首页 > 最新文献

Molecular Biology of the Cell最新文献

英文 中文
Yellow and oxidation-resistant derivatives of a monomeric superfolder GFP. 单体超级文件夹 GFP 的黄色和抗氧化衍生物。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-14 DOI: 10.1091/mbc.E24-01-0035
Fernando M Valbuena, Adam H Krahn, Sherzod A Tokamov, Annie C Greene, Richard G Fehon, Benjamin S Glick

Fluorescent proteins (FPs) are essential tools in biology. The utility of FPs depends on their brightness, photostability, efficient folding, monomeric state, and compatibility with different cellular environments. Despite the proliferation of available FPs, derivatives of the originally identified Aequorea victoria green fluorescent protein often show superior behavior as fusion tags. We recently generated msGFP2, an optimized monomeric superfolder variant of A. victoria GFP. Here, we describe two derivatives of msGFP2. The monomeric variant msYFP2 is a yellow superfolder FP with high photostability. The monomeric variant moxGFP2 lacks cysteines but retains significant folding stability, so it works well in the lumen of the secretory pathway. These new FPs are useful for common imaging applications.

荧光蛋白(FPs)是生物学中必不可少的工具。荧光蛋白的实用性取决于其亮度、光稳定性、高效折叠、单体状态以及与不同细胞环境的兼容性。尽管现有的 FPs 种类繁多,但最初发现的 Aequorea Victoria GFP 的衍生物作为融合标记往往表现出更优越的性能。我们最近生成了 msGFP2,这是一种优化的沧海龙 GFP 单体超夹层变体。在这里,我们描述了 msGFP2 的两种衍生物。单体变体 msYFP2 是一种具有高光稳定性的黄色超级夹层 FP。单体变体 moxGFP2 缺少半胱氨酸,但保持了很高的折叠稳定性,因此在分泌途径的管腔中也能很好地发挥作用。这些新型 FP 可用于常见的成像应用。
{"title":"Yellow and oxidation-resistant derivatives of a monomeric superfolder GFP.","authors":"Fernando M Valbuena, Adam H Krahn, Sherzod A Tokamov, Annie C Greene, Richard G Fehon, Benjamin S Glick","doi":"10.1091/mbc.E24-01-0035","DOIUrl":"10.1091/mbc.E24-01-0035","url":null,"abstract":"<p><p>Fluorescent proteins (FPs) are essential tools in biology. The utility of FPs depends on their brightness, photostability, efficient folding, monomeric state, and compatibility with different cellular environments. Despite the proliferation of available FPs, derivatives of the originally identified <i>Aequorea victoria</i> green fluorescent protein often show superior behavior as fusion tags. We recently generated msGFP2, an optimized monomeric superfolder variant of <i>A. victoria</i> GFP. Here, we describe two derivatives of msGFP2. The monomeric variant msYFP2 is a yellow superfolder FP with high photostability. The monomeric variant moxGFP2 lacks cysteines but retains significant folding stability, so it works well in the lumen of the secretory pathway. These new FPs are useful for common imaging applications.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481703/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
P4-ATPase endosomal recycling relies on multiple retromer-dependent localization signals. P4-ATP 酶的内体再循环依赖于多种 retromer 依赖性定位信号。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-07 DOI: 10.1091/mbc.E24-05-0209
Mariana Jiménez, Claire K Kyoung, Kateryna Nabukhotna, Davia Watkins, Bhawik K Jain, Jordan T Best, Todd R Graham

Type IV P-type ATPases (P4-ATPases) are lipid flippases that generate an asymmetric membrane organization essential for cell viability. The five budding yeast P4-ATPases traffic between the Golgi complex, plasma membrane, and endosomes but how they are recycled from the endolysosomal system to the Golgi complex is poorly understood. In this study, we find that P4-ATPase endosomal recycling is primarily driven by the retromer complex and the F-box protein Rcy1. Defects in P4-ATPase recycling result in their mislocalization to the vacuole and a substantial loss of membrane asymmetry. The P4-ATPases contain multiple predicted retromer sorting signals, and the characterization of these signals in Dnf1 and Dnf2 led to the identification of a novel retromer-dependent signal, IPM[ST] that acts redundantly with predicted motifs. Together, these results emphasize the importance of endosomal recycling for the functional localization of P4-ATPases and membrane organization.

