Pub Date : 2023-03-16DOI: 10.3390/agrochemicals2010011
Bruna Aparecida de Paula Medeiros, Maura Gabriela da Silva Brochado, G. A. de Paiva Ferreira, Alessandro da Costa Lima, K. Mielke, K. F. Mendes
Tomatoes are often grown in proximity to other crops such as grain, which can increase their susceptibility to herbicide drift and subsequent crop. Therefore, the objective of this study was to evaluate the effect of simulated herbicide drift on tomato plants. Treatments were established in a 10 × 3 + 1 factorial scheme using a completely randomized design with four replications. The first factor consisted of ten herbicides, while the second was composed by three subdoses (1/4, 1/16, and 1/32) along with an additional treatment without herbicide application. The herbicides 2,4-D, dicamba, glyphosate, saflufenacil, oxyfluorfen, and isoxaflutole caused injury levels greater than 20% or reductions in plant biomass greater than 30% at the lowest subdose. Increasing the subdose resulted in a corresponding increase in injury level and a reduction in biomass. Tomato exposed to hexazinone, diuron, nicosulfuron, and diquat at a subdose of 1/64 exhibited low injury levels and biomass reductions. However, at other subdoses, these herbicides caused significant plant damage. Among the herbicides tested, the auxinic herbicides, particularly dicamba, presented a higher risk for the tomato crop. The documentation and description of the visual symptoms caused by each herbicide applied to tomatoes will aid producers to identify drift problems in the field.
{"title":"Practical Knowledge of Injuries Caused by Simulated Herbicide Drift in Young Tomato Plants","authors":"Bruna Aparecida de Paula Medeiros, Maura Gabriela da Silva Brochado, G. A. de Paiva Ferreira, Alessandro da Costa Lima, K. Mielke, K. F. Mendes","doi":"10.3390/agrochemicals2010011","DOIUrl":"https://doi.org/10.3390/agrochemicals2010011","url":null,"abstract":"Tomatoes are often grown in proximity to other crops such as grain, which can increase their susceptibility to herbicide drift and subsequent crop. Therefore, the objective of this study was to evaluate the effect of simulated herbicide drift on tomato plants. Treatments were established in a 10 × 3 + 1 factorial scheme using a completely randomized design with four replications. The first factor consisted of ten herbicides, while the second was composed by three subdoses (1/4, 1/16, and 1/32) along with an additional treatment without herbicide application. The herbicides 2,4-D, dicamba, glyphosate, saflufenacil, oxyfluorfen, and isoxaflutole caused injury levels greater than 20% or reductions in plant biomass greater than 30% at the lowest subdose. Increasing the subdose resulted in a corresponding increase in injury level and a reduction in biomass. Tomato exposed to hexazinone, diuron, nicosulfuron, and diquat at a subdose of 1/64 exhibited low injury levels and biomass reductions. However, at other subdoses, these herbicides caused significant plant damage. Among the herbicides tested, the auxinic herbicides, particularly dicamba, presented a higher risk for the tomato crop. The documentation and description of the visual symptoms caused by each herbicide applied to tomatoes will aid producers to identify drift problems in the field.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"2019 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87831233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-13DOI: 10.3390/agrochemicals2010010
Y. Andriana, Nabila Ayunisa Fajriani, A. Iwansyah, T. Xuan
Adlay (Coix lacryma-jobi L.) is a cereal crop that has traditionally been used for medicinal purposes. It is processed into nutritious food in China and Southeast Asian countries. This study assesses the phytochemical constituents of this plant and their potential as antioxidants and crop protection agents. The methanolic extracts from seeds of Indonesian adlay (C. lacryma-jobi) varieties including Agrotis, Ma-yuen, and Aquatic, were tested against 2,2-diphnyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to determine their free radical scavenging activity. The relationship between extraction solvents, phytochemical composition, and antioxidant activity was analyzed statistically using principal component analysis (PCA) to classify them based on the similarities among the components. The potential use of the phytochemicals as crop protection agents was also explored through a review of the literature. The Agrotis variety demonstrated the highest antioxidant activities (IC50 DPPH = 741.49 and ABTS =152.69 µg/mL). The ethyl acetate fraction of this variety showed the greatest antioxidant activity (IC50 DPPH and ABTS = 106.34 and 17.62 µg/mL, respectively), total phenolic content (275.16 mg GAE/g extract), and flavonoid content (37.41 mg QE/g extract). Fatty acids (FAs) and fatty acid methyl esters (FAMEs) accounted for 47.71 ± 0.02 and 41.73 ± 0.04%, respectively, and they were the major components of the extracts. The principal component analysis (PCA) revealed three different groups of phytochemical components in the seeds of Agrotis variety, including fatty acid methyl esters (FAMEs), such as methyl linoleate, methyl stearate, methyl vaccinates, and methyl palmitate, and fatty acids (FAs), including 7-hexadecanoid acid, bovinic acid, and 15-hydroxipentadecanoic acid. The final phytochemical group consisted of minor components, including uncategorized compounds such as decamethyl-tetrasiloxane and cycloalkenes. This study highlights the fact that C. lacrima-jobi is a promising source of natural antioxidants and agrochemicals.
