首页 > 最新文献

Metabolism: clinical and experimental最新文献

英文 中文
Targeting endoplasmic reticulum stress as a potential therapeutic strategy for diabetic cardiomyopathy 将内质网应激作为糖尿病心肌病的潜在治疗策略。
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-06 DOI: 10.1016/j.metabol.2024.156062
Irem Congur , Geltrude Mingrone , Kaomei Guan
Endoplasmic reticulum (ER) is an essential organelle involved in vesicular transport, calcium handling, protein synthesis and folding, and lipid biosynthesis and metabolism. ER stress occurs when ER homeostasis is disrupted by the accumulation of unfolded and/or misfolded proteins in the ER lumen. Adaptive pathways of the unfolded protein response (UPR) are activated to maintain ER homeostasis. In obesity and type 2 diabetes mellitus (T2DM), accumulating data indicate that persistent ER stress due to maladaptive UPR interacts with insulin/leptin signaling, which may be the potential and central mechanistic link between obesity-/T2DM-induced metabolic dysregulation (chronic hyperglycemia, dyslipidemia and lipotoxicity in cardiomyocytes), insulin/leptin resistance and the development of diabetic cardiomyopathy (DiabCM). Meanwhile, these pathological conditions further exacerbate ER stress. However, their interrelationships and the underlying molecular mechanisms are not fully understood. A deeper understanding of ER stress-mediated pathways in DiabCM is needed to develop novel therapeutic strategies. The aim of this review is to discuss the crosstalk between ER stress and leptin/insulin signaling and their involvement in the development of DiabCM focusing on mitochondria-associated ER membranes and chronic inflammation. We also present the current direction of drug development and important considerations for translational research into targeting ER stress for the treatment of DiabCM.
内质网(ER)是一个重要的细胞器,参与囊泡运输、钙处理、蛋白质合成和折叠以及脂质的生物合成和代谢。当未折叠和/或折叠错误的蛋白质在ER腔内积累而破坏ER平衡时,就会发生ER应激。未折叠蛋白反应(UPR)的适应途径被激活,以维持ER平衡。在肥胖和 2 型糖尿病(T2DM)中,不断积累的数据表明,不适应性 UPR 导致的持续性 ER 应激与胰岛素/瘦素信号传导相互作用,这可能是肥胖/T2DM 导致的代谢失调(心肌细胞中的慢性高血糖、血脂异常和脂毒性)、胰岛素/瘦素抵抗和糖尿病心肌病(DiabCM)发展之间潜在的核心机制联系。同时,这些病理条件进一步加剧了ER应激。然而,它们之间的相互关系和潜在的分子机制尚未完全明了。要开发新的治疗策略,就需要更深入地了解 DiabCM 中ER 应激介导的途径。本综述旨在讨论 ER 应激与瘦素/胰岛素信号之间的相互影响,以及它们在 DiabCM 发病过程中的参与,重点关注线粒体相关 ER 膜和慢性炎症。我们还介绍了当前药物开发的方向,以及针对治疗 DiabCM 的 ER 应激进行转化研究的重要考虑因素。
{"title":"Targeting endoplasmic reticulum stress as a potential therapeutic strategy for diabetic cardiomyopathy","authors":"Irem Congur ,&nbsp;Geltrude Mingrone ,&nbsp;Kaomei Guan","doi":"10.1016/j.metabol.2024.156062","DOIUrl":"10.1016/j.metabol.2024.156062","url":null,"abstract":"<div><div>Endoplasmic reticulum (ER) is an essential organelle involved in vesicular transport, calcium handling, protein synthesis and folding, and lipid biosynthesis and metabolism. ER stress occurs when ER homeostasis is disrupted by the accumulation of unfolded and/or misfolded proteins in the ER lumen. Adaptive pathways of the unfolded protein response (UPR) are activated to maintain ER homeostasis. In obesity and type 2 diabetes mellitus (T2DM), accumulating data indicate that persistent ER stress due to maladaptive UPR interacts with insulin/leptin signaling, which may be the potential and central mechanistic link between obesity-/T2DM-induced metabolic dysregulation (chronic hyperglycemia, dyslipidemia and lipotoxicity in cardiomyocytes), insulin/leptin resistance and the development of diabetic cardiomyopathy (DiabCM). Meanwhile, these pathological conditions further exacerbate ER stress. However, their interrelationships and the underlying molecular mechanisms are not fully understood. A deeper understanding of ER stress-mediated pathways in DiabCM is needed to develop novel therapeutic strategies. The aim of this review is to discuss the crosstalk between ER stress and leptin/insulin signaling and their involvement in the development of DiabCM focusing on mitochondria-associated ER membranes and chronic inflammation. We also present the current direction of drug development and important considerations for translational research into targeting ER stress for the treatment of DiabCM.