in the patient on denosumab because of rebound vertebral fractures reported in patients stopping denosumab. The second principle is to maximize non-pharmacologic management to reduce falls and fractures. Home safety, other methods of fall risk reduction, adequate nutrition, and an exercise prescription should help reduce fracture risk. Investigating potential secondary causes of osteoporosis, particularly if the original workup was not comprehensive, is the third principle because treatment of some specific causes may lower fracture risk. Reviewing the medication list is the fourth principle, with the goal of eliminating drugs that may increase fracture risk; and considering thiazides for some patients, which may lower fracture risk. Finally, some patients may benefit from anabolic therapy. One potential (but not FDA-approved) method is to use long-term cyclic teriparatide or abaloparatide on a three-months on, three-months off schedule. Tailoring the approach to each patient is important, based on the five clinical principles, in the absence of evidence-based management recommendations.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bo Li, Zhangfan Ding, Takehito Ouchi, Yueqi Liao, Bingzhi Li, Jiajing Gong, Yuhang Xie, Zhihe Zhao, Longjiang Li
The craniofacial bone, crucial for protecting brain tissue and supporting facial structure, undergoes continuous remodeling through mesenchymal (MSCs) or skeletal stem cells (SSCs) in their niches. Gli1 is an ideal marker for labeling MSCs and osteoprogenitors in this region, and Gli1-lineage cells are identified as pivotal for bone growth, development, repair, and regeneration. Despite its significance, the distribution of Gli1-lineage cells across the dental, oral, and craniofacial (DOC) regions remains to be systematically explored. Utilizing tissue-clearing and light sheet fluorescence microscopy (LSFM) with a Gli1CreER; tdTomatoAi14 mouse model, we mapped the spatial distribution of Gli1-lineage cells throughout the skull, focusing on calvarial bones, sutures, bone marrow, teeth, periodontium, jaw bones, and the temporomandibular joint (TMJ). We found Gli1-lineage cells widespread in these areas, underscoring their significance in DOC regions. Additionally, we observed their role in repairing calvarial bone defects, providing novel insights into craniofacial biology and stem cell niches and enhancing our understanding of stem cells and their progeny's behavior in vivo.
{"title":"Deciphering the spatial distribution of Gli1-lineage cells in dental, oral, and craniofacial regions.","authors":"Bo Li, Zhangfan Ding, Takehito Ouchi, Yueqi Liao, Bingzhi Li, Jiajing Gong, Yuhang Xie, Zhihe Zhao, Longjiang Li","doi":"10.1093/jbmr/zjae152","DOIUrl":"https://doi.org/10.1093/jbmr/zjae152","url":null,"abstract":"<p><p>The craniofacial bone, crucial for protecting brain tissue and supporting facial structure, undergoes continuous remodeling through mesenchymal (MSCs) or skeletal stem cells (SSCs) in their niches. Gli1 is an ideal marker for labeling MSCs and osteoprogenitors in this region, and Gli1-lineage cells are identified as pivotal for bone growth, development, repair, and regeneration. Despite its significance, the distribution of Gli1-lineage cells across the dental, oral, and craniofacial (DOC) regions remains to be systematically explored. Utilizing tissue-clearing and light sheet fluorescence microscopy (LSFM) with a Gli1CreER; tdTomatoAi14 mouse model, we mapped the spatial distribution of Gli1-lineage cells throughout the skull, focusing on calvarial bones, sutures, bone marrow, teeth, periodontium, jaw bones, and the temporomandibular joint (TMJ). We found Gli1-lineage cells widespread in these areas, underscoring their significance in DOC regions. Additionally, we observed their role in repairing calvarial bone defects, providing novel insights into craniofacial biology and stem cell niches and enhancing our understanding of stem cells and their progeny's behavior in vivo.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advancements in deep learning (DL) have revolutionized the capability of artificial intelligence (AI) by enabling the analysis of large-scale, complex datasets that are difficult for humans to interpret. However, large amounts of high-quality data are required to train such generative AI models successfully. With the rapid commercialization of single-cell sequencing and spatial transcriptomics platforms, the field is increasingly producing large-scale datasets such as histological images, single-cell molecular data, and spatial transcriptomic data. These molecular and morphological datasets parallel the multimodal text and image data used to train highly successful generative AI models for natural language processing and computer vision. Thus, these emerging data types offer great potential to train generative AI models that uncover intricate biological processes of bone cells at a cellular level. In this Perspective, we summarize the progress and prospects of generative AI applied to these datasets and their potential applications to bone research. In particular, we highlight three AI applications: predicting cell differentiation dynamics, linking molecular and morphological features, and predicting cellular responses to perturbations. To make generative AI models beneficial for bone research, important issues, such as technical biases in bone single-cell datasets, lack of profiling of important bone cell types, and lack of spatial information, need to be addressed. Realizing the potential of generative AI for bone biology will also likely require generating large-scale, high-quality cellular-resolution spatial transcriptomics datasets, improving the sensitivity of current spatial transcriptomics datasets, and thorough experimental validation of model predictions.