{"title":"Phytochemical Constituents of Indonesian Adlay (Coix lacrima-jobi L.) and Their Potential as Antioxidants and Crop Protection Agents","authors":"Y. Andriana, Nabila Ayunisa Fajriani, A. Iwansyah, T. Xuan","doi":"10.3390/agrochemicals2010010","DOIUrl":"https://doi.org/10.3390/agrochemicals2010010","url":null,"abstract":"Adlay (Coix lacryma-jobi L.) is a cereal crop that has traditionally been used for medicinal purposes. It is processed into nutritious food in China and Southeast Asian countries. This study assesses the phytochemical constituents of this plant and their potential as antioxidants and crop protection agents. The methanolic extracts from seeds of Indonesian adlay (C. lacryma-jobi) varieties including Agrotis, Ma-yuen, and Aquatic, were tested against 2,2-diphnyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) to determine their free radical scavenging activity. The relationship between extraction solvents, phytochemical composition, and antioxidant activity was analyzed statistically using principal component analysis (PCA) to classify them based on the similarities among the components. The potential use of the phytochemicals as crop protection agents was also explored through a review of the literature. The Agrotis variety demonstrated the highest antioxidant activities (IC50 DPPH = 741.49 and ABTS =152.69 µg/mL). The ethyl acetate fraction of this variety showed the greatest antioxidant activity (IC50 DPPH and ABTS = 106.34 and 17.62 µg/mL, respectively), total phenolic content (275.16 mg GAE/g extract), and flavonoid content (37.41 mg QE/g extract). Fatty acids (FAs) and fatty acid methyl esters (FAMEs) accounted for 47.71 ± 0.02 and 41.73 ± 0.04%, respectively, and they were the major components of the extracts. The principal component analysis (PCA) revealed three different groups of phytochemical components in the seeds of Agrotis variety, including fatty acid methyl esters (FAMEs), such as methyl linoleate, methyl stearate, methyl vaccinates, and methyl palmitate, and fatty acids (FAs), including 7-hexadecanoid acid, bovinic acid, and 15-hydroxipentadecanoic acid. The final phytochemical group consisted of minor components, including uncategorized compounds such as decamethyl-tetrasiloxane and cycloalkenes. This study highlights the fact that C. lacrima-jobi is a promising source of natural antioxidants and agrochemicals.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89589314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-22DOI: 10.3390/agrochemicals2010009
Preeti Bairwa, Nimish Kumar, Vijay Devra, K. Abd-Elsalam
Green chemistry and nanobiotechnology have great potential for generating new and significant products that are favorable to the environment, industry, and consumers. The nanoforms of metals and nanocomposites are more effective and efficient agents than their bulkier counterparts because of their distinctive physical, chemical, and optical properties. Green technology is a rapidly growing scientific field that has recently received attention due to its many applications. Different nanoparticle dimensions, sizes, and bioactivities will develop as a consequence of changes in the biomaterials employed for synthesis. The existing understanding of several green synthesis methods, that depend on different plant components and microorganisms for the production of nanoparticles, is summarized in the current review. Employing these materials minimizes synthesis costs while minimizing the use of hazardous chemicals and promoting “biosynthesis.” To produce metal nanoparticles efficiently, bio-reduction is influenced by the abundance of essential enzymes, proteins, and biomolecules. Rapid biosynthetic regeneration makes this characteristic sufficient for their employment in a range of situations. In this review, we explore the biosynthesis of nanomaterials and their potential in sustainable agriculture. Biosynthesized nanofertilizers, or bionanofertilizers, are a revolutionary new class of fertilizer that has been developed with the help of nanotechnology. These fertilizers offer many advantages over traditional fertilization methods and can be used to increase crop yields while reducing the environmental impact of fertilizers. Bionanofertilizer are an inexpensive way to increase plant growth and production, and to improve the use of nutrients by plants and the health of the soil. According to our survey, nanotechnology presents a wide range of prospects by offering a cutting-edge and environmentally friendly alternative in the agricultural sector.
