I. Cappellini, Andrea Cardoni, Lorenzo Campagnola, Guglielmo Consales
Background: Mechanical ventilation significantly improves patient survival but is associated with complications, increasing healthcare costs and morbidity. Identifying optimal weaning times is paramount to minimize these risks, yet current methods rely heavily on clinical judgment, lacking specificity. Methods: This study introduces a novel multiparametric predictive score, the MUSVIP (MUltiparametric Score for Ventilation discontinuation in Intensive care Patients), aimed at accurately predicting successful extubation. Conducted at Santo Stefano Hospital’s ICU, this single-center, observational, prospective cohort study will span over 12 months, enrolling adult patients undergoing invasive mechanical ventilation. The MUSVIP integrates variables measured before and during a spontaneous breathing trial (SBT) to formulate a predictive score. Results: Preliminary analyses suggest an Area Under the Curve (AUC) of 0.815 for the MUSVIP, indicating high predictive capacity. By systematically applying this score, we anticipate identifying patients likely to succeed in weaning earlier, potentially reducing ICU length of stay and associated healthcare costs. Conclusion: This study’s findings could significantly influence clinical practices, offering a robust, easy-to-use tool for optimizing weaning processes in ICUs.
{"title":"MUltiparametric Score for Ventilation Discontinuation in Intensive Care Patients: A Protocol for an Observational Study","authors":"I. Cappellini, Andrea Cardoni, Lorenzo Campagnola, Guglielmo Consales","doi":"10.3390/mps7030045","DOIUrl":"https://doi.org/10.3390/mps7030045","url":null,"abstract":"Background: Mechanical ventilation significantly improves patient survival but is associated with complications, increasing healthcare costs and morbidity. Identifying optimal weaning times is paramount to minimize these risks, yet current methods rely heavily on clinical judgment, lacking specificity. Methods: This study introduces a novel multiparametric predictive score, the MUSVIP (MUltiparametric Score for Ventilation discontinuation in Intensive care Patients), aimed at accurately predicting successful extubation. Conducted at Santo Stefano Hospital’s ICU, this single-center, observational, prospective cohort study will span over 12 months, enrolling adult patients undergoing invasive mechanical ventilation. The MUSVIP integrates variables measured before and during a spontaneous breathing trial (SBT) to formulate a predictive score. Results: Preliminary analyses suggest an Area Under the Curve (AUC) of 0.815 for the MUSVIP, indicating high predictive capacity. By systematically applying this score, we anticipate identifying patients likely to succeed in weaning earlier, potentially reducing ICU length of stay and associated healthcare costs. Conclusion: This study’s findings could significantly influence clinical practices, offering a robust, easy-to-use tool for optimizing weaning processes in ICUs.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141121014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despoina Ignatoglou, Achilleas Paliouras, E. Paraskevopoulos, N. Strimpakos, Paraskevi Bilika, Maria Papandreou, Eleni Kapreli
Background: Pole dancing is a physically demanding sport that combines dance and acrobatic movements on a vertical pole. Despite its highly growing popularity, there is currently limited research in the field. The aim of this study was to create and evaluate a strength assessment protocol for athletes in pole dancing, with a specific focus on functional positions on the pole. Methods: Thirty-two female pole dancing athletes participated in this study. Maximal voluntary isometric contractions (MVIC) were measured at three different sport-specific positions on the pole (shoulder abduction and adduction, and hip adduction), on two separate days (test and re-test) with a five to seven day interval between them. A hand-held dynamometer (Activ5- Activbody) stabilized on the pole was used for this study. Results: The intra-session reliability was good to excellent for all sports-specific positions and for both sides of the body, across all different movements (ICC = 0.837–0.960, SEM = 5.02Kg-2.24Kg, and SDD = 27.46%-14.92%). Slightly better results were found regarding inter-session reliability (ICC = 0.927–0.970, SEM = 3.72Kg-1.97Kg, and SDD = 22.86%-15.19%). There was not a statistically significant difference between the MVICs between the left and right or dominant and non-dominant side in shoulder abduction (p = 0.105) and hip adduction (p = 0.282), in contrast to shoulder adduction (p = 0.00). Conclusion: The strength assessment protocol developed in the current study has proven to be a reliable and functional tool, with the potential for utilization in clinical practice as part of objective strength testing. Further studies are needed in order to expand the protocol to other muscle groups and positions and to generalize the results in all pole dancing populations such as male athletes.
