Pub Date : 2024-11-01Epub Date: 2024-10-09DOI: 10.1091/mbc.E23-12-0497
Michelle M Shimogawa, Keya Jonnalagadda, Kent L Hill
Trypanosoma brucei is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical "9+2" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form T. brucei. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, FAP20 knockdown led to a catastrophic failure in flagellum assembly and concomitant lethality. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.
布氏锥虫是一种人类和动物病原体,依靠鞭毛运动进行传播和感染。锥虫的鞭毛围绕着一个典型的 "9+2 "轴丝,包含九个双微管(DMT),围绕着两个单微管。每个 DMT 都包含一个 13 根原纤维的 A 管和一个 10 根原纤维的 B 管,并通过一个由 PACRG 和 FAP20 亚基交替组成的保守的非管蛋白内连接(IJ)丝与 A 管连接。在这里,我们研究了原环状布鲁氏菌中的 FAP20。FAP20-NeonGreen融合蛋白如预期一样定位于轴丝。令人惊讶的是,敲除 FAP20 会导致鞭毛组装的灾难性失败,同时导致死亡。这与其他生物不同,在其他生物中,FAP20是鞭毛正常运动所必需的,但对于鞭毛的组装和存活率来说通常是可有可无的。透射电子显微镜显示,FAP20突变体的鞭毛组装失败与一系列DMT缺陷和副鞭毛杆组装缺陷有关,副鞭毛杆是一个品系特异的鞭毛丝,在锥虫中附着在DMT 4-7上。我们的研究揭示了锥虫中对 FAP20 的品系特异性要求,有助于深入了解这些寄生虫对鞭毛稳定性和运动性的适应性,并突出了病原体与宿主的差异,这些差异可用于锥虫疾病的治疗干预。[媒体:见正文] [媒体:见正文]。
{"title":"FAP20 is required for flagellum assembly in <i>Trypanosoma brucei</i>.","authors":"Michelle M Shimogawa, Keya Jonnalagadda, Kent L Hill","doi":"10.1091/mbc.E23-12-0497","DOIUrl":"10.1091/mbc.E23-12-0497","url":null,"abstract":"<p><p><i>Trypanosoma brucei</i> is a human and animal pathogen that depends on flagellar motility for transmission and infection. The trypanosome flagellum is built around a canonical \"9+2\" axoneme, containing nine doublet microtubules (DMTs) surrounding two singlet microtubules. Each DMT contains a 13-protofilament A-tubule and a 10-protofilament B-tubule, connected to the A-tubule by a conserved, non-tubulin inner junction (IJ) filament made up of alternating PACRG and FAP20 subunits. Here we investigate FAP20 in procyclic form <i>T. brucei</i>. A FAP20-NeonGreen fusion protein localized to the axoneme as expected. Surprisingly, <i>FAP20</i> knockdown led to a catastrophic failure in flagellum assembly and concomitant lethality. This differs from other organisms, where FAP20 is required for normal flagellum motility, but generally dispensable for flagellum assembly and viability. Transmission electron microscopy demonstrates failed flagellum assembly in FAP20 mutants is associated with a range of DMT defects and defective assembly of the paraflagellar rod, a lineage-specific flagellum filament that attaches to DMT 4-7 in trypanosomes. Our studies reveal a lineage-specific requirement for FAP20 in trypanosomes, offering insight into adaptations for flagellum stability and motility in these parasites and highlighting pathogen versus host differences that might be considered for therapeutic intervention in trypanosome diseases.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142391841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-02DOI: 10.1091/mbc.E24-06-0262
Wily G Ruiz, Dennis R Clayton, Tanmay Parakala-Jain, Marianela G Dalghi, Jonathan Franks, Gerard Apodaca
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in native bladder umbrella cells and their responses to bladder filling are poorly understood. Using whole rat bladders in conjunction with confocal microscopy, super-resolution image processing, three-dimensional image reconstruction, and platinum replica electron microscopy, we identified a cortical cytoskeleton network in umbrella cells that was organized as a dense tile-like mesh comprised of tesserae bordered by cortical actin filaments, filled with keratin filaments, and cross-linked by plectin. Below these tesserae, keratin formed a subapical meshwork and at the cell periphery a band of keratin was linked via plectin to the junction-associated actin ring. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated keratin, and defects in cell-cell adhesion. During bladder filling, a junction-localized necklace of desmosomes expanded, and a subjacent girded layer formed linking the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Our studies reveal a novel tile- and mesh-like organization of the umbrella cell keratin network that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