{"title":"Nano-Biofertilizers Synthesis and Applications in Agroecosystems","authors":"Preeti Bairwa, Nimish Kumar, Vijay Devra, K. Abd-Elsalam","doi":"10.3390/agrochemicals2010009","DOIUrl":"https://doi.org/10.3390/agrochemicals2010009","url":null,"abstract":"Green chemistry and nanobiotechnology have great potential for generating new and significant products that are favorable to the environment, industry, and consumers. The nanoforms of metals and nanocomposites are more effective and efficient agents than their bulkier counterparts because of their distinctive physical, chemical, and optical properties. Green technology is a rapidly growing scientific field that has recently received attention due to its many applications. Different nanoparticle dimensions, sizes, and bioactivities will develop as a consequence of changes in the biomaterials employed for synthesis. The existing understanding of several green synthesis methods, that depend on different plant components and microorganisms for the production of nanoparticles, is summarized in the current review. Employing these materials minimizes synthesis costs while minimizing the use of hazardous chemicals and promoting “biosynthesis.” To produce metal nanoparticles efficiently, bio-reduction is influenced by the abundance of essential enzymes, proteins, and biomolecules. Rapid biosynthetic regeneration makes this characteristic sufficient for their employment in a range of situations. In this review, we explore the biosynthesis of nanomaterials and their potential in sustainable agriculture. Biosynthesized nanofertilizers, or bionanofertilizers, are a revolutionary new class of fertilizer that has been developed with the help of nanotechnology. These fertilizers offer many advantages over traditional fertilization methods and can be used to increase crop yields while reducing the environmental impact of fertilizers. Bionanofertilizer are an inexpensive way to increase plant growth and production, and to improve the use of nutrients by plants and the health of the soil. According to our survey, nanotechnology presents a wide range of prospects by offering a cutting-edge and environmentally friendly alternative in the agricultural sector.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85106187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-08DOI: 10.3390/agrochemicals2010008
P. Marchand
Agrochemicals are synthetic or hemi-synthetic crop protection substances which are supervised by the EU Regulation EC 1107/2009, which give rise to plant protection products (PPP) with market authorizations. Most of these active substances of chemical origin were transferred from the previous Annex I of Directive 91/414/EEC to Part A of Regulation EU 540/2011, with newly approved active substances mainly being listed in Part B or E, while renewed substances were moved from Part A to Part B or E. In this study, approved agrochemicals from the early part of 2023 are organized into categories, families, functions, usages, treated crop categories, regulatory characteristics, and maximum residue limits (MRLs). Perspectives regarding their evolution are also described together with pending approvals.