{"title":"Pole Dancing-Specific Muscle Strength: Development and Reliability of a Novel Assessment Protocol","authors":"Despoina Ignatoglou, Achilleas Paliouras, E. Paraskevopoulos, N. Strimpakos, Paraskevi Bilika, Maria Papandreou, Eleni Kapreli","doi":"10.3390/mps7030044","DOIUrl":"https://doi.org/10.3390/mps7030044","url":null,"abstract":"Background: Pole dancing is a physically demanding sport that combines dance and acrobatic movements on a vertical pole. Despite its highly growing popularity, there is currently limited research in the field. The aim of this study was to create and evaluate a strength assessment protocol for athletes in pole dancing, with a specific focus on functional positions on the pole. Methods: Thirty-two female pole dancing athletes participated in this study. Maximal voluntary isometric contractions (MVIC) were measured at three different sport-specific positions on the pole (shoulder abduction and adduction, and hip adduction), on two separate days (test and re-test) with a five to seven day interval between them. A hand-held dynamometer (Activ5- Activbody) stabilized on the pole was used for this study. Results: The intra-session reliability was good to excellent for all sports-specific positions and for both sides of the body, across all different movements (ICC = 0.837–0.960, SEM = 5.02Kg-2.24Kg, and SDD = 27.46%-14.92%). Slightly better results were found regarding inter-session reliability (ICC = 0.927–0.970, SEM = 3.72Kg-1.97Kg, and SDD = 22.86%-15.19%). There was not a statistically significant difference between the MVICs between the left and right or dominant and non-dominant side in shoulder abduction (p = 0.105) and hip adduction (p = 0.282), in contrast to shoulder adduction (p = 0.00). Conclusion: The strength assessment protocol developed in the current study has proven to be a reliable and functional tool, with the potential for utilization in clinical practice as part of objective strength testing. Further studies are needed in order to expand the protocol to other muscle groups and positions and to generalize the results in all pole dancing populations such as male athletes.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141125141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yalén Del Río-Jay, Audrey Barthelaix, Cristian Reyes-Martínez, Christophe Duperray, Camila J. Solis-Cascante, Yessia Hidalgo, Patricia Luz-Crawford, Farida Djouad, Carmen G. Feijoo
Intestinal macrophages have been poorly studied in fish, mainly due to the lack of specific molecular markers for their identification and isolation. To address this gap, using the zebrafish Tg(mpeg1:EGFP) transgenic line, we developed a fluorescence-activated cell sorting strategy (FACS) that allows us to isolate different intestinal macrophage subpopulations, based on GFP expression and morphological differences. Also, we achieved the purification of high-quality total RNA from each population to perform transcriptomic analysis. The complete strategy comprises three steps, including intestine dissection and tissue dissociation, the isolation of each intestinal macrophage population via FACS, and the extraction of total RNA. To be able to characterize molecularly different macrophage subpopulations and link them to their functional properties will allow us to unravel intestinal macrophage biology.