Ⅳ型P-型ATP酶(P4-ATP酶)是一种脂质翻转酶,可产生对细胞存活至关重要的不对称膜组织。五种芽殖酵母 P4-ATP 酶在高尔基复合体、质膜和内质体之间流动,但它们如何从内溶酶体系统循环到高尔基复合体却鲜为人知。在这项研究中,我们发现 P4-ATP 酶的内体循环主要由 retromer 复合物和 F-box 蛋白 Rcy1 驱动。P4-ATP 酶再循环缺陷会导致它们错误定位到液泡,并导致膜不对称性的严重丧失。P4-ATP 酶含有多个预测的 retromer 分选信号,对这些信号在 Dnf1 和 Dnf2 中的特性进行鉴定后,发现了一个新的依赖 retromer 的信号 IPM[ST],该信号与预测的基团具有冗余作用。这些结果共同强调了内体循环对 P4-ATP 酶功能定位和膜组织的重要性。
{"title":"P4-ATPase endosomal recycling relies on multiple retromer-dependent localization signals.","authors":"Mariana Jiménez, Claire K Kyoung, Kateryna Nabukhotna, Davia Watkins, Bhawik K Jain, Jordan T Best, Todd R Graham","doi":"10.1091/mbc.E24-05-0209","DOIUrl":"10.1091/mbc.E24-05-0209","url":null,"abstract":"<p><p>Type IV P-type ATPases (P4-ATPases) are lipid flippases that generate an asymmetric membrane organization essential for cell viability. The five budding yeast P4-ATPases traffic between the Golgi complex, plasma membrane, and endosomes but how they are recycled from the endolysosomal system to the Golgi complex is poorly understood. In this study, we find that P4-ATPase endosomal recycling is primarily driven by the retromer complex and the F-box protein Rcy1. Defects in P4-ATPase recycling result in their mislocalization to the vacuole and a substantial loss of membrane asymmetry. The P4-ATPases contain multiple predicted retromer sorting signals, and the characterization of these signals in Dnf1 and Dnf2 led to the identification of a novel retromer-dependent signal, IPM[ST] that acts redundantly with predicted motifs. Together, these results emphasize the importance of endosomal recycling for the functional localization of P4-ATPases and membrane organization.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481694/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of Mac-1 allows human macrophages to migrate against the direction of shear flow on ICAM-1. 抑制 Mac-1 可使人类巨噬细胞逆 ICAM-1 的剪切流方向迁移。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-21 DOI: 10.1091/mbc.E24-03-0114
Aman Mittal, Subham Guin, Ai Mochida, Daniel A Hammer, Alexander Buffone

All immune cells must transit from the blood to distal sites such as the lymph nodes, bone marrow, or sites of infection. Blood borne monocytes traffic to the site of inflammation by adhering to the endothelial surface and migrating along endothelial intracellular adhesion molecule 1 (ICAM-1) by their ligand's macrophage 1 antigen (Mac-1) and lymphocyte functional antigen 1 (LFA-1) to transmigrate through the endothelium. Poor patient prognoses in chronic inflammation and tumors have been attributed to the hyper recruitment of certain types of macrophages. Therefore, targeting the binding of ICAM-1 to its respective ligands provides a novel approach to targeting the recruitment of macrophages. To that end, we determined whether the loss of Mac-1 expression could induce this upstream migration behavior by using blocking antibodies against Mac-1 to examine the effects of hydrodynamic flow on the migration of the human macrophage cell line U-937 on ICAM-1 surfaces. Blocking Mac-1 on U-937 cells led to upstream migration against the direction of shear flow on ICAM-1 surfaces. In sum, the ability of macrophages to migrate upstream when Mac-1 is blocked represents a new avenue to precisely control the differentiation, migration, and trafficking of macrophages.