{"title":"EU Chemical Plant Protection Products in 2023: Current State and Perspectives","authors":"P. Marchand","doi":"10.3390/agrochemicals2010008","DOIUrl":"https://doi.org/10.3390/agrochemicals2010008","url":null,"abstract":"Agrochemicals are synthetic or hemi-synthetic crop protection substances which are supervised by the EU Regulation EC 1107/2009, which give rise to plant protection products (PPP) with market authorizations. Most of these active substances of chemical origin were transferred from the previous Annex I of Directive 91/414/EEC to Part A of Regulation EU 540/2011, with newly approved active substances mainly being listed in Part B or E, while renewed substances were moved from Part A to Part B or E. In this study, approved agrochemicals from the early part of 2023 are organized into categories, families, functions, usages, treated crop categories, regulatory characteristics, and maximum residue limits (MRLs). Perspectives regarding their evolution are also described together with pending approvals.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81849285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.3390/agrochemicals2010007
Kifayatullah Kakar, T. Xuan, T. Khanh
This study determined the influence of cattle manure compost, chemical fertilizers, and mulch on the growth of weeds, sugar content, and growth of sweet sorghum (Sorghum bicolor (L.) Moench). The inhibitory potential of root exudates from two sweet sorghum cultivars (A; K1151 and B; K3351) was also evaluated. Chemical fertilizers increased the plant height, stem weight, biomass production, and sugar content of sweet sorghum. The total phenolic contents in the root exudates were 22.93 mg gallic acid equivalent per g dry weight (GAE/g DW) for cultivar A and 15.66 mg GAE/g DW for cultivar B. The total flavonoid contents in the root exudates were 14.77 mg rutin equivalent per g dry weight (RE/g DW) for cultivar A and 12.44 mg RE/g DW for cultivar B. The leaf extracts contained a higher amount of total phenolics and flavonoids than that of the stem and root. The inhibitory level of the root exudates from cultivar A on the seed germination and shoot growth of lettuce was greater than for cultivar B. Six phenolic acids, including protocatechuic, p-hydroxybenzoic, syringic, sinapic, p-coumaric, and benzoic acids, were detected from root exudates, root, stem, and leaf of both cultivars. The amount of p-coumaric acid in root exudates was greater than the other plant parts; however, protocatechuic acid was only found in the root exudates. p-Coumaric and protocatechuic acids may play an important role in the allelopathy of sweet sorghum to help reduce the dependence on synthetic herbicides in agricultural practice. This study indicates that cultivation methods and fertilization are important to increase both agronomic and economic values of sweet sorghum in agricultural production.
{"title":"Allelopathic Potential of Sweet Sorghum Root Exudates and Identification of the Relevant Allelochemicals","authors":"Kifayatullah Kakar, T. Xuan, T. Khanh","doi":"10.3390/agrochemicals2010007","DOIUrl":"https://doi.org/10.3390/agrochemicals2010007","url":null,"abstract":"This study determined the influence of cattle manure compost, chemical fertilizers, and mulch on the growth of weeds, sugar content, and growth of sweet sorghum (Sorghum bicolor (L.) Moench). The inhibitory potential of root exudates from two sweet sorghum cultivars (A; K1151 and B; K3351) was also evaluated. Chemical fertilizers increased the plant height, stem weight, biomass production, and sugar content of sweet sorghum. The total phenolic contents in the root exudates were 22.93 mg gallic acid equivalent per g dry weight (GAE/g DW) for cultivar A and 15.66 mg GAE/g DW for cultivar B. The total flavonoid contents in the root exudates were 14.77 mg rutin equivalent per g dry weight (RE/g DW) for cultivar A and 12.44 mg RE/g DW for cultivar B. The leaf extracts contained a higher amount of total phenolics and flavonoids than that of the stem and root. The inhibitory level of the root exudates from cultivar A on the seed germination and shoot growth of lettuce was greater than for cultivar B. Six phenolic acids, including protocatechuic, p-hydroxybenzoic, syringic, sinapic, p-coumaric, and benzoic acids, were detected from root exudates, root, stem, and leaf of both cultivars. The amount of p-coumaric acid in root exudates was greater than the other plant parts; however, protocatechuic acid was only found in the root exudates. p-Coumaric and protocatechuic acids may play an important role in the allelopathy of sweet sorghum to help reduce the dependence on synthetic herbicides in agricultural practice. This study indicates that cultivation methods and fertilization are important to increase both agronomic and economic values of sweet sorghum in agricultural production.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85471826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-18DOI: 10.3390/agrochemicals2010006