{"title":"Isolation of Intestinal Macrophage Subpopulations for High-Quality Total RNA Purification in Zebrafish","authors":"Yalén Del Río-Jay, Audrey Barthelaix, Cristian Reyes-Martínez, Christophe Duperray, Camila J. Solis-Cascante, Yessia Hidalgo, Patricia Luz-Crawford, Farida Djouad, Carmen G. Feijoo","doi":"10.3390/mps7030043","DOIUrl":"https://doi.org/10.3390/mps7030043","url":null,"abstract":"Intestinal macrophages have been poorly studied in fish, mainly due to the lack of specific molecular markers for their identification and isolation. To address this gap, using the zebrafish Tg(mpeg1:EGFP) transgenic line, we developed a fluorescence-activated cell sorting strategy (FACS) that allows us to isolate different intestinal macrophage subpopulations, based on GFP expression and morphological differences. Also, we achieved the purification of high-quality total RNA from each population to perform transcriptomic analysis. The complete strategy comprises three steps, including intestine dissection and tissue dissociation, the isolation of each intestinal macrophage population via FACS, and the extraction of total RNA. To be able to characterize molecularly different macrophage subpopulations and link them to their functional properties will allow us to unravel intestinal macrophage biology.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christina L. Gardner, Rebecca A. Erwin-Cohen, Bridget S. Lewis, Russell R. Bakken, Shelley P. Honnold, Pamela J. Glass, Crystal W. Burke
Venezuelan (VEE), eastern (EEE), and western (WEE) equine encephalitis viruses are encephalitic New World alphaviruses that cause periodic epizootic and epidemic outbreaks in horses and humans that may cause severe morbidity and mortality. Currently there are no FDA-licensed vaccines or effective antiviral therapies. Each year, there are a limited number of human cases of encephalitic alphaviruses; thus, licensure of a vaccine or therapeutic would require approval under the FDA animal rule. Approval under the FDA animal rule requires the disease observed in the animal model to recapitulate what is observed in humans. Currently, initial testing of vaccines and therapeutics is performed in the mouse model. Unfortunately, alphavirus disease manifestations in a mouse do not faithfully recapitulate human disease; the VEEV mouse model is lethal whereas in humans VEEV is rarely lethal. In an effort to identify a more appropriate small animal model, we evaluated hamsters in an aerosol exposure model of encephalitic alphavirus infection. The pathology, lethality, and viremia observed in the infected hamsters was inconsistent with what is observed in NHP models and humans. These data suggest that hamsters are not an appropriate model for encephalitic alphaviruses to test vaccines or potential antiviral therapies.
{"title":"Syrian Hamsters Model Does Not Reflect Human-Like Disease after Aerosol Exposure to Encephalitic Alphaviruses","authors":"Christina L. Gardner, Rebecca A. Erwin-Cohen, Bridget S. Lewis, Russell R. Bakken, Shelley P. Honnold, Pamela J. Glass, Crystal W. Burke","doi":"10.3390/mps7030042","DOIUrl":"https://doi.org/10.3390/mps7030042","url":null,"abstract":"Venezuelan (VEE), eastern (EEE), and western (WEE) equine encephalitis viruses are encephalitic New World alphaviruses that cause periodic epizootic and epidemic outbreaks in horses and humans that may cause severe morbidity and mortality. Currently there are no FDA-licensed vaccines or effective antiviral therapies. Each year, there are a limited number of human cases of encephalitic alphaviruses; thus, licensure of a vaccine or therapeutic would require approval under the FDA animal rule. Approval under the FDA animal rule requires the disease observed in the animal model to recapitulate what is observed in humans. Currently, initial testing of vaccines and therapeutics is performed in the mouse model. Unfortunately, alphavirus disease manifestations in a mouse do not faithfully recapitulate human disease; the VEEV mouse model is lethal whereas in humans VEEV is rarely lethal. In an effort to identify a more appropriate small animal model, we evaluated hamsters in an aerosol exposure model of encephalitic alphavirus infection. The pathology, lethality, and viremia observed in the infected hamsters was inconsistent with what is observed in NHP models and humans. These data suggest that hamsters are not an appropriate model for encephalitic alphaviruses to test vaccines or potential antiviral therapies.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140974764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DNA impurities can impact the safety of genetically engineered pharmaceuticals; thus, a specific limit value must be set for them during marketing authorisation. This particularly applies to mRNA vaccines, as large quantities of DNA templates are used for their production. Furthermore, when quantifying the total DNA content in the final product, we must observe that, in addition to the mRNA active ingredient, DNA impurities are also encased in lipid nanoparticles and are therefore difficult to quantify. In fact, the manufacturer of the mRNA vaccine Comirnaty (BioNTech/Pfizer) only measures DNA impurities in the active substance by means of a quantitative polymerase chain reaction (qPCR), whose DNA target sequence is less than just 1% of the originally added DNA template. This means that no direct DNA quantification takes place, and compliance with the limit value for DNA contamination is only estimated from the qPCR data using mathematical extrapolation methods. However, it is also possible to dissolve the lipid nanoparticles with a detergent to directly measure DNA contamination in the final product by using fluorescence spectroscopic methods. Experimental testing of this approach confirms that reliable values can be obtained in this way.