{"title":"The rat bladder umbrella cell keratin network: Organization, dependence on the plectin cytolinker, and responses to bladder filling.","authors":"Wily G Ruiz, Dennis R Clayton, Tanmay Parakala-Jain, Marianela G Dalghi, Jonathan Franks, Gerard Apodaca","doi":"10.1091/mbc.E24-06-0262","DOIUrl":"10.1091/mbc.E24-06-0262","url":null,"abstract":"<p><p>The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in native bladder umbrella cells and their responses to bladder filling are poorly understood. Using whole rat bladders in conjunction with confocal microscopy, super-resolution image processing, three-dimensional image reconstruction, and platinum replica electron microscopy, we identified a cortical cytoskeleton network in umbrella cells that was organized as a dense tile-like mesh comprised of tesserae bordered by cortical actin filaments, filled with keratin filaments, and cross-linked by plectin. Below these tesserae, keratin formed a subapical meshwork and at the cell periphery a band of keratin was linked via plectin to the junction-associated actin ring. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated keratin, and defects in cell-cell adhesion. During bladder filling, a junction-localized necklace of desmosomes expanded, and a subjacent girded layer formed linking the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Our studies reveal a novel tile- and mesh-like organization of the umbrella cell keratin network that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-02DOI: 10.1091/mbc.E23-12-0479
Sarah Y Valles, Shrea Bural, Kristina M Godek, Duane A Compton
To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.
为了确保基因组的保真度,在有丝分裂的后期要执行一系列在空间和时间上协调的事件,包括双极纺锤体的形成、染色体附着到动点处的纺锤体微管、纠正错误的动点-微管(k-MT)附着以及染色体向纺锤体赤道的聚集。细胞周期蛋白 A/Cdk1激酶在原叶期破坏k-MT附着的稳定性以促进纠正错误的k-MT附着方面发挥着关键作用。然而,目前还不清楚细胞周期蛋白A/Cdk1激酶是否调控原核期的其他事件。在这里,我们通过使用 siRNA 敲除策略来清除人体细胞中的内源性 Cyclin A,从而研究 Cyclin A/Cdk1 在原分裂期中的其他作用。我们发现,消耗 Cyclin A 能显著延长有丝分裂的持续时间,特别是原分裂期,因为染色体排列会延迟。从机理上讲,染色体排列受阻可能是因为在 Cyclin A 缺失的细胞中,动点核蛋白 BUB1 激酶、KNL1 和 MPS1 激酶的定位减少。此外,我们还发现 Cyclin A 可促进 BUB1 的动点定位,而与它在破坏 k-MT 附着稳定性方面的作用无关。因此,细胞周期蛋白 A/Cdk1有助于染色体在原核期排列,从而支持有丝分裂的及时进行。
{"title":"Cyclin A/Cdk1 promotes chromosome alignment and timely mitotic progression.","authors":"Sarah Y Valles, Shrea Bural, Kristina M Godek, Duane A Compton","doi":"10.1091/mbc.E23-12-0479","DOIUrl":"10.1091/mbc.E23-12-0479","url":null,"abstract":"<p><p>To ensure genomic fidelity, a series of spatially and temporally coordinated events is executed during prometaphase of mitosis, including bipolar spindle formation, chromosome attachment to spindle microtubules at kinetochores, the correction of erroneous kinetochore-microtubule (k-MT) attachments, and chromosome congression to the spindle equator. Cyclin A/Cdk1 kinase plays a key role in destabilizing k-MT attachments during prometaphase to promote correction of erroneous k-MT attachments. However, it is unknown whether Cyclin A/Cdk1 kinase regulates other events during prometaphase. Here, we investigate additional roles of Cyclin A/Cdk1 in prometaphase by using an siRNA knockdown strategy to deplete endogenous Cyclin A from human cells. We find that depleting Cyclin A significantly extends mitotic duration, specifically prometaphase, because chromosome alignment is delayed. Unaligned chromosomes display erroneous monotelic, syntelic, or lateral k-MT attachments suggesting that bioriented k-MT attachment formation is delayed in the absence of Cyclin A. Mechanistically, chromosome alignment is likely impaired because the localization of the kinetochore proteins BUB1 kinase, KNL1, and MPS1 kinase are reduced in Cyclin A-depleted cells. Moreover, we find that Cyclin A promotes BUB1 kinetochore localization independently of its role in destabilizing k-MT attachments. Thus, Cyclin A/Cdk1 facilitates chromosome alignment during prometaphase to support timely mitotic progression.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-25DOI: 10.1091/mbc.E23-11-0440
Natalie A Petek-Seoane, Johnny Rodriguez, Alan I Derman, Siobhan G Royal, Samuel J Lord, Rosalie Lawrence, Joe Pogliano, R Dyche Mullins
Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in Bacillus subtilis. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (ccN = 10.3 µM), but a much lower critical concentration for filament elongation (ccE = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease ccN into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating ccN independently of ccE.