Á. Ambrus, J. Szenczi-Cseh, Vy Vy N. Doan, A. Vásárhelyi
Pesticide residue monitoring data reflect the actual residues in foods as traded and are suitable for estimating consumers’ exposure, evaluating compliance with maximum residue limits, MRLs, and refining future risk-based sampling programmes. The long-term exposure (daily intake) is calculated from the national or regional food consumption data and average residues in the edible portions of food. The non-detected residues may be counted as LOQ, 0.5 LOQ, or 0. The short-term intake is calculated from the large portion consumption of individual foods multiplied by the highest residue concentration found in them and the relevant variability factor. Dietary exposure to a pesticide residue may be characterised by the hazard quotient (HQ) and the hazard index (HI). Cumulative exposure should only be assessed for those compounds having the common mechanism of toxicity (cumulative assessment group, CAG). The number of residue data required for these assessments should be calculated with distribution-free statistics at the targeted confidence level. The proper evaluation of the numerous results can only be completed if they are electronically recorded and can be retrieved in specific formats. Our objectives are to present methods for consumer risk assessment, testing compliance with MRLs, and ranking commodities for risk-based sampling and to give examples of electronic processing of residue data.
{"title":"Evaluation of Monitoring Data in Foods","authors":"Á. Ambrus, J. Szenczi-Cseh, Vy Vy N. Doan, A. Vásárhelyi","doi":"10.3390/agrochemicals2010006","DOIUrl":"https://doi.org/10.3390/agrochemicals2010006","url":null,"abstract":"Pesticide residue monitoring data reflect the actual residues in foods as traded and are suitable for estimating consumers’ exposure, evaluating compliance with maximum residue limits, MRLs, and refining future risk-based sampling programmes. The long-term exposure (daily intake) is calculated from the national or regional food consumption data and average residues in the edible portions of food. The non-detected residues may be counted as LOQ, 0.5 LOQ, or 0. The short-term intake is calculated from the large portion consumption of individual foods multiplied by the highest residue concentration found in them and the relevant variability factor. Dietary exposure to a pesticide residue may be characterised by the hazard quotient (HQ) and the hazard index (HI). Cumulative exposure should only be assessed for those compounds having the common mechanism of toxicity (cumulative assessment group, CAG). The number of residue data required for these assessments should be calculated with distribution-free statistics at the targeted confidence level. The proper evaluation of the numerous results can only be completed if they are electronically recorded and can be retrieved in specific formats. Our objectives are to present methods for consumer risk assessment, testing compliance with MRLs, and ranking commodities for risk-based sampling and to give examples of electronic processing of residue data.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86327687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-16DOI: 10.3390/agrochemicals2010005
C. Benbrook, R. Mesnage, William Sawyer
Controversy over the oncogenicity of glyphosate-based herbicides (GBHs) persists seven years after a 2015 IARC Monograph classified glyphosate/GBHs as “probably carcinogenic” to humans. Most regulatory authorities have concluded that technical glyphosate poses little or no oncogenic risk via dietary exposure. The US EPA classified glyphosate as “not likely” to pose cancer risk in 1991, a decision reaffirmed in reports issued in 2017 and 2020. A Federal Circuit Court of Appeals in the US vacated EPA’s assessment of glyphosate human-health risks in 2022 and required EPA to revisit old and take into account new data in its forthcoming, possibly final glyphosate/GBH reregistration decision. Divergent assessments of GBH genotoxicity are the primary reason for differing conclusions regarding GBH oncogenic potential. We assessed whether assays published since completion of the EPA and IARC reviews shed new light on glyphosate/GBH genotoxicity. We found 94 such assays, 33 testing technical glyphosate (73% positive) and 61 on GBHs (95% positive). Seven of 7 in vivo human studies report positive results. In light of genotoxicity results published since 2015, the conclusion that GBHs pose no risk of cancer via a genotoxic mechanism is untenable.