DNA 杂质会影响基因工程药品的安全性,因此在上市许可过程中必须为其设定特定的限值。这一点尤其适用于 mRNA 疫苗,因为生产过程中会使用大量 DNA 模板。此外,在量化最终产品中的 DNA 总含量时,我们必须注意到,除了 mRNA 活性成分外,DNA 杂质也被包裹在脂质纳米颗粒中,因此很难量化。事实上,mRNA 疫苗制造商 Comirnaty(BioNTech/辉瑞)只通过定量聚合酶链反应(qPCR)来测量活性物质中的 DNA 杂质,其 DNA 目标序列只占最初添加的 DNA 模板的不到 1%。这意味着不需要对 DNA 进行直接定量,只需通过数学推断方法从 qPCR 数据中估算出是否符合 DNA 污染的限值。不过,也可以用洗涤剂溶解脂质纳米粒子,利用荧光光谱法直接测量最终产品中的 DNA 污染情况。对这种方法的实验测试证实,这种方法可以获得可靠的数值。
{"title":"Methodological Considerations Regarding the Quantification of DNA Impurities in the COVID-19 mRNA Vaccine Comirnaty®","authors":"B. König, Jürgen O. Kirchner","doi":"10.3390/mps7030041","DOIUrl":"https://doi.org/10.3390/mps7030041","url":null,"abstract":"DNA impurities can impact the safety of genetically engineered pharmaceuticals; thus, a specific limit value must be set for them during marketing authorisation. This particularly applies to mRNA vaccines, as large quantities of DNA templates are used for their production. Furthermore, when quantifying the total DNA content in the final product, we must observe that, in addition to the mRNA active ingredient, DNA impurities are also encased in lipid nanoparticles and are therefore difficult to quantify. In fact, the manufacturer of the mRNA vaccine Comirnaty (BioNTech/Pfizer) only measures DNA impurities in the active substance by means of a quantitative polymerase chain reaction (qPCR), whose DNA target sequence is less than just 1% of the originally added DNA template. This means that no direct DNA quantification takes place, and compliance with the limit value for DNA contamination is only estimated from the qPCR data using mathematical extrapolation methods. However, it is also possible to dissolve the lipid nanoparticles with a detergent to directly measure DNA contamination in the final product by using fluorescence spectroscopic methods. Experimental testing of this approach confirms that reliable values can be obtained in this way.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140998654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Azzalini, Barbara Di Stefano, Vincenzo Canzonieri, Tiziana Venesio, Umberto Miglio, C. Marchiò, A. Sapino, C. Previderè, P. Fattorini, Serena Bonin
Archive tissues are the most available source of human tissues useful for molecular analysis in translational research. The main issues for those specimens are the modification and degradation of biomolecules, namely proteins, DNA, and RNA. In the last decade, several high-throughput analytical methods have been applied to archive tissues. Although histological tissues are fixed in neutral-buffered formalin nowadays, in the recent past, Bouin’s solution was also used in tissue processing. The present study aims to investigate the feasibility of nCounter Nanostring hybridization in quantifying mRNA in highly degraded samples, such as Bouin’s fixed and paraffin-embedded (BFPE) tissues, in comparison to the standard formalin-fixed and paraffin-embedded (FFPE) tissues as a source of RNA. A total of 16 paraffin-embedded tissue blocks from eight patients were analyzed (8 were FFPE and 8 were BEPE). Nanostring technology was applied to 300 ng of each RNA sample, whereas 360 ng of the same templates were retrotranscribed and submitted to qPCR and ddPCR. Our results show that the Nanostring technology outperforms the reference methods (ddPCR and qPCR) in detecting target mRNA in FFPE and BFPE samples. However, even Nanostring technology does not escape the limitation imposed by the degradation of the RNA templates, which could lead to misleading conclusions on the gene expression level.