{"title":"Polymer dynamics of Alp7A reveals how two critical concentrations govern assembly of dynamically unstable actin-like proteins.","authors":"Natalie A Petek-Seoane, Johnny Rodriguez, Alan I Derman, Siobhan G Royal, Samuel J Lord, Rosalie Lawrence, Joe Pogliano, R Dyche Mullins","doi":"10.1091/mbc.E23-11-0440","DOIUrl":"10.1091/mbc.E23-11-0440","url":null,"abstract":"<p><p>Dynamically unstable polymers capture and move cellular cargos in bacteria and eukaryotes, but regulation of their assembly remains poorly understood. Here we describe polymerization of Alp7A, a bacterial actin-like protein (ALP) that distributes copies of plasmid pLS20 among daughter cells in <i>Bacillus subtilis</i>. Purified ATP-Alp7A forms dynamically unstable polymers with a high critical concentration for net assembly (cc<sub>N</sub> = 10.3 µM), but a much lower critical concentration for filament elongation (cc<sub>E</sub> = 0.6 µM). Rapid nucleation and stabilization of Alp7A polymers by the accessory factor, Alp7R, decrease cc<sub>N</sub> into the physiological range. Stable populations of Alp7A filaments appear under two conditions: (i) when Alp7R slows catastrophe rates or (ii) when Alp7A concentrations are high enough to promote filament bundling. These results reveal how dynamic instability maintains high steady-state concentrations of monomeric Alp7A, and how accessory factors regulate Alp7A assembly by modulating cc<sub>N</sub> independently of cc<sub>E</sub>.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-09-25DOI: 10.1091/mbc.E23-12-0470
Sara E Hanley, Stephen D Willis, Brittany Friedson, Katrina F Cooper
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
{"title":"Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation.","authors":"Sara E Hanley, Stephen D Willis, Brittany Friedson, Katrina F Cooper","doi":"10.1091/mbc.E23-12-0470","DOIUrl":"10.1091/mbc.E23-12-0470","url":null,"abstract":"<p><p>The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In <i>Saccharomyces cerevisiae</i>, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear pore complexes (NPCs) mediate all traffic between the nucleus and the cytoplasm and are among the most stable protein assemblies in cells. Budding yeast cells carry two variants of NPCs which differ in the presence or absence of the nuclear basket proteins Mlp1, Mlp2, and Pml39. The binding of these basket proteins occurs very late in NPC assembly and Mlp-positive NPCs are excluded from the region of the nuclear envelope that borders the nucleolus. Here, we use recombination-induced tag exchange to investigate the stability of all the NPC subcomplexes within individual NPCs. We show that the nuclear basket proteins Mlp1, Mlp2, and Pml39 remain stably associated with NPCs through multiple cell-division cycles, and that Mlp1/2 are responsible for the exclusion of NPCs from the nucleolar territory. In addition, we demonstrate that binding of the FG-nucleoporins Nup1 and Nup2 depletes also Mlp-negative NPCs from this region by an independent pathway. We develop a method for single NPC tracking in budding yeast and observe that NPCs exhibit increased mobility in the absence of nuclear basket components. Our data suggest that the distribution of NPCs on the nucleus is governed by multiple interaction of nuclear basket proteins with the nuclear interior.