{"title":"Genotoxicity Assays Published since 2016 Shed New Light on the Oncogenic Potential of Glyphosate-Based Herbicides","authors":"C. Benbrook, R. Mesnage, William Sawyer","doi":"10.3390/agrochemicals2010005","DOIUrl":"https://doi.org/10.3390/agrochemicals2010005","url":null,"abstract":"Controversy over the oncogenicity of glyphosate-based herbicides (GBHs) persists seven years after a 2015 IARC Monograph classified glyphosate/GBHs as “probably carcinogenic” to humans. Most regulatory authorities have concluded that technical glyphosate poses little or no oncogenic risk via dietary exposure. The US EPA classified glyphosate as “not likely” to pose cancer risk in 1991, a decision reaffirmed in reports issued in 2017 and 2020. A Federal Circuit Court of Appeals in the US vacated EPA’s assessment of glyphosate human-health risks in 2022 and required EPA to revisit old and take into account new data in its forthcoming, possibly final glyphosate/GBH reregistration decision. Divergent assessments of GBH genotoxicity are the primary reason for differing conclusions regarding GBH oncogenic potential. We assessed whether assays published since completion of the EPA and IARC reviews shed new light on glyphosate/GBH genotoxicity. We found 94 such assays, 33 testing technical glyphosate (73% positive) and 61 on GBHs (95% positive). Seven of 7 in vivo human studies report positive results. In light of genotoxicity results published since 2015, the conclusion that GBHs pose no risk of cancer via a genotoxic mechanism is untenable.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78203335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-09DOI: 10.3390/agrochemicals2010004
E. R. Lopat’eva, A. Budnikov, I. Krylov, A. Alekseenko, A. I. Ilovaisky, A. Glinushkin, A. Terent’ev
The search for fungicides of novel classes is the long-standing priority in crop protection due to the continuous development of fungal resistance against currently used types of active compounds. Recently, 4-nitropyrazolin-3-ones were discovered as highly potent fungicides, of which activity was believed to be strongly associated with the presence of a nitro group in the pyrazolone ring. In this paper, a series of 4-substituted pyrazolin-3-ones were synthesized and their fungicidal activity against an important species of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, and Sclerotinia sclerotiorum) was tested in vitro. We discovered that 4-mono and 4,4-dihalogenated pyrazolin-3-ones demonstrate fungicidal activity comparable to that of 4-nitropyrazolin-3-ones and other modern fungicides (such as kresoxim methyl). This discovery indicates that NO2 moiety can be replaced by other groups of comparable size and electronic properties without the loss of fungicidal activity and significantly expands the scope of potent new fungicides based on a pyrazolin-3-one fragment.
{"title":"4-Disubstituted Pyrazolin-3-Ones—Novel Class of Fungicides against Phytopathogenic Fungi","authors":"E. R. Lopat’eva, A. Budnikov, I. Krylov, A. Alekseenko, A. I. Ilovaisky, A. Glinushkin, A. Terent’ev","doi":"10.3390/agrochemicals2010004","DOIUrl":"https://doi.org/10.3390/agrochemicals2010004","url":null,"abstract":"The search for fungicides of novel classes is the long-standing priority in crop protection due to the continuous development of fungal resistance against currently used types of active compounds. Recently, 4-nitropyrazolin-3-ones were discovered as highly potent fungicides, of which activity was believed to be strongly associated with the presence of a nitro group in the pyrazolone ring. In this paper, a series of 4-substituted pyrazolin-3-ones were synthesized and their fungicidal activity against an important species of phytopathogenic fungi (Venturia inaequalis, Rhizoctonia solani, Fusarium oxysporum, Fusarium moniliforme, Bipolaris sorokiniana, and Sclerotinia sclerotiorum) was tested in vitro. We discovered that 4-mono and 4,4-dihalogenated pyrazolin-3-ones demonstrate fungicidal activity comparable to that of 4-nitropyrazolin-3-ones and other modern fungicides (such as kresoxim methyl). This discovery indicates that NO2 moiety can be replaced by other groups of comparable size and electronic properties without the loss of fungicidal activity and significantly expands the scope of potent new fungicides based on a pyrazolin-3-one fragment.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72845165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-09DOI: 10.3390/agrochemicals2010003