{"title":"Linking transcriptome and morphology in bone cells at cellular resolution with generative AI.","authors":"Lu Lu, Noriaki Ono, Joshua D Welch","doi":"10.1093/jbmr/zjae151","DOIUrl":"https://doi.org/10.1093/jbmr/zjae151","url":null,"abstract":"<p><p>Recent advancements in deep learning (DL) have revolutionized the capability of artificial intelligence (AI) by enabling the analysis of large-scale, complex datasets that are difficult for humans to interpret. However, large amounts of high-quality data are required to train such generative AI models successfully. With the rapid commercialization of single-cell sequencing and spatial transcriptomics platforms, the field is increasingly producing large-scale datasets such as histological images, single-cell molecular data, and spatial transcriptomic data. These molecular and morphological datasets parallel the multimodal text and image data used to train highly successful generative AI models for natural language processing and computer vision. Thus, these emerging data types offer great potential to train generative AI models that uncover intricate biological processes of bone cells at a cellular level. In this Perspective, we summarize the progress and prospects of generative AI applied to these datasets and their potential applications to bone research. In particular, we highlight three AI applications: predicting cell differentiation dynamics, linking molecular and morphological features, and predicting cellular responses to perturbations. To make generative AI models beneficial for bone research, important issues, such as technical biases in bone single-cell datasets, lack of profiling of important bone cell types, and lack of spatial information, need to be addressed. Realizing the potential of generative AI for bone biology will also likely require generating large-scale, high-quality cellular-resolution spatial transcriptomics datasets, improving the sensitivity of current spatial transcriptomics datasets, and thorough experimental validation of model predictions.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lesley E Jackson,Kenneth G Saag,Sindhu R Johnson,Maria I Danila
{"title":"Reply to Ganda and colleagues' letter to the editor regarding \"Defining the Key Clinician Skills and Attributes For Competency in Managing Patients with Osteoporosis and Fragility Fractures\" by LE Jackson and colleagues.","authors":"Lesley E Jackson,Kenneth G Saag,Sindhu R Johnson,Maria I Danila","doi":"10.1093/jbmr/zjae145","DOIUrl":"https://doi.org/10.1093/jbmr/zjae145","url":null,"abstract":"","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":"19 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142266186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Trial emulation to improve fracture prevention treatment in men: editorial on ASBMR-24030174.","authors":"Robert D Blank","doi":"10.1093/jbmr/zjae129","DOIUrl":"https://doi.org/10.1093/jbmr/zjae129","url":null,"abstract":"","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":"161 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kirtan Ganda, Michael Bennett, Jacqueline Centre, Robin M Daly, Markus J Seibel, Jason Talevski, Tania Winzenberg
{"title":"Defining the key clinician skills and attributes for competency managing patients with osteoporosis and fragility fractures.","authors":"Kirtan Ganda, Michael Bennett, Jacqueline Centre, Robin M Daly, Markus J Seibel, Jason Talevski, Tania Winzenberg","doi":"10.1093/jbmr/zjae146","DOIUrl":"https://doi.org/10.1093/jbmr/zjae146","url":null,"abstract":"","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142277664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Ramirez,Chiebuka Okpara,Matthew Arnett,Dyann M Segvich,Padmini Deosthale,Paola Ortiz González,Alexander E Kritikos,Julian Balanta Melo,Natasha Sanz,Fabrizio Pin,Joseph M Wallace,Lilian I Plotkin
Vertebrate sexual dimorphism is ascribed to the presence of testes or ovaries, and, hence, to the secretion of gonad-specific hormones. However, mounting evidence indicates that sex differences in tissues and organs also stem from the presence of sex chromosomes (XX or XY). To tease out the contribution of gonads from sex chromosomes to the musculoskeletal system, we used the Four-Core Genotypes (FCG) mouse model, in which the Sry gene, which dictates testis formation, was either deleted in the Y chromosome, resulting in XY mice with ovaries (XY-SryO), or overexpressed in XX mice, resulting in XX mice with testes (XXT), together with gonadal males XY-SryT (Sry deletion and overexpression of the Sry transgene in chromosome 3) and females XXO. The FCG mice are generated by crossing XXO with XY-SryT mice, all of C57BL/6 J background. We now show that the musculoskeletal phenotype of 2- to 4-month-old FCG mice varies based on both gonads and sex chromosomes, depending on the age and the organ/tissue/cell analyzed. The effect of sex chromosomes on body weight, fat and lean/skeletal muscle mass, and bone mass and structure is minor in 2-/3-month-old mice, soon after sexual maturation. The contribution of sex chromosomes (XX versus XY-Sry in mice with the same gonads and sex hormones) in several of our measurements becomes apparent in adult 4-month-old mice. Contribution of 1X and 1Y-Sry versus 2X chromosomes varies among different measurements in gonadal males or females, and mice with XY-Sry chromosomes might have higher or lower values that XX mice. Our study shows XX versus XY-Sry chromosome contribution to the musculoskeletal phenotype, which becomes more evident as the animals reach peak bone mass, suggesting that while gonadal sex has a major role, sex chromosomes are a so far unrecognized contributor to musculoskeletal mass and bone strength.