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"162 ","pages":"Article 156062"},"PeriodicalIF":10.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of glycogen in cardiac metabolic stress 糖原在心脏代谢压力中的作用
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-03 DOI: 10.1016/j.metabol.2024.156059
Ke-Fa Xiang , Jing-jing Wan , Peng-yuan Wang , Xia Liu
Metabolic stress in the myocardium arises from a diverse array of acute and chronic pathophysiological contexts. Glycogen mishandling is a key feature of metabolic stress, while maladaptation in energy-stress situations confers functional deficits. Cardiac glycogen serves as a pivotal reserve for myocardial energy, which is classically described as an energy source and contributes to glucose homeostasis during hypoxia or ischemia. Despite extensive research activity, how glycogen metabolism affects cardiovascular disease remains unclear. In this review, we focus on its regulation across myocardial energy metabolism in response to stress, and its role in metabolism, immunity, and autophagy. We further summarize the cardiovascular-related drugs regulating glycogen metabolism. In this way, we provide current knowledge for the understanding of glycogen metabolism in the myocardium.
心肌中的代谢压力来自各种急性和慢性病理生理环境。糖原处理不当是代谢应激的一个主要特征,而能量应激情况下的适应不良则会导致功能障碍。心肌糖原是心肌能量的重要储备,通常被描述为一种能量来源,在缺氧或缺血时有助于葡萄糖的平衡。尽管研究活动广泛,但糖原代谢如何影响心血管疾病仍不清楚。在这篇综述中,我们将重点讨论糖代谢在应激反应中对心肌能量代谢的调节作用,以及糖代谢在新陈代谢、免疫和自噬中的作用。我们进一步总结了调节糖原代谢的心血管相关药物。通过这种方式,我们提供了当前了解心肌糖原代谢的知识。
{"title":"Role of glycogen in cardiac metabolic stress","authors":"Ke-Fa Xiang ,&nbsp;Jing-jing Wan ,&nbsp;Peng-yuan Wang ,&nbsp;Xia Liu","doi":"10.1016/j.metabol.2024.156059","DOIUrl":"10.1016/j.metabol.2024.156059","url":null,"abstract":"<div><div>Metabolic stress in the myocardium arises from a diverse array of acute and chronic pathophysiological contexts. Glycogen mishandling is a key feature of metabolic stress, while maladaptation in energy-stress situations confers functional deficits. Cardiac glycogen serves as a pivotal reserve for myocardial energy, which is classically described as an energy source and contributes to glucose homeostasis during hypoxia or ischemia. Despite extensive research activity, how glycogen metabolism affects cardiovascular disease remains unclear. In this review, we focus on its regulation across myocardial energy metabolism in response to stress, and its role in metabolism, immunity, and autophagy. We further summarize the cardiovascular-related drugs regulating glycogen metabolism. In this way, we provide current knowledge for the understanding of glycogen metabolism in the myocardium.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"162 ","pages":"Article 156059"},"PeriodicalIF":10.8,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatocyte-specific SLC27A4 deletion ameliorates nonalcoholic fatty liver disease in mice via suppression of phosphatidylcholine-mediated PXR activation 通过抑制磷脂酰胆碱介导的 PXR 激活,肝细胞特异性 SLC27A4 缺失可改善小鼠的非酒精性脂肪肝。
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-01 DOI: 10.1016/j.metabol.2024.156054
Chuangpeng Shen , Zhisen Pan , Wenmin Xie , Jian Zhao , Deyu Miao , Ling Zhao , Min Liu , Yanhua Zhong , Chong Zhong , Frank J. Gonzalez , Wei Wang , Yong Gao , Changhui Liu