所有免疫细胞都必须从血液转移到远端部位,如淋巴结、骨髓或感染部位。血液中的单核细胞会粘附在内皮表面,并通过其配体巨噬细胞 1 抗原(Mac-1)和淋巴细胞功能抗原 1(LFA-1)沿内皮细胞内粘附分子 1(ICAM-1)迁移,从而通过内皮转运到炎症部位。慢性炎症和肿瘤患者预后不良的原因是某些类型的巨噬细胞过度招募。因此,靶向 ICAM-1 与其各自配体的结合为靶向巨噬细胞招募提供了一种新方法。为此,我们使用阻断 Mac-1 的抗体来检测流体力学流动对人巨噬细胞系 U-937 在 ICAM-1 表面迁移的影响,从而确定 Mac-1 的表达缺失是否会诱导这种上游迁移行为。总之,当 Mac-1 被阻断时,巨噬细胞能够向上游迁移,这为精确控制巨噬细胞的分化、迁移和贩运提供了一条新途径。[媒体:见正文] [媒体:见正文]。
{"title":"Inhibition of Mac-1 allows human macrophages to migrate against the direction of shear flow on ICAM-1.","authors":"Aman Mittal, Subham Guin, Ai Mochida, Daniel A Hammer, Alexander Buffone","doi":"10.1091/mbc.E24-03-0114","DOIUrl":"10.1091/mbc.E24-03-0114","url":null,"abstract":"<p><p>All immune cells must transit from the blood to distal sites such as the lymph nodes, bone marrow, or sites of infection. Blood borne monocytes traffic to the site of inflammation by adhering to the endothelial surface and migrating along endothelial intracellular adhesion molecule 1 (ICAM-1) by their ligand's macrophage 1 antigen (Mac-1) and lymphocyte functional antigen 1 (LFA-1) to transmigrate through the endothelium. Poor patient prognoses in chronic inflammation and tumors have been attributed to the hyper recruitment of certain types of macrophages. Therefore, targeting the binding of ICAM-1 to its respective ligands provides a novel approach to targeting the recruitment of macrophages. To that end, we determined whether the loss of Mac-1 expression could induce this upstream migration behavior by using blocking antibodies against Mac-1 to examine the effects of hydrodynamic flow on the migration of the human macrophage cell line U-937 on ICAM-1 surfaces. Blocking Mac-1 on U-937 cells led to upstream migration against the direction of shear flow on ICAM-1 surfaces. In sum, the ability of macrophages to migrate upstream when Mac-1 is blocked represents a new avenue to precisely control the differentiation, migration, and trafficking of macrophages.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481704/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proviral role of ATG2 autophagy related protein in tomato bushy stunt virus replication through bulk phospholipid transfer into the viral replication organelle. ATG2 自噬相关蛋白通过将大量磷脂转移到病毒复制细胞器中,在番茄矮花叶病毒复制过程中发挥了病毒载体的作用。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-07 DOI: 10.1091/mbc.E24-05-0236
Yuanrong Kang, Judit Pogany, Peter D Nagy

Subversion of cellular membranes and membrane proliferation are used by positive-strand RNA viruses to build viral replication organelles (VROs) that support virus replication. The biogenesis of the membranous VROs requires major changes in lipid metabolism and lipid transfer in infected cells. In this work, we show that tomato bushy stunt virus (TBSV) hijacks Atg2 autophagy related protein with bulk lipid transfer activity into VROs via interaction with TBSV p33 replication protein. Deletion of Atg2 in yeast and knockdown of Atg2 in Nicotiana benthamiana resulted in decreased TBSV replication. We found that subversion of Atg2 by TBSV was important to enrich VRO membranes with phosphatidylethanolamine (PE), phosphatidylserine (PS) and PI(3)P phosphoinositide. Interestingly, inhibition of autophagy did not affect the efficient recruitment of Atg2 into VROs, and overexpression of Atg2 enhanced TBSV replication, indicating autophagy-independent subversion of Atg2 by TBSV. These findings suggest that the proviral function of Atg2 lipid transfer protein is in VRO membrane proliferation. In addition, we find that Atg2 interacting partner Atg9 with membrane lipid-scramblase activity is also coopted for tombusvirus replication. Altogether, the subversion of Atg2 bridge-type lipid transfer protein provides a new mechanism for tombusviruses to greatly expand VRO membranes to support robust viral replication.