{"title":"Independent contribution of gonads and sex chromosomes to sex differences in bone mass and strength in the four-Core genotypes mouse model.","authors":"Gabriel Ramirez,Chiebuka Okpara,Matthew Arnett,Dyann M Segvich,Padmini Deosthale,Paola Ortiz González,Alexander E Kritikos,Julian Balanta Melo,Natasha Sanz,Fabrizio Pin,Joseph M Wallace,Lilian I Plotkin","doi":"10.1093/jbmr/zjae147","DOIUrl":"https://doi.org/10.1093/jbmr/zjae147","url":null,"abstract":"Vertebrate sexual dimorphism is ascribed to the presence of testes or ovaries, and, hence, to the secretion of gonad-specific hormones. However, mounting evidence indicates that sex differences in tissues and organs also stem from the presence of sex chromosomes (XX or XY). To tease out the contribution of gonads from sex chromosomes to the musculoskeletal system, we used the Four-Core Genotypes (FCG) mouse model, in which the Sry gene, which dictates testis formation, was either deleted in the Y chromosome, resulting in XY mice with ovaries (XY-SryO), or overexpressed in XX mice, resulting in XX mice with testes (XXT), together with gonadal males XY-SryT (Sry deletion and overexpression of the Sry transgene in chromosome 3) and females XXO. The FCG mice are generated by crossing XXO with XY-SryT mice, all of C57BL/6 J background. We now show that the musculoskeletal phenotype of 2- to 4-month-old FCG mice varies based on both gonads and sex chromosomes, depending on the age and the organ/tissue/cell analyzed. The effect of sex chromosomes on body weight, fat and lean/skeletal muscle mass, and bone mass and structure is minor in 2-/3-month-old mice, soon after sexual maturation. The contribution of sex chromosomes (XX versus XY-Sry in mice with the same gonads and sex hormones) in several of our measurements becomes apparent in adult 4-month-old mice. Contribution of 1X and 1Y-Sry versus 2X chromosomes varies among different measurements in gonadal males or females, and mice with XY-Sry chromosomes might have higher or lower values that XX mice. Our study shows XX versus XY-Sry chromosome contribution to the musculoskeletal phenotype, which becomes more evident as the animals reach peak bone mass, suggesting that while gonadal sex has a major role, sex chromosomes are a so far unrecognized contributor to musculoskeletal mass and bone strength.","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":"161 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shohinee Sarma, Petra Bůžková, Rachel E Elam, Howard A Fink, Jane A Cauley, Luc Djoussé, Joshua Barzilay, Kenneth J Mukamal
Background: Type 2 diabetes mellitus and lower weight are both associated with osteoporotic fractures, but the roles of variability and trajectory are less clear.1 The associations of these factors among older adults with dysglycemia, who are at highest risk of fracture, with fracture risk and bone mineral density (BMD) remains uncertain.
Methods: We followed 775 men and 1080 women from the Cardiovascular Health Study (mean age 77.4 years) with abnormal oral glucose tolerance testing in 1989-1990. We measured their weights yearly through 1994-1995 and derived intra-individual mean weight, weight slope, and weight variability. We also used growth mixture modelling to derive four latent body-mass index trajectories over time. We used Cox proportional hazards models to calculate hazard ratios (HR) and 95% confidence intervals (CI) for subsequent hip fracture through 2015 and linear regression models to estimate cross-sectional associations with bone mineral density (BMD) of the hip.