Background

The protein Solute carrier family 27 member 4 (SLC27A4) is crucial for fatty acid synthesis and β-oxidation, but its role in hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) progression is not fully understood.

Methods

Mice with AAV-mediated overexpression of Slc27a4 in liver and hepatocytes-specific deletion of Slc27a4 were fed a standard chow diet, a high-fat diet (HFD), or a methionine and choline-deficient diet (MCD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, lipidomic analysis, RNA-seq analysis, qPCR, western blot and immunofluorescence.

Results

This study found elevated expression of SLC27A4 in individuals with NAFLD and OAPA-treated MPHs cells, leading to increased lipid accumulation and diet-induced liver steatosis, inflammation, and fibrosis. Conversely, hepatocyte-specific deletion of Slc27a4 improved the development of both NAFLD and NASH. SLC27A4 overexpression resulted in increased hepatic pregnane X receptor (PXR) expression and accumulation of phosphatidylcholine (PC), which activates PXR signaling and inducing SLC27A4 expression. PXR overexpression hinders the protective impact of Slc27a4 deletion on lipid accumulation and inflammation, whereas its deficiency in mice reduces the effect of Slc27a4 overexpression on NAFLD development.

Conclusion

These results indicate that SLC27A4 plays a critical role of lipid accumulation and inflammation, and is implicated in the development of NAFLD progression, rendering it potentially actionable target for NAFLD treatment.
背景:蛋白质溶质运载家族27成员4(SLC27A4)对脂肪酸合成和β-氧化至关重要,但其在肝脂肪变性和非酒精性脂肪肝(NAFLD)进展中的作用尚未完全清楚:方法:用AAV介导在肝脏中过表达Slc27a4和肝细胞特异性缺失Slc27a4的小鼠,分别喂食标准饲料、高脂饲料(HFD)或蛋氨酸和胆碱缺乏饲料(MCD)。收集血清和肝组织,并通过生化测定、组织学、脂质组分析、RNA-seq分析、qPCR、Western印迹和免疫荧光等方法进行分析:结果:该研究发现,SLC27A4在非酒精性脂肪肝患者和经OAPA处理的MPHs细胞中表达升高,导致脂质蓄积增加,饮食诱发肝脏脂肪变性、炎症和纤维化。相反,肝细胞特异性缺失 Slc27a4 会改善非酒精性脂肪肝和非酒精性脂肪性肝炎的发展。SLC27A4过表达会导致肝脏孕烷X受体(PXR)表达和磷脂酰胆碱(PC)积累增加,从而激活PXR信号转导并诱导SLC27A4表达。PXR的过表达阻碍了Slc27a4缺失对脂质积累和炎症的保护作用,而PXR的缺乏则降低了Slc27a4过表达对非酒精性脂肪肝发展的影响:这些结果表明,SLC27A4 在脂质蓄积和炎症中起着关键作用,并与非酒精性脂肪肝的发展进程有关,因此是治疗非酒精性脂肪肝的潜在靶点。
{"title":"Hepatocyte-specific SLC27A4 deletion ameliorates nonalcoholic fatty liver disease in mice via suppression of phosphatidylcholine-mediated PXR activation","authors":"Chuangpeng Shen ,&nbsp;Zhisen Pan ,&nbsp;Wenmin Xie ,&nbsp;Jian Zhao ,&nbsp;Deyu Miao ,&nbsp;Ling Zhao ,&nbsp;Min Liu ,&nbsp;Yanhua Zhong ,&nbsp;Chong Zhong ,&nbsp;Frank J. Gonzalez ,&nbsp;Wei Wang ,&nbsp;Yong Gao ,&nbsp;Changhui Liu","doi":"10.1016/j.metabol.2024.156054","DOIUrl":"10.1016/j.metabol.2024.156054","url":null,"abstract":"<div><h3>Background</h3><div>The protein Solute carrier family 27 member 4 (SLC27A4) is crucial for fatty acid synthesis and β-oxidation, but its role in hepatic steatosis and nonalcoholic fatty liver disease (NAFLD) progression is not fully understood.</div></div><div><h3>Methods</h3><div>Mice with AAV-mediated overexpression of <em>Slc27a4</em> in liver and hepatocytes-specific deletion of <em>Slc27a4</em> were fed a standard chow diet, a high-fat diet (HFD), or a methionine and choline-deficient diet (MCD). Serum and liver tissues were collected and analyzed by biochemical assay, histology, lipidomic analysis, RNA-seq analysis, qPCR, western blot and immunofluorescence.</div></div><div><h3>Results</h3><div>This study found elevated expression of SLC27A4 in individuals with NAFLD and OAPA-treated MPHs cells, leading to increased lipid accumulation and diet-induced liver steatosis, inflammation, and fibrosis. Conversely, hepatocyte-specific deletion of <em>Slc27a4</em> improved the development of both NAFLD and NASH. SLC27A4 overexpression resulted in increased hepatic pregnane X receptor (PXR) expression and accumulation of phosphatidylcholine (PC), which activates PXR signaling and inducing SLC27A4 expression. PXR overexpression hinders the protective impact of <em>Slc27a4</em> deletion on lipid accumulation and inflammation, whereas its deficiency in mice reduces the effect of <em>Slc27a4</em> overexpression on NAFLD development.</div></div><div><h3>Conclusion</h3><div>These results indicate that SLC27A4 plays a critical role of lipid accumulation and inflammation, and is implicated in the development of NAFLD progression, rendering it potentially actionable target for NAFLD treatment.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"162 ","pages":"Article 156054"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Letter to the editor: global burden of metabolic dysfunction-associated steatotic liver disease: results from the global burden of disease study 2021. 致编辑的信:代谢功能障碍相关脂肪性肝病的全球负担:2021 年全球疾病负担研究的结果。
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-11-01 DOI: 10.1016/j.metabol.2024.156055
Yakun Li, Han Moshage
{"title":"Letter to the editor: global burden of metabolic dysfunction-associated steatotic liver disease: results from the global burden of disease study 2021.","authors":"Yakun Li, Han Moshage","doi":"10.1016/j.metabol.2024.156055","DOIUrl":"10.1016/j.metabol.2024.156055","url":null,"abstract":"","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":" ","pages":"156055"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
1,25-Dihydroxyvitamin D3 protects against placental inflammation by suppressing NLRP3-mediated IL-1β production via Nrf2 signaling pathway in preeclampsia 1,25-二羟维生素 D3 通过 Nrf2 信号通路抑制 NLRP3 介导的 IL-1β 生成,从而保护子痫前期患者免受胎盘炎症的影响。
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-31 DOI: 10.1016/j.metabol.2024.156058
Xueqing Liu , Xinyu Zhang , Linlin Ma , Na Qiang , Jiao Wang , Yujia Huang , Xiaolei Yuan , Chunmei Lu , Yang Cao , Jie Xu

Background

Maternal vitamin D deficiency is associated with an increased risk of preeclampsia, a potentially life-threatening multi-system disorder specific to human pregnancy. Placental trophoblast dysfunction is a key factor in the development of preeclampsia, and the activation of NOD-like receptor protein 3 (NLRP3) inflammasome may play a crucial role in this process. Previous studies have suggested that vitamin D can exert beneficial effects by suppressing inflammasome activation, but the underlying mechanism has not been fully elucidated. This study aims to explore the protective effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on the placenta and to investigate the mechanisms by which 1,25(OH)2D3 attenuates NLRP3 inflammasome activation in a rat model of preeclampsia and hypoxia-cultured placental trophoblast cells.