{"title":"Quantifying mRNA in Highly Degraded Fixed Tissues by Nanostring Technology: A Comparative Study","authors":"E. Azzalini, Barbara Di Stefano, Vincenzo Canzonieri, Tiziana Venesio, Umberto Miglio, C. Marchiò, A. Sapino, C. Previderè, P. Fattorini, Serena Bonin","doi":"10.3390/mps7030040","DOIUrl":"https://doi.org/10.3390/mps7030040","url":null,"abstract":"Archive tissues are the most available source of human tissues useful for molecular analysis in translational research. The main issues for those specimens are the modification and degradation of biomolecules, namely proteins, DNA, and RNA. In the last decade, several high-throughput analytical methods have been applied to archive tissues. Although histological tissues are fixed in neutral-buffered formalin nowadays, in the recent past, Bouin’s solution was also used in tissue processing. The present study aims to investigate the feasibility of nCounter Nanostring hybridization in quantifying mRNA in highly degraded samples, such as Bouin’s fixed and paraffin-embedded (BFPE) tissues, in comparison to the standard formalin-fixed and paraffin-embedded (FFPE) tissues as a source of RNA. A total of 16 paraffin-embedded tissue blocks from eight patients were analyzed (8 were FFPE and 8 were BEPE). Nanostring technology was applied to 300 ng of each RNA sample, whereas 360 ng of the same templates were retrotranscribed and submitted to qPCR and ddPCR. Our results show that the Nanostring technology outperforms the reference methods (ddPCR and qPCR) in detecting target mRNA in FFPE and BFPE samples. However, even Nanostring technology does not escape the limitation imposed by the degradation of the RNA templates, which could lead to misleading conclusions on the gene expression level.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141003384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emelie Butler Forslund, Minh Tat Nhat Truong, Ruoli Wang, Åke Seiger, E. Gutierrez-Farewik
This is a protocol for comprehensive analysis of gait and affecting factors in individuals with incomplete paraplegia due to spinal cord injury (SCI). A SCI is a devastating event affecting both sensory and motor functions. Due to better care, the SCI population is changing, with a greater proportion retaining impaired ambulatory function. Optimizing ambulatory function after SCI remains challenging. To investigate factors influencing optimal ambulation, a multi-professional research project was grounded with expertise from clinical rehabilitation, neurophysiology, and biomechanical engineering from Karolinska Institutet, the Spinalis Unit at Aleris Rehab Station (Sweden’s largest center for specialized neurorehabilitation), and the Promobilia MoveAbility Lab at KTH Royal Institute of Technology. Ambulatory adults with paraplegia will be consecutively invited to participate. Muscle strength, sensitivity, and spasticity will be assessed, and energy expenditure, 3D movements, and muscle function (EMG) during gait and submaximal contractions will be analyzed. Innovative computational modeling and data-driven analyses will be performed, including the identification of clusters of similar movement patterns among the heterogeneous population and analyses that study the link between complex sensorimotor function and movement performance. These results may help optimize ambulatory function for persons with SCI and decrease the risk of secondary conditions during gait with a life-long perspective.