D. D. Paula, G. A. P. Ferreira, Tiago Guimarães, M. G. D. S. Brochado, L. Hahn, K. F. Mendes
Knowledge about the residual effect of herbicides is important in order to increase agronomic efficacy and reduce environmental problems. Therefore, the objective of this study was to evaluate the residual effect of oxyfluorfen and linuron in three soils. Pots of 0.35 dm3 were filled with three Brazilian soils: Ultisol, Oxisol, and Inceptisol. Then, the herbicides were applied at different times at 0, 15, 30, 45, 60, 90, 120, 150, 180, and 200 days and the bioindicator species of linuron and oxyfluorfen were sown. Then, the injury was evaluated at 7, 14, and 21 days after emergence (DAE) to find the half-life of the herbicide residue level (RL50) and the dose of herbicide that provides a 50% reduction in dry matter (GR50). In the soil with oxyfluorfen application, the RL50 at 21 DAE was 59, 57, and 51 days and GR50 was 49, 47, and 31 days for Ultisol, Oxisol, and Inceptisol, respectively. Soils with linuron application had RL50 of 75, 92, and 149 days and GR50 of 52, 48, and 120 days for Ultisol, Oxisol, and Inceptisol, respectively. The higher organic matter and clay content of Ultisol compared to Oxisol and Inceptisol resulted in a lower residual effect of linuron. There was little difference between soil type and the residual effect of oxyfluorfen, which may be related to the physicochemical characteristics of the molecule.
{"title":"Oxyfluorfen and Linuron: Residual Effect of Pre-Emergence Herbicides in Three Tropical Soils","authors":"D. D. Paula, G. A. P. Ferreira, Tiago Guimarães, M. G. D. S. Brochado, L. Hahn, K. F. Mendes","doi":"10.3390/agrochemicals2010003","DOIUrl":"https://doi.org/10.3390/agrochemicals2010003","url":null,"abstract":"Knowledge about the residual effect of herbicides is important in order to increase agronomic efficacy and reduce environmental problems. Therefore, the objective of this study was to evaluate the residual effect of oxyfluorfen and linuron in three soils. Pots of 0.35 dm3 were filled with three Brazilian soils: Ultisol, Oxisol, and Inceptisol. Then, the herbicides were applied at different times at 0, 15, 30, 45, 60, 90, 120, 150, 180, and 200 days and the bioindicator species of linuron and oxyfluorfen were sown. Then, the injury was evaluated at 7, 14, and 21 days after emergence (DAE) to find the half-life of the herbicide residue level (RL50) and the dose of herbicide that provides a 50% reduction in dry matter (GR50). In the soil with oxyfluorfen application, the RL50 at 21 DAE was 59, 57, and 51 days and GR50 was 49, 47, and 31 days for Ultisol, Oxisol, and Inceptisol, respectively. Soils with linuron application had RL50 of 75, 92, and 149 days and GR50 of 52, 48, and 120 days for Ultisol, Oxisol, and Inceptisol, respectively. The higher organic matter and clay content of Ultisol compared to Oxisol and Inceptisol resulted in a lower residual effect of linuron. There was little difference between soil type and the residual effect of oxyfluorfen, which may be related to the physicochemical characteristics of the molecule.","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81954824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-06DOI: 10.3390/agrochemicals2010002
C. Athanassiou
The journal Agrochemicals publishes research on the different types of agrochemicals, as depicted in this Editorial [...]
《农业化学》杂志发表了关于不同类型农用化学品的研究,如本社论所述[…]
{"title":"Agrochemicals—The Pesticides Section","authors":"C. Athanassiou","doi":"10.3390/agrochemicals2010002","DOIUrl":"https://doi.org/10.3390/agrochemicals2010002","url":null,"abstract":"The journal Agrochemicals publishes research on the different types of agrochemicals, as depicted in this Editorial [...]","PeriodicalId":18608,"journal":{"name":"Modern Agrochemicals","volume":"79 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72856822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}