Results

Our findings demonstrated that supplementation of rats with 1,25(OH)2D3 mitigated placental inflammation and prevented multi-organ dysfunction associated with preeclampsia. Treatment with 1,25(OH)2D3 inhibited inflammasome-mediated inflammation in trophoblast cells via its receptor VDR by reducing the expression of NLRP3, caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), decreasing IL-1β production, reducing mitochondrial reactive oxygen species generation, and enhancing the expression and enzymatic activity of Cu/Zn-superoxide dismutase (SOD). Mechanistically, 1,25(OH)2D3 upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, subsequently suppressing NLRP3-mediated IL-1β overproduction in trophoblast cells.

Conclusions

Our study indicates that 1,25(OH)2D3 inhibits NLRP3-mediated inflammation in trophoblast cells during preeclampsia by stimulating the Nrf2 signaling pathway and inhibiting oxidative stress.
背景:母体维生素D缺乏与子痫前期风险增加有关,子痫前期是人类妊娠期特有的一种可能危及生命的多系统疾病。胎盘滋养细胞功能障碍是子痫前期发病的一个关键因素,而NOD样受体蛋白3(NLRP3)炎性体的激活可能在这一过程中起着至关重要的作用。以往的研究表明,维生素 D 可通过抑制炎性体的激活发挥有益作用,但其潜在机制尚未完全阐明。本研究旨在探讨 1,25-二羟维生素 D3 [1,25(OH)2D3] 对胎盘的保护作用,并研究 1,25(OH)2D3在子痫前期大鼠模型和缺氧培养的胎盘滋养层细胞中抑制 NLRP3 炎性体激活的机制:我们的研究结果表明,给大鼠补充 1,25(OH)2D3可减轻胎盘炎症并预防与子痫前期相关的多器官功能障碍。1,25(OH)2D3通过其受体VDR抑制滋养层细胞中NLRP3、caspase-1和含有caspase募集结构域的凋亡相关斑点样蛋白(ASC)的表达,减少IL-1β的产生,减少线粒体活性氧的生成,提高Cu/Zn-超氧化物歧化酶(SOD)的表达和酶活性,从而抑制滋养层细胞中炎症组介导的炎症。从机理上讲,1,25(OH)2D3能上调核因子红细胞2相关因子2(Nrf2)的信号转导,从而抑制滋养层细胞中NLRP3介导的IL-1β过量产生:我们的研究表明,1,25(OH)2D3可通过刺激Nrf2信号通路和抑制氧化应激,抑制子痫前期滋养层细胞中NLRP3介导的炎症。
{"title":"1,25-Dihydroxyvitamin D3 protects against placental inflammation by suppressing NLRP3-mediated IL-1β production via Nrf2 signaling pathway in preeclampsia","authors":"Xueqing Liu ,&nbsp;Xinyu Zhang ,&nbsp;Linlin Ma ,&nbsp;Na Qiang ,&nbsp;Jiao Wang ,&nbsp;Yujia Huang ,&nbsp;Xiaolei Yuan ,&nbsp;Chunmei Lu ,&nbsp;Yang Cao ,&nbsp;Jie Xu","doi":"10.1016/j.metabol.2024.156058","DOIUrl":"10.1016/j.metabol.2024.156058","url":null,"abstract":"<div><h3>Background</h3><div>Maternal vitamin D deficiency is associated with an increased risk of preeclampsia, a potentially life-threatening multi-system disorder specific to human pregnancy. Placental trophoblast dysfunction is a key factor in the development of preeclampsia, and the activation of NOD-like receptor protein 3 (NLRP3) inflammasome may play a crucial role in this process. Previous studies have suggested that vitamin D can exert beneficial effects by suppressing inflammasome activation, but the underlying mechanism has not been fully elucidated. This study aims to explore the protective effects of 1,25-dihydroxyvitamin D<sub>3</sub> [1,25(OH)<sub>2</sub>D<sub>3</sub>] on the placenta and to investigate the mechanisms by which 1,25(OH)<sub>2</sub>D<sub>3</sub> attenuates NLRP3 inflammasome activation in a rat model of preeclampsia and hypoxia-cultured placental trophoblast cells.</div></div><div><h3>Results</h3><div>Our findings demonstrated that supplementation of rats with 1,25(OH)<sub>2</sub>D<sub>3</sub> mitigated placental inflammation and prevented multi-organ dysfunction associated with preeclampsia. Treatment with 1,25(OH)<sub>2</sub>D<sub>3</sub> inhibited inflammasome-mediated inflammation in trophoblast cells via its receptor VDR by reducing the expression of NLRP3, caspase-1, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), decreasing IL-1β production, reducing mitochondrial reactive oxygen species generation, and enhancing the expression and enzymatic activity of Cu/Zn-superoxide dismutase (SOD). Mechanistically, 1,25(OH)<sub>2</sub>D<sub>3</sub> upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, subsequently suppressing NLRP3-mediated IL-1β overproduction in trophoblast cells.</div></div><div><h3>Conclusions</h3><div>Our study indicates that 1,25(OH)<sub>2</sub>D<sub>3</sub> inhibits NLRP3-mediated inflammation in trophoblast cells during preeclampsia by stimulating the Nrf2 signaling pathway and inhibiting oxidative stress.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"162 ","pages":"Article 156058"},"PeriodicalIF":10.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health 能量平衡、免疫功能、神经内分泌调节和骨骼健康中的瘦素生理学和病理生理学。
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-30 DOI: 10.1016/j.metabol.2024.156056
Konstantinos Stefanakis , Jagriti Upadhyay , Arantxa Ramirez-Cisneros , Nihar Patel , Akshat Sahai , Christos S. Mantzoros
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
自瘦素被发现以来,经过三十多年的广泛研究,我们对瘦素及其在人体生理学、病理生理学和治疗学中的各种作用有了更深入的了解。瘦素是一种典型的脂肪因子,最初因其在食欲调节和能量平衡中的关键功能而被发现,但现在发现它还对下丘脑-垂体-性腺、甲状腺、肾上腺和生长激素轴产生深远影响,在动物和人类之间存在差异,还能调节免疫功能。除了这些作用外,瘦素还通过其神经内分泌作用直接或间接地促进骨形成和调节骨代谢,在显著影响骨骼健康方面发挥着关键作用。瘦素的多种作用在瘦素缺乏的动物模型和循环瘦素水平较低的疾病(如脂肪变性和相对能量缺乏症)中尤为明显。相反,在瘦素充足的状态下,如肥胖和其他与高瘦素血症和瘦素耐受有关的高脂肪状态下,瘦素的作用就会减弱。本综述试图整合 30 年来瘦素研究的成果,重点关注瘦素在人体中的生理和病理生理学作用,包括瘦素的治疗潜力。我们讨论了临床前研究和人体研究,这些研究描述了各器官系统能量缺乏的病理生理学,以及瘦素在调节神经内分泌、免疫、生殖和骨骼健康方面的重要作用。最后,我们介绍了过去在瘦素缺乏的受试者中施用瘦素的概念验证临床试验,这些试验显示了积极的神经内分泌、生殖和骨骼健康结果,为未来在这些条件下进行 IIb 期和 III 期随机临床试验奠定了基础。