{"title":"A Protocol for Comprehensive Analysis of Gait in Individuals with Incomplete Spinal Cord Injury","authors":"Emelie Butler Forslund, Minh Tat Nhat Truong, Ruoli Wang, Åke Seiger, E. Gutierrez-Farewik","doi":"10.3390/mps7030039","DOIUrl":"https://doi.org/10.3390/mps7030039","url":null,"abstract":"This is a protocol for comprehensive analysis of gait and affecting factors in individuals with incomplete paraplegia due to spinal cord injury (SCI). A SCI is a devastating event affecting both sensory and motor functions. Due to better care, the SCI population is changing, with a greater proportion retaining impaired ambulatory function. Optimizing ambulatory function after SCI remains challenging. To investigate factors influencing optimal ambulation, a multi-professional research project was grounded with expertise from clinical rehabilitation, neurophysiology, and biomechanical engineering from Karolinska Institutet, the Spinalis Unit at Aleris Rehab Station (Sweden’s largest center for specialized neurorehabilitation), and the Promobilia MoveAbility Lab at KTH Royal Institute of Technology. Ambulatory adults with paraplegia will be consecutively invited to participate. Muscle strength, sensitivity, and spasticity will be assessed, and energy expenditure, 3D movements, and muscle function (EMG) during gait and submaximal contractions will be analyzed. Innovative computational modeling and data-driven analyses will be performed, including the identification of clusters of similar movement patterns among the heterogeneous population and analyses that study the link between complex sensorimotor function and movement performance. These results may help optimize ambulatory function for persons with SCI and decrease the risk of secondary conditions during gait with a life-long perspective.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141013464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The European Union’s recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last 50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern has been raised in many areas about its possible presence in the food chain and its consequent adverse effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate limited toxicity of glyphosate are discussed here. The widespread debate that has been generated requires further investigations and field measurements to understand glyphosate’s fate once dispersed in the environment and its concentration in the food chain. Hence, there is a need for validated analytical methods that are available to analysts in the field. In the present review, methods for the analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific focus on chromatographic techniques applied to cereal products. The experimental procedures are explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the laboratories involved enough information to proceed with the implementation of this line of analysis. The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but sufficient indications are also given to those laboratories that wish to use the better performing high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn, barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the available data show that glyphosate tends to accumulate more in wholemeal flours than in refined ones, that its concentration in the product strictly depends on the treatment period (the closer it is to the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to persist in the soil for a long time.
{"title":"Chromatographic Methods for the Determination of Glyphosate in Cereals together with a Discussion of Its Occurrence, Accumulation, Fate, Degradation, and Regulatory Status","authors":"M. Masci, R. Caproni, Teresina Nevigato","doi":"10.3390/mps7030038","DOIUrl":"https://doi.org/10.3390/mps7030038","url":null,"abstract":"The European Union’s recent decision to renew the authorization for the use of glyphosate until 15 December 2033 has stimulated scientific discussion all around the world regarding its toxicity or otherwise for humans. Glyphosate is a chemical of which millions of tons have been used in the last 50 years worldwide to dry out weeds in cultivated fields and greenhouses and on roadsides. Concern has been raised in many areas about its possible presence in the food chain and its consequent adverse effects on health. Both aspects that argue in favor of toxicity and those that instead may indicate limited toxicity of glyphosate are discussed here. The widespread debate that has been generated requires further investigations and field measurements to understand glyphosate’s fate once dispersed in the environment and its concentration in the food chain. Hence, there is a need for validated analytical methods that are available to analysts in the field. In the present review, methods for the analytical determination of glyphosate and its main metabolite, AMPA, are discussed, with a specific focus on chromatographic techniques applied to cereal products. The experimental procedures are explained in detail, including the cleanup, derivatization, and instrumental conditions, to give the laboratories involved enough information to proceed with the implementation of this line of analysis. The prevalent chromatographic methods used are LC-MS/MS, GC-MS/SIM, and GC-MS/MS, but sufficient indications are also given to those laboratories that wish to use the better performing high-resolution MS or the simpler HPLC-FLD, HPLC-UV, GC-NPD, and GC-FPD techniques for screening purposes. The concentrations of glyphosate from the literature measured in wheat, corn, barley, rye, oats, soybean, and cereal-based foods are reported, together with its regulatory status in various parts of the world and its accumulation mechanism. As for its accumulation in cereals, the available data show that glyphosate tends to accumulate more in wholemeal flours than in refined ones, that its concentration in the product strictly depends on the treatment period (the closer it is to the time of harvesting, the higher the concentration), and that in cold climates, the herbicide tends to persist in the soil for a long time.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141020171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rúben Araújo, Luís Ramalhete, Ana Viegas, Cristiana P Von Rekowski, Tiago A H Fonseca, C. Calado, Luís Bento
Robust data normalization and analysis are pivotal in biomedical research to ensure that observed differences in populations are directly attributable to the target variable, rather than disparities between control and study groups. ArsHive addresses this challenge using advanced algorithms to normalize populations (e.g., control and study groups) and perform statistical evaluations between demographic, clinical, and other variables within biomedical datasets, resulting in more balanced and unbiased analyses. The tool’s functionality extends to comprehensive data reporting, which elucidates the effects of data processing, while maintaining dataset integrity. Additionally, ArsHive is complemented by A.D.A. (Autonomous Digital Assistant), which employs OpenAI’s GPT-4 model to assist researchers with inquiries, enhancing the decision-making process. In this proof-of-concept study, we tested ArsHive on three different datasets derived from proprietary data, demonstrating its effectiveness in managing complex clinical and therapeutic information and highlighting its versatility for diverse research fields.