正链 RNA 病毒利用细胞膜的颠覆和膜的增殖来构建支持病毒复制的病毒复制细胞器(VRO)。膜状 VRO 的生物生成需要受感染细胞的脂质代谢和脂质转移发生重大变化。在这项研究中,我们发现番茄矮花叶病毒(TBSV)通过与 TBSV p33 复制蛋白相互作用,将具有大量脂质转移活性的 Atg2 自噬相关蛋白劫持到 VRO 中。在酵母中删除 Atg2 和在烟草中敲除 Atg2 可减少 TBSV 的复制。我们发现,TBSV对Atg2的颠覆对于用磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)和PI(3)P磷脂酰肌醇苷富集VRO膜非常重要。有趣的是,抑制自噬并不影响 Atg2 被有效招募到 VRO 中,而 Atg2 的过度表达会增强 TBSV 的复制,这表明 TBSV 对 Atg2 的颠覆与自噬无关。这些发现表明,Atg2脂质转移蛋白的促病毒功能在于VRO膜增殖。此外,我们还发现,具有膜脂质扰乱酶活性的 Atg2 相互作用伙伴 Atg9 也参与了古墓病毒的复制。总之,Atg2 桥型脂质转移蛋白的颠覆性作用为古墓病毒提供了一种新的机制,使其能够极大地扩展 VRO 膜,从而支持病毒的强力复制。
{"title":"Proviral role of ATG2 autophagy related protein in tomato bushy stunt virus replication through bulk phospholipid transfer into the viral replication organelle.","authors":"Yuanrong Kang, Judit Pogany, Peter D Nagy","doi":"10.1091/mbc.E24-05-0236","DOIUrl":"10.1091/mbc.E24-05-0236","url":null,"abstract":"<p><p>Subversion of cellular membranes and membrane proliferation are used by positive-strand RNA viruses to build viral replication organelles (VROs) that support virus replication. The biogenesis of the membranous VROs requires major changes in lipid metabolism and lipid transfer in infected cells. In this work, we show that tomato bushy stunt virus (TBSV) hijacks Atg2 autophagy related protein with bulk lipid transfer activity into VROs via interaction with TBSV p33 replication protein. Deletion of Atg2 in yeast and knockdown of Atg2 in <i>Nicotiana benthamiana</i> resulted in decreased TBSV replication. We found that subversion of Atg2 by TBSV was important to enrich VRO membranes with phosphatidylethanolamine (PE), phosphatidylserine (PS) and PI(3)P phosphoinositide. Interestingly, inhibition of autophagy did not affect the efficient recruitment of Atg2 into VROs, and overexpression of Atg2 enhanced TBSV replication, indicating autophagy-independent subversion of Atg2 by TBSV. These findings suggest that the proviral function of Atg2 lipid transfer protein is in VRO membrane proliferation. In addition, we find that Atg2 interacting partner Atg9 with membrane lipid-scramblase activity is also coopted for tombusvirus replication. Altogether, the subversion of Atg2 bridge-type lipid transfer protein provides a new mechanism for tombusviruses to greatly expand VRO membranes to support robust viral replication.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex state transitions of the bacterial cell division protein FtsZ. 细菌细胞分裂蛋白 FtsZ 的复杂状态转换。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-31 DOI: 10.1091/mbc.E23-11-0446
Benjamin D Knapp, Handuo Shi, Kerwyn Casey Huang

The key bacterial cell division protein FtsZ can adopt multiple conformations, and prevailing models suggest that transitions of FtsZ subunits from the closed to open state are necessary for filament formation and stability. Using all-atom molecular dynamics simulations, we analyzed state transitions of Staphylococcus aureus FtsZ as a monomer, dimer, and hexamer. We found that monomers can adopt intermediate states but preferentially adopt a closed state that is robust to forced reopening. Dimer subunits transitioned between open and closed states, and dimers with both subunits in the closed state remained highly stable, suggesting that open-state conformations are not necessary for filament formation. Mg2+ strongly stabilized the conformation of GTP-bound subunits and the dimer filament interface. Our hexamer simulations indicate that the plus end subunit preferentially closes and that other subunits can transition between states without affecting inter-subunit stability. We found that rather than being correlated with subunit opening, inter-subunit stability was strongly correlated with catalytic site interactions. By leveraging deep-learning models, we identified key intrasubunit interactions governing state transitions. Our findings suggest a greater range of possible monomer and filament states than previously considered and offer new insights into the nuanced interplay between subunit states and the critical role of nucleotide hydrolysis and Mg2+ in FtsZ filament dynamics.