{"title":"Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health","authors":"Konstantinos Stefanakis ,&nbsp;Jagriti Upadhyay ,&nbsp;Arantxa Ramirez-Cisneros ,&nbsp;Nihar Patel ,&nbsp;Akshat Sahai ,&nbsp;Christos S. Mantzoros","doi":"10.1016/j.metabol.2024.156056","DOIUrl":"10.1016/j.metabol.2024.156056","url":null,"abstract":"<div><div>Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"161 ","pages":"Article 156056"},"PeriodicalIF":10.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation 减肥对去脂质量、肌肉、骨骼和造血健康的影响:对旨在减少脂肪和保持瘦体重的新兴药物疗法的影响。
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-30 DOI: 10.1016/j.metabol.2024.156057
Konstantinos Stefanakis , Michail Kokkorakis , Christos S. Mantzoros
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15–25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab—which inhibit activin and myostatin signaling—have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
内分泌受体激动剂彻底改变了肥胖症的治疗方法,许多患者的体重可减轻 15%-25%,即接近减肥手术的减重率。然而,在手术和药物治疗所减轻的总重量中,超过 25% 的体重通常来自去脂质量,包括骨骼肌质量,而骨骼肌质量往往被忽视,会损害新陈代谢健康,并增加随后发生肌肉疏松性肥胖的风险。肌肉和骨骼的流失以及贫血会损害身体机能、新陈代谢率和整体健康,尤其是老年人。肌节蛋白-活性蛋白-软骨素-抑制蛋白系统最初与生殖功能有关,后来又与肌肉调节有关,而在减肥期间,该系统似乎对肌肉和骨骼的维持至关重要。肌动蛋白和肌生成素会促进肌肉退化,而在能量负平衡状态下,软骨素会抑制它们的活性,从而保持瘦肉质量。Bimagrumab、Trevogrumab 和 Garetosmab 等正在研发中的新型化合物能抑制活化素和肌节蛋白的信号传导,在防止肌肉减少的同时促进脂肪减少。无论是单独使用还是与增量蛋白受体激动剂联合使用,这些药物都可能在保持甚至增加肌肉和骨骼质量的同时促进脂肪减少,从而为在体重大幅下降期间改善身体成分提供了一种潜在的解决方案。由于这种双重治疗方法有助于解决减肥期间肌肉和骨骼流失的难题,因此需要进行精心设计的研究,以优化这些策略并评估其长期益处。就目前而言,由于肌肉疏松症的相关风险,高龄和体质虚弱等因素可能会影响临床实践中对现有和新出现的抗肥胖药物合适候选者的选择。
{"title":"The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation","authors":"Konstantinos Stefanakis ,&nbsp;Michail Kokkorakis ,&nbsp;Christos S. Mantzoros","doi":"10.1016/j.metabol.2024.156057","DOIUrl":"10.1016/j.metabol.2024.156057","url":null,"abstract":"<div><div>Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15–25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab—which inhibit activin and myostatin signaling—have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"161 ","pages":"Article 156057"},"PeriodicalIF":10.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence from clinical studies of leptin: current and future clinical applications in humans 瘦素临床研究的证据:目前和未来在人体中的临床应用
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-28 DOI: 10.1016/j.metabol.2024.156053
Nikolaos Perakakis , Christos S. Mantzoros
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
瘦素已被确定为脂肪组织分泌激素的原型,也是多种人体生理功能的主要调节因子。在此,我们将主要回顾在人体中施用瘦素的研究结果。我们将描述在瘦素缺乏的情况下,如健康人短期禁食、运动中相对能量缺乏(REDS)、先天性瘦素缺乏(CLD)、全身性(GL)和部分性脂肪营养不良(PL)、艾滋病相关性脂肪营养不良(HIV-L),以及在瘦素过剩的情况下(常见肥胖、2 型糖尿病、脂肪肝),瘦素替代对代谢、内分泌和免疫学的影响。我们将这些结果与临床前模型的研究结果进行了比较,并就瘦素在人体生理学、病理生理学和治疗学中的作用提出了主要结论。我们得出的结论是,在能量缺乏的条件下,瘦素替代品可通过降低食欲有效减轻体重和脂肪量,改善高甘油三酯血症、胰岛素抵抗和肝脂肪变性(尤其是在 GL 和 PL 中),恢复神经内分泌功能(尤其是促性腺轴),调节适应性免疫系统细胞群,改善骨骼健康。相反,在瘦素过剩的情况下,如普通肥胖症和 2 型糖尿病,瘦素治疗并不能改善任何代谢异常。在动物实验中,克服肥胖症和 2 型糖尿病患者瘦素耐受性/抵抗性的策略取得了令人鼓舞的结果,但这些结果应在随机临床试验中对人体进行测试。
{"title":"Evidence from clinical studies of leptin: current and future clinical applications in humans","authors":"Nikolaos Perakakis ,&nbsp;Christos S. Mantzoros","doi":"10.1016/j.metabol.2024.156053","DOIUrl":"10.1016/j.metabol.2024.156053","url":null,"abstract":"<div><div>Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (RED<img>S), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"161 ","pages":"Article 156053"},"PeriodicalIF":10.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in body composition and gender differences in susceptibility to frailty syndrome: Role of osteosarcopenic obesity 身体成分的变化和易患虚弱综合征的性别差异:骨质疏松性肥胖的作用
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-28 DOI: 10.1016/j.metabol.2024.156052
Rosy Conforto , Valeria Rizzo , Raffaella Russo , Elisa Mazza , Samantha Maurotti , Carmelo Pujia , Elena Succurro , Franco Arturi , Yvelise Ferro , Angela Sciacqua , Arturo Pujia , Tiziana Montalcini
There is general consensus that an improper diet negatively impacts health and that nutrition is a primary tool for the prevention of non-communicable diseases. Unfortunately, the importance of studying body composition, which can reveal early predictors of gender-related diseases, is still not well understood in this context. Currently, individuals are still classified as obese based solely on their body mass index, without considering the amount of fat, its distribution, and the quantity of muscle and bone mass. In this regard, the body composition phenotype defined as “osteosarcopenic obesity” affects approximately 6–41 % of postmenopausal women, with prevalence increasing with age due to the hormonal and metabolic changes that occur during this period. This particular phenotype arises from the strong relationship between visceral fat, muscle, bone, and gut microbiota and