Results: Each 10 kg higher mean weight was associated with a lower risk of subsequent hip fracture overall (HR 0.81; CI 0.70-0.94) and among women (HR 0.76; CI 0.64-0.91) and with higher BMD (P-value <0.001). Higher weight variability was directly associated with incident hip fracture among women (HR 1.18; CI: 1.03-1.35). Compared with a stable trajectory, a "progressive overweight" trajectory was associated with lower risk of hip fracture (HR 0.66; CI: 0.44-0.99). An uncommon trajectory of "accelerating obesity" was associated with higher BMD.
Conclusions: Among older adults with dysglycemia at high risk for fracture, lower mean weight is associated with higher fracture risk, but variability and trajectory may also contribute. These results highlight the complex effects of weight in older age.
{"title":"Weight change, variability, and trajectories and risk of hip fracture among older adults with Dysglycemia: the cardiovascular health study.","authors":"Shohinee Sarma, Petra Bůžková, Rachel E Elam, Howard A Fink, Jane A Cauley, Luc Djoussé, Joshua Barzilay, Kenneth J Mukamal","doi":"10.1093/jbmr/zjae142","DOIUrl":"https://doi.org/10.1093/jbmr/zjae142","url":null,"abstract":"<p><strong>Background: </strong>Type 2 diabetes mellitus and lower weight are both associated with osteoporotic fractures, but the roles of variability and trajectory are less clear.1 The associations of these factors among older adults with dysglycemia, who are at highest risk of fracture, with fracture risk and bone mineral density (BMD) remains uncertain.</p><p><strong>Methods: </strong>We followed 775 men and 1080 women from the Cardiovascular Health Study (mean age 77.4 years) with abnormal oral glucose tolerance testing in 1989-1990. We measured their weights yearly through 1994-1995 and derived intra-individual mean weight, weight slope, and weight variability. We also used growth mixture modelling to derive four latent body-mass index trajectories over time. We used Cox proportional hazards models to calculate hazard ratios (HR) and 95% confidence intervals (CI) for subsequent hip fracture through 2015 and linear regression models to estimate cross-sectional associations with bone mineral density (BMD) of the hip.</p><p><strong>Results: </strong>Each 10 kg higher mean weight was associated with a lower risk of subsequent hip fracture overall (HR 0.81; CI 0.70-0.94) and among women (HR 0.76; CI 0.64-0.91) and with higher BMD (P-value <0.001). Higher weight variability was directly associated with incident hip fracture among women (HR 1.18; CI: 1.03-1.35). Compared with a stable trajectory, a \"progressive overweight\" trajectory was associated with lower risk of hip fracture (HR 0.66; CI: 0.44-0.99). An uncommon trajectory of \"accelerating obesity\" was associated with higher BMD.</p><p><strong>Conclusions: </strong>Among older adults with dysglycemia at high risk for fracture, lower mean weight is associated with higher fracture risk, but variability and trajectory may also contribute. These results highlight the complex effects of weight in older age.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.