细菌细胞分裂的关键蛋白 FtsZ 可采用多种构象,流行的模型表明,从闭合态到开放态的转换是丝状体形成和稳定的必要条件。我们利用全原子分子动力学模拟分析了金黄色葡萄球菌 FtsZ 的单体、二聚体和六聚体的状态转换。我们发现,单体可以采用中间状态,但更倾向于采用一种闭合状态,这种状态对强制再开放具有稳健性。二聚体亚基在开放态和封闭态之间转换,而两个亚基都处于封闭态的二聚体保持高度稳定,这表明开放态构象并不是形成丝的必要条件。Mg2+ 强力稳定了与 GTP 结合的亚基构象和二聚体丝状界面。我们的六聚体模拟表明,加端亚基优先关闭,其他亚基可以在不同状态之间转换而不影响亚基间的稳定性。我们发现,亚基间稳定性与催化位点相互作用密切相关,而不是与亚基开放相关。通过利用深度学习模型,我们确定了控制状态转换的关键亚基内相互作用。我们的研究结果表明,可能的单体和丝状体状态的范围比以前考虑的要大,并为亚基状态之间微妙的相互作用以及核苷酸水解和 Mg2+ 在 FtsZ 丝状体动力学中的关键作用提供了新的见解。
{"title":"Complex state transitions of the bacterial cell division protein FtsZ.","authors":"Benjamin D Knapp, Handuo Shi, Kerwyn Casey Huang","doi":"10.1091/mbc.E23-11-0446","DOIUrl":"10.1091/mbc.E23-11-0446","url":null,"abstract":"<p><p>The key bacterial cell division protein FtsZ can adopt multiple conformations, and prevailing models suggest that transitions of FtsZ subunits from the closed to open state are necessary for filament formation and stability. Using all-atom molecular dynamics simulations, we analyzed state transitions of <i>Staphylococcus aureus</i> FtsZ as a monomer, dimer, and hexamer. We found that monomers can adopt intermediate states but preferentially adopt a closed state that is robust to forced reopening. Dimer subunits transitioned between open and closed states, and dimers with both subunits in the closed state remained highly stable, suggesting that open-state conformations are not necessary for filament formation. Mg<sup>2+</sup> strongly stabilized the conformation of GTP-bound subunits and the dimer filament interface. Our hexamer simulations indicate that the plus end subunit preferentially closes and that other subunits can transition between states without affecting inter-subunit stability. We found that rather than being correlated with subunit opening, inter-subunit stability was strongly correlated with catalytic site interactions. By leveraging deep-learning models, we identified key intrasubunit interactions governing state transitions. Our findings suggest a greater range of possible monomer and filament states than previously considered and offer new insights into the nuanced interplay between subunit states and the critical role of nucleotide hydrolysis and Mg<sup>2+</sup> in FtsZ filament dynamics.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481701/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality. 在卵子发生过程中,CCT伴侣蛋白和肌动蛋白调节ER和RNA结合蛋白的凝聚,维持母体mRNA的翻译抑制和卵母细胞的质量。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-21 DOI: 10.1091/mbc.E24-05-0216
Mohamed T Elaswad, Mingze Gao, Victoria E Tice, Cora G Bright, Grace M Thomas, Chloe Munderloh, Nicholas J Trombley, Christya N Haddad, Ulysses G Johnson, Ashley N Cichon, Jennifer A Schisa

The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo Caenorhabditis elegans oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.