predispose postmenopausal women to frailty. Frailty is a complex clinical phenomenon with significant care and economic implications for our society. Recent studies suggest that women have a higher prevalence of frailty syndrome and its individual components, such as osteoporosis, fractures and sarcopenia, compared to men. Here, we provide a comprehensive overview of recent advances regarding the impact of gender on body composition and frailty. Furthermore, we reflect on the crucial importance of personalized nutritional interventions, with a focus on reducing visceral fat, increasing protein intake and optimizing vitamin D levels. A review of the scientific literature on this topic highlights the importance of studying body composition for a personalized and gender-specific approach to nutrition and dietetics, in order to identify frailty syndrome early and establish personalized treatments. This new method of researching disease predictors could likely help clarify the controversial results of studies on vitamin D, calcium and proteins, translate into practical wellness promotion across diverse elderly populations.
人们普遍认为,不当的饮食会对健康产生负面影响,营养是预防非传染性疾病的主要工具。遗憾的是,研究身体成分的重要性仍未得到充分认识,而身体成分可以揭示与性别相关疾病的早期预测因素。目前,人们仍然仅仅根据体重指数将人归类为肥胖,而不考虑脂肪的数量、分布以及肌肉和骨骼的数量。在这方面,被定义为 "骨质疏松性肥胖症 "的身体成分表型影响着大约 6%-41% 的绝经后妇女,随着年龄的增长,患病率也在增加,原因是这一时期的荷尔蒙和新陈代谢发生了变化。这种特殊的表型源于内脏脂肪、肌肉、骨骼和肠道微生物群之间的密切关系,并使绝经后妇女易患虚弱症。虚弱是一种复杂的临床现象,对我们社会的护理和经济都有重大影响。最近的研究表明,与男性相比,女性的虚弱综合征及其各个组成部分(如骨质疏松症、骨折和肌肉疏松症)的发病率更高。在此,我们将全面概述有关性别对身体组成和虚弱的影响的最新进展。此外,我们还反思了个性化营养干预的至关重要性,重点是减少内脏脂肪、增加蛋白质摄入量和优化维生素 D 水平。对有关这一主题的科学文献进行的回顾强调了研究身体成分对于营养和饮食学的个性化和性别特异性方法的重要性,以便及早发现虚弱综合症并制定个性化的治疗方法。这种研究疾病预测因素的新方法可能有助于澄清有关维生素 D、钙和蛋白质的研究中存在争议的结果,并将其转化为促进不同老年人群健康的实用方法。
{"title":"Advances in body composition and gender differences in susceptibility to frailty syndrome: Role of osteosarcopenic obesity","authors":"Rosy Conforto ,&nbsp;Valeria Rizzo ,&nbsp;Raffaella Russo ,&nbsp;Elisa Mazza ,&nbsp;Samantha Maurotti ,&nbsp;Carmelo Pujia ,&nbsp;Elena Succurro ,&nbsp;Franco Arturi ,&nbsp;Yvelise Ferro ,&nbsp;Angela Sciacqua ,&nbsp;Arturo Pujia ,&nbsp;Tiziana Montalcini","doi":"10.1016/j.metabol.2024.156052","DOIUrl":"10.1016/j.metabol.2024.156052","url":null,"abstract":"<div><div>There is general consensus that an improper diet negatively impacts health and that nutrition is a primary tool for the prevention of non-communicable diseases. Unfortunately, the importance of studying body composition, which can reveal early predictors of gender-related diseases, is still not well understood in this context. Currently, individuals are still classified as obese based solely on their body mass index, without considering the amount of fat, its distribution, and the quantity of muscle and bone mass. In this regard, the body composition phenotype defined as “osteosarcopenic obesity” affects approximately 6–41 % of postmenopausal women, with prevalence increasing with age due to the hormonal and metabolic changes that occur during this period. This particular phenotype arises from the strong relationship between visceral fat, muscle, bone, and gut microbiota and predispose postmenopausal women to frailty<del>.</del> Frailty is a complex clinical phenomenon with significant care and economic implications for our society. Recent studies suggest that women have a higher prevalence of frailty syndrome and its individual components, such as osteoporosis, fractures and sarcopenia, compared to men. Here, we provide a comprehensive overview of recent advances regarding the impact of gender on body composition and frailty. Furthermore, we reflect on the crucial importance of personalized nutritional interventions, with a focus on reducing visceral fat, increasing protein intake and optimizing vitamin D levels. A review of the scientific literature on this topic highlights the importance of studying body composition for a personalized and gender-specific approach to nutrition and dietetics, in order to identify frailty syndrome early and establish personalized treatments. This new method of researching disease predictors could likely help clarify the controversial results of studies on vitamin D, calcium and proteins, translate into practical wellness promotion across diverse elderly populations.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"161 ","pages":"Article 156052"},"PeriodicalIF":10.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CHK1 attenuates cardiac dysfunction via suppressing SIRT1-ubiquitination CHK1 通过抑制 SIRT1 泛素化减轻心脏功能障碍
IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-10-24 DOI: 10.1016/j.metabol.2024.156048
Tong-Tong Yang , Liu-Hua Zhou , Ling-Feng Gu , Ling-Ling Qian , Yu-Lin Bao , Peng Jing , Jia-Teng Sun , Chong Du , Tian-Kai Shan , Si-Bo Wang , Wen-Jing Wang , Jia-Yi Chen , Ze-Mu Wang , Hao Wang , Qi-Ming Wang , Ru-Xing Wang , Lian-Sheng Wang