{"title":"Nuclear basket proteins regulate the distribution and mobility of nuclear pore complexes in budding yeast.","authors":"Janka Zsok, Francois Simon, Göksu Bayrak, Luljeta Isaki, Nina Kerff, Yoana Kicheva, Amy Wolstenholme, Lucien E Weiss, Elisa Dultz","doi":"10.1091/mbc.E24-08-0371","DOIUrl":"10.1091/mbc.E24-08-0371","url":null,"abstract":"<p><p>Nuclear pore complexes (NPCs) mediate all traffic between the nucleus and the cytoplasm and are among the most stable protein assemblies in cells. Budding yeast cells carry two variants of NPCs which differ in the presence or absence of the nuclear basket proteins Mlp1, Mlp2, and Pml39. The binding of these basket proteins occurs very late in NPC assembly and Mlp-positive NPCs are excluded from the region of the nuclear envelope that borders the nucleolus. Here, we use recombination-induced tag exchange to investigate the stability of all the NPC subcomplexes within individual NPCs. We show that the nuclear basket proteins Mlp1, Mlp2, and Pml39 remain stably associated with NPCs through multiple cell-division cycles, and that Mlp1/2 are responsible for the exclusion of NPCs from the nucleolar territory. In addition, we demonstrate that binding of the FG-nucleoporins Nup1 and Nup2 depletes also Mlp-negative NPCs from this region by an independent pathway. We develop a method for single NPC tracking in budding yeast and observe that NPCs exhibit increased mobility in the absence of nuclear basket components. Our data suggest that the distribution of NPCs on the nucleus is governed by multiple interaction of nuclear basket proteins with the nuclear interior.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-10-02DOI: 10.1091/mbc.E24-02-0062
José M Liboy-Lugo, Carla A Espinoza, Jessica Sheu-Gruttadauria, Jesslyn E Park, Albert Xu, Ziad Jowhar, Angela L Gao, José A Carmona-Negrón, Torsten Wittmann, Natalia Jura, Stephen N Floor
Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these membraneless organelles is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs form SGs following stress-induced translational arrest. Three G3BP paralogues (G3BP1, G3BP2A, and G3BP2B) have been identified in vertebrates. However, the contribution of different G3BP paralogues to SG formation and gene expression changes is incompletely understood. Here, we probed the functions of G3BPs by identifying important residues for SG assembly at their N-terminal domain such as V11. This conserved amino acid is required for formation of the G3BP-Caprin-1 complex, hence promoting SG assembly. Total RNA sequencing and ribosome profiling revealed that a G3BPV11A mutant leads to changes in mRNA levels and ribosome engagement during the integrated stress response (ISR). Moreover, we found that G3BP2B preferentially forms SGs and promotes changes in mRNA expression under endoplasmic reticulum (ER) stress. Furthermore, our work is a resource for researchers to study gene expression changes under cellular stress. Together, this work suggests that perturbing protein-protein interactions mediated by G3BPs affect SG assembly and gene expression during the ISR, and such functions are differentially regulated by G3BP paralogues under ER stress.