母体 mRNA 的调控对于正常的卵子发生、有活力配子的产生以及避免出生缺陷和不孕症至关重要。目前已发现许多在 mRNA 代谢中发挥作用的卵母细胞 RNA 结合蛋白,其中一些定位在动态核糖核蛋白颗粒中,另一些则呈分散状态。在这里,我们结合使用体外凝集试验和体内秀丽隐杆线虫卵子发生模型,描述了保守的 KH-domain(KH-结构域)MEX-3 蛋白的特性,并鉴定了 MEX-3 和其他三种翻译调节因子的新型调节因子。我们证明了MEX-3在体外会发生相分离,似乎具有内在的凝胶样特性。我们还发现了 CCT 合子蛋白和肌动蛋白在防止成熟卵母细胞中异位 RNA 结合蛋白凝集方面的新作用,这些作用似乎与 MEX-3 的折叠无关。CCT 合子蛋白和肌动蛋白还能阻止 ER 片的扩张,而 ER 片的扩张可能会促进 RNA 结合蛋白的异位凝集。这些新的凝集调节因子也是母体 mRNA 翻译抑制所必需的,而母体 mRNA 翻译抑制对卵母细胞的质量和生育能力至关重要。这一调控网络的确定还可能对理解 hMex3 相变在癌症中的作用产生影响。
{"title":"The CCT chaperonin and actin modulate the ER and RNA-binding protein condensation during oogenesis and maintain translational repression of maternal mRNA and oocyte quality.","authors":"Mohamed T Elaswad, Mingze Gao, Victoria E Tice, Cora G Bright, Grace M Thomas, Chloe Munderloh, Nicholas J Trombley, Christya N Haddad, Ulysses G Johnson, Ashley N Cichon, Jennifer A Schisa","doi":"10.1091/mbc.E24-05-0216","DOIUrl":"10.1091/mbc.E24-05-0216","url":null,"abstract":"<p><p>The regulation of maternal mRNAs is essential for proper oogenesis, the production of viable gametes, and to avoid birth defects and infertility. Many oogenic RNA-binding proteins have been identified with roles in mRNA metabolism, some of which localize to dynamic ribonucleoprotein granules and others that appear dispersed. Here, we use a combination of in vitro condensation assays and the in vivo <i>Caenorhabditis elegans</i> oogenesis model to characterize the properties of the conserved KH-domain MEX-3 protein and to identify novel regulators of MEX-3 and three other translational regulators. We demonstrate that MEX-3 undergoes phase separation and appears to have intrinsic gel-like properties in vitro. We also identify novel roles for the chaperonin-containing tailless complex polypeptide 1 (CCT) chaperonin and actin in preventing ectopic RNA-binding protein condensates in maturing oocytes that appear to be independent of MEX-3 folding. The CCT chaperonin and actin also oppose the expansion of endoplasmic reticulum sheets that may promote ectopic condensation of RNA-binding proteins. These novel regulators of condensation are also required for the translational repression of maternal mRNA which is essential for oocyte quality and fertility. The identification of this regulatory network may also have implications for understanding the role of hMex3 phase transitions in cancer.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimerization activates the Inversin complex in C. elegans. 二聚化激活了秀丽隐杆线虫中的 Inversin 复合物。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-07 DOI: 10.1091/mbc.E24-05-0218
Erika Beyrent, Derek T Wei, Gwendolyn M Beacham, Sangwoo Park, Jian Zheng, Matthew J Paszek, Gunther Hollopeter

Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states - an active dimer and an inactive monomer - gates the output of the Inversin complex.