Background

Mitochondrial dysfunction is linked to myocardial ischemia-reperfusion (I/R) injury. Checkpoint kinase 1 (CHK1) could facilitate cardiomyocyte proliferation, however, its role on mitochondrial function in I/R injury remains unknown.

Methods

To investigate the role of CHK1 on mitochondrial function following I/R injury, cardiomyocyte-specific knockout/overexpression mouse models were generated. Adult mouse cardiomyocytes (AMCMs) were isolated for in vitro study. Mass spectrometry-proteomics analysis and protein co-immunoprecipitation assays were conducted to dissect the molecular mechanism.

Results

CHK1 was downregulated in myocardium post I/R and AMCMs post oxygen-glucose deprivation/re‑oxygenation (OGD/R). In vivo, CHK1 overexpression protected against I/R induced cardiac dysfunction, while heterogenous CHK1 knockout exacerbated cardiomyopathy. In vitro, CHK1 inhibited OGD/R-induced cardiomyocyte apoptosis and bolstered cardiomyocyte survival. Mechanistically, CHK1 attenuated oxidative stress and preserved mitochondrial metabolism in cardiomyocytes under I/R. Moreover, disrupted mitochondrial homeostasis in I/R myocardium was restored by CHK1 through the promotion of mitochondrial biogenesis and mitophagy. Through mass spectrometry analysis following co-immunoprecipitation, SIRT1 was identified as a direct target of CHK1. The 266–390 domain of CHK1 interacted with the 160–583 domain of SIRT1. Importantly, CHK1 phosphorylated SIRT1 at Thr530 residue, thereby inhibiting SMURF2-mediated degradation of SIRT1. The role of CHK1 in maintaining mitochondrial dynamics control and myocardial protection is abolished by SIRT1 inhibition, while inactivated mutation of SIRT1 Thr530 fails to reverse the impaired mitochondrial dynamics following CHK1 knockdown. CHK1 Δ390 amino acids (aa) mutant functioned similarly to full-length CHK1 in scavenging ROS and maintaining mitochondrial dynamics. Consistently, cardiac-specific SIRT1 knockdown attenuated the protective role of CHK1 in I/R injury.