研究表明,成骨细胞中的线粒体在骨形成过程中发挥着多种重要功能,包括细胞内 ATP 的产生和细胞外线粒体成分的分泌。本综述探讨了目前有关成骨细胞线粒体生物学的知识,包括线粒体生物生成、生物能、氧化应激生成和形态的动态变化。我们还特别关注了最近的研究发现,包括成骨细胞中线粒体甜甜圈的形成,它能积极生成线粒体衍生囊泡 (MDV),随后小线粒体和 MDV 在细胞外分泌。我们还讨论了针对成骨细胞线粒体的治疗效果,强调了它们在改善骨骼健康方面的潜在应用。
{"title":"The multifaceted roles of mitochondria in osteoblasts: from energy production to mitochondrial-derived vesicle secretion.","authors":"Joonho Suh, Yun-Sil Lee","doi":"10.1093/jbmr/zjae088","DOIUrl":"10.1093/jbmr/zjae088","url":null,"abstract":"<p><p>Mitochondria in osteoblasts have been demonstrated to play multiple crucial functions in bone formation from intracellular adenosine triphosphate production to extracellular secretion of mitochondrial components. The present review explores the current knowledge about mitochondrial biology in osteoblasts, including mitochondrial biogenesis, bioenergetics, oxidative stress generation, and dynamic changes in morphology. Special attention is given to recent findings, including mitochondrial donut formation in osteoblasts, which actively generates mitochondrial-derived vesicles (MDVs), followed by extracellular secretion of small mitochondria and MDVs. We also discuss the therapeutic effects of targeting osteoblast mitochondria, highlighting their potential applications in improving bone health.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1205-1214"},"PeriodicalIF":5.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371665/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lisa Johansson, Henrik Litsne, Kristian F Axelsson, Mattias Lorentzon
The Physical Activity Scale for the Elderly (PASE) is a validated test to assess physical activity in older people. It has not been investigated if physical activity, according to PASE, is associated with fracture risk independently from the clinical risk factors (CRFs) in FRAX, bone mineral density (BMD), comorbidity, and if such an association is due to differences in physical performance or bone parameters. The purpose of this study was to evaluate if PASE score is associated with bone characteristics, physical function, and independently predicts incident fracture in 3014 75-80-yr-old women from the population-based cross-sectional SUPERB study. At baseline, participants answered questionnaires and underwent physical function tests, detailed bone phenotyping with DXA, and high-resolution peripheral quantitative CT. Incident fractures were X-ray verified. Cox regression models were used to assess the association between PASE score and incident fractures, with adjustments for CRFs, femoral neck (FN) BMD, and Charlson comorbidity index. Women were divided into quartiles according to PASE score. Quartile differences in bone parameters (1.56% for cortical volumetric BMD and 4.08% for cortical area, Q4 vs Q1, p = .007 and p = .022, respectively) were smaller than quartile differences in physical performance (27% shorter timed up and go test, 52% longer one leg standing time, Q4 vs Q1). During 8 yr (median, range 0.20-9.9) of follow-up, 1077 women had any fracture, 806 a major osteoporotic fracture (MOF; spine, hip, forearm, humerus), and 236 a hip fracture. Women in Q4 vs. Q1 had 30% lower risk of any fracture, 32% lower risk of MOF, and 54% lower risk of hip fracture. These associations remained in fully adjusted models. In conclusion, high physical activity was associated with substantially better physical function and a lower risk of any fracture, MOF and hip fracture, independently of risk factors used in FRAX, FN BMD, and comorbidity.
{"title":"High physical activity is associated with greater cortical bone size, better physical function, and with lower risk of incident fractures independently of clinical risk factors in older women from the SUPERB study.","authors":"Lisa Johansson, Henrik Litsne, Kristian F Axelsson, Mattias Lorentzon","doi":"10.1093/jbmr/zjae114","DOIUrl":"10.1093/jbmr/zjae114","url":null,"abstract":"<p><p>The Physical Activity Scale for the Elderly (PASE) is a validated test to assess physical activity in older people. It has not been investigated if physical activity, according to PASE, is associated with fracture risk independently from the clinical risk factors (CRFs) in FRAX, bone mineral density (BMD), comorbidity, and if such an association is due to differences in physical performance or bone parameters. The purpose of this study was to evaluate if PASE score is associated with bone characteristics, physical function, and independently predicts incident fracture in 3014 75-80-yr-old women from the population-based cross-sectional SUPERB study. At baseline, participants answered questionnaires and underwent physical function tests, detailed bone phenotyping with DXA, and high-resolution peripheral quantitative CT. Incident fractures were X-ray verified. Cox regression models were used to assess the association between PASE score and incident fractures, with adjustments for CRFs, femoral neck (FN) BMD, and Charlson comorbidity index. Women were divided into quartiles according to PASE score. Quartile differences in bone parameters (1.56% for cortical volumetric BMD and 4.08% for cortical area, Q4 vs Q1, p = .007 and p = .022, respectively) were smaller than quartile differences in physical performance (27% shorter timed up and go test, 52% longer one leg standing time, Q4 vs Q1). During 8 yr (median, range 0.20-9.9) of follow-up, 1077 women had any fracture, 806 a major osteoporotic fracture (MOF; spine, hip, forearm, humerus), and 236 a hip fracture. Women in Q4 vs. Q1 had 30% lower risk of any fracture, 32% lower risk of MOF, and 54% lower risk of hip fracture. These associations remained in fully adjusted models. In conclusion, high physical activity was associated with substantially better physical function and a lower risk of any fracture, MOF and hip fracture, independently of risk factors used in FRAX, FN BMD, and comorbidity.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":"1284-1295"},"PeriodicalIF":5.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}