{"title":"Simplifying Data Analysis in Biomedical Research: An Automated, User-Friendly Tool","authors":"Rúben Araújo, Luís Ramalhete, Ana Viegas, Cristiana P Von Rekowski, Tiago A H Fonseca, C. Calado, Luís Bento","doi":"10.3390/mps7030036","DOIUrl":"https://doi.org/10.3390/mps7030036","url":null,"abstract":"Robust data normalization and analysis are pivotal in biomedical research to ensure that observed differences in populations are directly attributable to the target variable, rather than disparities between control and study groups. ArsHive addresses this challenge using advanced algorithms to normalize populations (e.g., control and study groups) and perform statistical evaluations between demographic, clinical, and other variables within biomedical datasets, resulting in more balanced and unbiased analyses. The tool’s functionality extends to comprehensive data reporting, which elucidates the effects of data processing, while maintaining dataset integrity. Additionally, ArsHive is complemented by A.D.A. (Autonomous Digital Assistant), which employs OpenAI’s GPT-4 model to assist researchers with inquiries, enhancing the decision-making process. In this proof-of-concept study, we tested ArsHive on three different datasets derived from proprietary data, demonstrating its effectiveness in managing complex clinical and therapeutic information and highlighting its versatility for diverse research fields.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana Torge, S. Bernardi, Giulia Ciciarelli, Guido Macchiarelli, S. Bianchi
The present study aims to provide a specific protocol for transmission electron microscopy of a sample of skin of rainbow trout affected by red mark syndrome (RMS). The red mark syndrome is a skin disease that affects the rainbow trout (Oncorhynchus mykiss). The disease, probably due to the Midichloria-like organism infection, is not lethal, but morbidity can reach up to 60%, leading to significant economic impact associated with the downgrading of the commercial product, increased labor, and susceptibility to secondary infections. The ultrastructure analyses allowed an earlier study to identify the presence of scattered microorganisms characterized by an oval shape, mainly in the cytoplasm of the cells. The protocol developed in this study will be instrumental in visualizing the ultrastructure of the microorganism, which is probably responsible for red mark syndrome infection.
{"title":"Dedicated Protocol for Ultrastructural Analysis of Farmed Rainbow Trout (Oncorhynchus mykiss) Tissues with Red Mark Syndrome: The Skin—Part One","authors":"Diana Torge, S. Bernardi, Giulia Ciciarelli, Guido Macchiarelli, S. Bianchi","doi":"10.3390/mps7030037","DOIUrl":"https://doi.org/10.3390/mps7030037","url":null,"abstract":"The present study aims to provide a specific protocol for transmission electron microscopy of a sample of skin of rainbow trout affected by red mark syndrome (RMS). The red mark syndrome is a skin disease that affects the rainbow trout (Oncorhynchus mykiss). The disease, probably due to the Midichloria-like organism infection, is not lethal, but morbidity can reach up to 60%, leading to significant economic impact associated with the downgrading of the commercial product, increased labor, and susceptibility to secondary infections. The ultrastructure analyses allowed an earlier study to identify the presence of scattered microorganisms characterized by an oval shape, mainly in the cytoplasm of the cells. The protocol developed in this study will be instrumental in visualizing the ultrastructure of the microorganism, which is probably responsible for red mark syndrome infection.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}