Conclusions

Our findings revealed that CHK1 mitigates I/R injury and restores mitochondrial dynamics in cardiomyocytes through a SIRT1-dependent mechanism.
背景:线粒体功能障碍与心肌缺血再灌注(I/R)损伤有关。检查点激酶 1(CHK1)可促进心肌细胞增殖,但它在 I/R 损伤中对线粒体功能的作用仍不清楚:方法:为了研究 I/R 损伤后 CHK1 对线粒体功能的作用,我们建立了心肌细胞特异性基因敲除/表达小鼠模型。分离成年小鼠心肌细胞(AMCMs)进行体外研究。通过质谱-蛋白质组学分析和蛋白质共沉淀实验来揭示其分子机制:结果:CHK1在I/R后的心肌和氧-葡萄糖剥夺/再氧合(OGD/R)后的AMCMs中下调。在体内,CHK1 的过表达可防止 I/R 引起的心脏功能障碍,而异源 CHK1 敲除会加重心肌病。在体外,CHK1 可抑制 OGD/R 诱导的心肌细胞凋亡,提高心肌细胞存活率。从机理上讲,CHK1 可减轻氧化应激,保护 I/R 条件下心肌细胞的线粒体代谢。此外,CHK1 还通过促进线粒体生物生成和有丝分裂来恢复 I/R 心肌中被破坏的线粒体平衡。通过共免疫沉淀后的质谱分析,SIRT1 被确定为 CHK1 的直接靶标。CHK1 的 266-390 结构域与 SIRT1 的 160-583 结构域相互作用。重要的是,CHK1 在 Thr530 残基上磷酸化了 SIRT1,从而抑制了 SMURF2 介导的 SIRT1 降解。抑制 SIRT1 会取消 CHK1 在维持线粒体动力学控制和心肌保护方面的作用,而 SIRT1 Thr530 的失活突变无法逆转 CHK1 敲除后线粒体动力学受损的情况。CHK1 Δ390氨基酸(aa)突变体在清除ROS和维持线粒体动力学方面的功能与全长CHK1相似。同样,心脏特异性 SIRT1 基因敲除削弱了 CHK1 在 I/R 损伤中的保护作用:我们的研究结果表明,CHK1 可通过 SIRT1 依赖性机制减轻 I/R 损伤并恢复心肌细胞线粒体的活力。
{"title":"CHK1 attenuates cardiac dysfunction via suppressing SIRT1-ubiquitination","authors":"Tong-Tong Yang ,&nbsp;Liu-Hua Zhou ,&nbsp;Ling-Feng Gu ,&nbsp;Ling-Ling Qian ,&nbsp;Yu-Lin Bao ,&nbsp;Peng Jing ,&nbsp;Jia-Teng Sun ,&nbsp;Chong Du ,&nbsp;Tian-Kai Shan ,&nbsp;Si-Bo Wang ,&nbsp;Wen-Jing Wang ,&nbsp;Jia-Yi Chen ,&nbsp;Ze-Mu Wang ,&nbsp;Hao Wang ,&nbsp;Qi-Ming Wang ,&nbsp;Ru-Xing Wang ,&nbsp;Lian-Sheng Wang","doi":"10.1016/j.metabol.2024.156048","DOIUrl":"10.1016/j.metabol.2024.156048","url":null,"abstract":"<div><h3>Background</h3><div>Mitochondrial dysfunction is linked to myocardial ischemia-reperfusion (I/R) injury. Checkpoint kinase 1 (CHK1) could facilitate cardiomyocyte proliferation, however, its role on mitochondrial function in I/R injury remains unknown.</div></div><div><h3>Methods</h3><div>To investigate the role of CHK1 on mitochondrial function following I/R injury, cardiomyocyte-specific knockout/overexpression mouse models were generated. Adult mouse cardiomyocytes (AMCMs) were isolated for <em>in vitro</em> study. Mass spectrometry-proteomics analysis and protein co-immunoprecipitation assays were conducted to dissect the molecular mechanism.</div></div><div><h3>Results</h3><div>CHK1 was downregulated in myocardium post I/R and AMCMs post oxygen-glucose deprivation/re‑oxygenation (OGD/R). <em>In vivo</em>, CHK1 overexpression protected against I/R induced cardiac dysfunction, while heterogenous CHK1 knockout exacerbated cardiomyopathy. <em>In vitro</em>, CHK1 inhibited OGD/R-induced cardiomyocyte apoptosis and bolstered cardiomyocyte survival. Mechanistically, CHK1 attenuated oxidative stress and preserved mitochondrial metabolism in cardiomyocytes under I/R. Moreover, disrupted mitochondrial homeostasis in I/R myocardium was restored by CHK1 through the promotion of mitochondrial biogenesis and mitophagy. Through mass spectrometry analysis following co-immunoprecipitation, SIRT1 was identified as a direct target of CHK1. The 266–390 domain of CHK1 interacted with the 160–583 domain of SIRT1. Importantly, CHK1 phosphorylated SIRT1 at Thr530 residue, thereby inhibiting SMURF2-mediated degradation of SIRT1. The role of CHK1 in maintaining mitochondrial dynamics control and myocardial protection is abolished by SIRT1 inhibition, while inactivated mutation of SIRT1 Thr530 fails to reverse the impaired mitochondrial dynamics following CHK1 knockdown. CHK1 Δ390 amino acids (aa) mutant functioned similarly to full-length CHK1 in scavenging ROS and maintaining mitochondrial dynamics. Consistently, cardiac-specific SIRT1 knockdown attenuated the protective role of CHK1 in I/R injury.</div></div><div><h3>Conclusions</h3><div>Our findings revealed that CHK1 mitigates I/R injury and restores mitochondrial dynamics in cardiomyocytes through a SIRT1-dependent mechanism.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"162 ","pages":"Article 156048"},"PeriodicalIF":10.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Metabolism: clinical and experimental
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1