{"title":"G3BP isoforms differentially affect stress granule assembly and gene expression during cellular stress.","authors":"José M Liboy-Lugo, Carla A Espinoza, Jessica Sheu-Gruttadauria, Jesslyn E Park, Albert Xu, Ziad Jowhar, Angela L Gao, José A Carmona-Negrón, Torsten Wittmann, Natalia Jura, Stephen N Floor","doi":"10.1091/mbc.E24-02-0062","DOIUrl":"10.1091/mbc.E24-02-0062","url":null,"abstract":"<p><p>Stress granules (SGs) are macromolecular assemblies that form under cellular stress. Formation of these membraneless organelles is driven by the condensation of RNA and RNA-binding proteins such as G3BPs. G3BPs form SGs following stress-induced translational arrest. Three G3BP paralogues (G3BP1, G3BP2A, and G3BP2B) have been identified in vertebrates. However, the contribution of different G3BP paralogues to SG formation and gene expression changes is incompletely understood. Here, we probed the functions of G3BPs by identifying important residues for SG assembly at their N-terminal domain such as V11. This conserved amino acid is required for formation of the G3BP-Caprin-1 complex, hence promoting SG assembly. Total RNA sequencing and ribosome profiling revealed that a G3BP<sup>V11A</sup> mutant leads to changes in mRNA levels and ribosome engagement during the integrated stress response (ISR). Moreover, we found that G3BP2B preferentially forms SGs and promotes changes in mRNA expression under endoplasmic reticulum (ER) stress. Furthermore, our work is a resource for researchers to study gene expression changes under cellular stress. Together, this work suggests that perturbing protein-protein interactions mediated by G3BPs affect SG assembly and gene expression during the ISR, and such functions are differentially regulated by G3BP paralogues under ER stress.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macromolecules are transported through the nuclear pore complex via a series of transient binding and unbinding events with FG-Nups, which are intrinsically disordered proteins anchored to the pore's inner wall. Prior studies suggest that the weak and transient nature of this binding is crucial for maintaining the transported molecules' diffusivity. In this study, we explored the relationship between binding kinetics and transport efficiency using Brownian dynamics simulations. Our results indicate that the duration of binding is a critical factor in regulating transport efficiency. Specifically, excessively short binding durations insufficiently facilitate transport, while overly long durations impede molecular movement. We calculated the optimal binding duration for efficient molecular transport and found that it aligns with other theoretical predictions. Additionally, the calculated value is comparable to experimental measurements of the association timescale between nuclear transport receptors and FG-Nups at a single binding site. Our study provides a quantitative framework that bridges local molecular interactions with overall transport dynamics through the NPC, offering valuable insights into the mechanisms governing selective molecular transport. [Media: see text] [Media: see text] [Media: see text] [Media: see text].
{"title":"Regulating transport efficiency through the nuclear pore complex: the role of binding affinity with FG-Nups.","authors":"Atsushi Matsuda, Mohammad R K Mofrad","doi":"10.1091/mbc.E24-05-0224","DOIUrl":"https://doi.org/10.1091/mbc.E24-05-0224","url":null,"abstract":"<p><p>Macromolecules are transported through the nuclear pore complex via a series of transient binding and unbinding events with FG-Nups, which are intrinsically disordered proteins anchored to the pore's inner wall. Prior studies suggest that the weak and transient nature of this binding is crucial for maintaining the transported molecules' diffusivity. In this study, we explored the relationship between binding kinetics and transport efficiency using Brownian dynamics simulations. Our results indicate that the duration of binding is a critical factor in regulating transport efficiency. Specifically, excessively short binding durations insufficiently facilitate transport, while overly long durations impede molecular movement. We calculated the optimal binding duration for efficient molecular transport and found that it aligns with other theoretical predictions. Additionally, the calculated value is comparable to experimental measurements of the association timescale between nuclear transport receptors and FG-Nups at a single binding site. Our study provides a quantitative framework that bridges local molecular interactions with overall transport dynamics through the NPC, offering valuable insights into the mechanisms governing selective molecular transport. [Media: see text] [Media: see text] [Media: see text] [Media: see text].</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongki Song, Karina Lopes, Amy Orr, William Wickner
The energy that drives membrane fusion can come from either complete SNARE zippering, from Sec17 and Sec18, or both. Sec17 and Sec18 initially form a complex which binds membranes. Sec17, Sec18, and the apolarity of a loop on the N-domain of Sec17 are required for their interdependent membrane association. To determine whether Sec18 and the Sec17 loop apolarity are still required for fusion after their membrane arrival, a hydrophobic transmembrane (TM) anchor was affixed to the N-terminus of Sec17, forming TM-Sec17. Fusion without energy from complete SNARE zippering requires Sec18 as well as either Sec17 or TM-Sec17. Even without the need for membrane targeting, the TM-Sec17 apolar loop strongly stimulates Sec17/18-driven fusion. Thus, Sec18 and the Sec17 apolar loop are first required for membrane targeting, and once bound, drive rapid fusion. Each of these variables- the absence or presence of Sec17, its N-loop apolarity, addition or omission of Sec18, and unimpeded or diminished energy from SNARE zippering - has almost no effect on the amount of trans-SNARE complex, but instead regulates the capacity of docked membranes to fuse.
{"title":"After their membrane assembly, Sec18 (NSF) and Sec17 (SNAP) promote membrane fusion.","authors":"Hongki Song, Karina Lopes, Amy Orr, William Wickner","doi":"10.1091/mbc.E24-10-0439","DOIUrl":"https://doi.org/10.1091/mbc.E24-10-0439","url":null,"abstract":"<p><p>The energy that drives membrane fusion can come from either complete SNARE zippering, from Sec17 and Sec18, or both. Sec17 and Sec18 initially form a complex which binds membranes. Sec17, Sec18, and the apolarity of a loop on the N-domain of Sec17 are required for their interdependent membrane association. To determine whether Sec18 and the Sec17 loop apolarity are still required for fusion after their membrane arrival, a hydrophobic transmembrane (TM) anchor was affixed to the N-terminus of Sec17, forming TM-Sec17. Fusion without energy from complete SNARE zippering requires Sec18 as well as either Sec17 or TM-Sec17. Even without the need for membrane targeting, the TM-Sec17 apolar loop strongly stimulates Sec17/18-driven fusion. Thus, Sec18 and the Sec17 apolar loop are first required for membrane targeting, and once bound, drive rapid fusion. Each of these variables- the absence or presence of Sec17, its N-loop apolarity, addition or omission of Sec18, and unimpeded or diminished energy from SNARE zippering - has almost no effect on the amount of <i>trans</i>-SNARE complex, but instead regulates the capacity of docked membranes to fuse.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-28DOI: 10.1091/mbc.E24-04-0179
Ivan K Popov, Jiahui Tao, Chenbei Chang
RhoGEFs are critical activators of Rho family small GTPases and regulate diverse biological processes, such as cell division and tissue morphogenesis. We reported previously that the RhoGEF gene plekhg5 controls apical constriction of bottle cells at the blastopore lip during Xenopus gastrulation, but the detailed mechanism of plekhg5 action is not understood in depth. In this study, we show that localization of Plekhg5 in the apical cortex depends on its N-terminal sequences and intact guanine nucleotide exchange activity, whereas the C-terminal sequences prevent ectopic localization of the protein to the basolateral compartment. We also reveal that Plekhg5 self-associates via its PH domain, and this interaction leads to functional rescue of two mutants that lack the N-terminal region and the guanine nucleotide exchange factor activity, respectively, in trans. A point mutation in the PH domain corresponding to a variant associated with human disease leads to loss of self-association and failure of the mutant to induce apical constriction. Taken together, our results suggest that PH-mediated self-association and N-terminal domain-mediated subcellular localization are both crucial for the function of Plekhg5 in inducing apical constriction.
{"title":"The RhoGEF protein Plekhg5 self-associates via its PH domain to regulate apical cell constriction.","authors":"Ivan K Popov, Jiahui Tao, Chenbei Chang","doi":"10.1091/mbc.E24-04-0179","DOIUrl":"10.1091/mbc.E24-04-0179","url":null,"abstract":"<p><p>RhoGEFs are critical activators of Rho family small GTPases and regulate diverse biological processes, such as cell division and tissue morphogenesis. We reported previously that the RhoGEF gene <i>plekhg5</i> controls apical constriction of bottle cells at the blastopore lip during <i>Xenopus</i> gastrulation, but the detailed mechanism of <i>plekhg5</i> action is not understood in depth. In this study, we show that localization of Plekhg5 in the apical cortex depends on its N-terminal sequences and intact guanine nucleotide exchange activity, whereas the C-terminal sequences prevent ectopic localization of the protein to the basolateral compartment. We also reveal that Plekhg5 self-associates via its PH domain, and this interaction leads to functional rescue of two mutants that lack the N-terminal region and the guanine nucleotide exchange factor activity, respectively, in trans. A point mutation in the PH domain corresponding to a variant associated with human disease leads to loss of self-association and failure of the mutant to induce apical constriction. Taken together, our results suggest that PH-mediated self-association and N-terminal domain-mediated subcellular localization are both crucial for the function of Plekhg5 in inducing apical constriction.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142086180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}