遗传、共定位和生化研究表明,含霉素重复蛋白 Inversin(INVS)和 ANKS6 与 NEK8 激酶共同发挥作用,控制组织形态并维持器官生理机能。目前还不清楚这三种蛋白是组装成一个静态的 "Inversin 复合物",还是一个具有多种生物活性的复合物。通过对 elegans 中超常等位基因的鉴定,我们发现 Inversin 复合物是通过二聚化激活的。将 RFP 标记植入线虫 INVS(MLT-4)和 NEK8(NEKL-2)的同源物基因组工程中,会诱导出一种功能增益的囊状表型,这种表型会被荧光标记的单聚化所抑制。使用光遗传学方法刺激 MLT-4 或 NEKL-2 的二聚化足以重现组成型活性 Inversin 复合物的表型。此外,NEKL-2的二聚化绕过了致命的MLT-4突变体,证明二聚形式是功能所必需的。我们认为,至少有两种功能上不同的状态--活性二聚体和非活性单体--之间的动态切换控制着 Inversin 复合物的输出。
{"title":"Dimerization activates the Inversin complex in <i>C. elegans</i>.","authors":"Erika Beyrent, Derek T Wei, Gwendolyn M Beacham, Sangwoo Park, Jian Zheng, Matthew J Paszek, Gunther Hollopeter","doi":"10.1091/mbc.E24-05-0218","DOIUrl":"10.1091/mbc.E24-05-0218","url":null,"abstract":"<p><p>Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static \"Inversin complex\" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in <i>C. elegans</i>, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states - an active dimer and an inactive monomer - gates the output of the Inversin complex.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers. 一种来自多极端耐受性酵母的单一septin重现了septin异质配体的许多典型功能。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-08-28 DOI: 10.1091/mbc.E24-05-0227
Grace E Hamilton, Katherine N Wadkovsky, Amy S Gladfelter

Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. Knufia petricola is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized KpAspE, a Group 5 septin from K. petricola. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. KpAspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in K. petricola cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.

形态复杂性和可塑性是多耐极端真菌的特征。蛋白是保守的细胞骨架蛋白,是细胞极性和形态发生的关键因素。它们能感知膜曲率、协调细胞分裂并影响质膜的扩散。从酵母到人类,有四种隔膜蛋白同源物是保守的,这也是研究隔膜蛋白最多的系统。但是,还有第五个opisthokont septins家族在生物化学上仍然是神秘的。这个家族的成员,即第 5 组隔蛋白,出现在丝状真菌的基因组中,但由于没有出现在子囊酵母菌中,因此研究不够深入。Knufia petricola 是一种新兴的多极端耐受性黑木耳模型,也可作为第 5 组隔蛋白的模型系统。我们重组表达了一种来自裙带菜菌的第 5 组隔蛋白 KpAspE,并对其进行了生物化学鉴定。这种隔膜本身在体外再现了典型隔膜异构体的许多功能。KpAspE是一种活性GTP酶,能形成多种同型异构体,与浅层膜弯曲结合,并与典型隔膜异型八聚体的末端亚基相互作用。这些发现提出了第 5 组隔蛋白管理由典型隔蛋白形成的高阶结构的可能性,在 K. petricola 细胞中,典型隔蛋白形成了延伸的细丝,这些发现还提供了关于隔蛋白异质异构体如何从古老的同质异构体进化而来的见解。
{"title":"A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers.","authors":"Grace E Hamilton, Katherine N Wadkovsky, Amy S Gladfelter","doi":"10.1091/mbc.E24-05-0227","DOIUrl":"10.1091/mbc.E24-05-0227","url":null,"abstract":"<p><p>Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. <i>Knufia petricola</i> is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized <i>Kp</i>AspE, a Group 5 septin from <i>K. petricola</i>. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. <i>Kp</i>AspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in <i>K. petricola</i> cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142086178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcineurin promotes adaptation to chronic stress through two distinct mechanisms. 钙调素通过两种不同的机制促进对慢性压力的适应。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-31 DOI: 10.1091/mbc.E24-03-0122
Mackenzie J Flynn, Nicholas W Harper, Rui Li, Lihua Julie Zhu, Michael J Lee, Jennifer A Benanti

Adaptation to environmental stress requires coordination between stress-defense programs and cell cycle progression. The immediate response to many stressors has been well characterized, but how cells survive in challenging environments long term is unknown. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in adaptation to chronic CaCl2 stress in Saccharomyces cerevisiae. We find that prolonged exposure to CaCl2 impairs mitochondrial function and demonstrate that cells respond to this stressor using two CN-dependent mechanisms-one that requires the downstream transcription factor Crz1 and another that is Crz1 independent. Our data indicate that CN maintains cellular fitness by promoting cell cycle progression and preventing CaCl2-induced cell death. When Crz1 is present, transient CN activation suppresses cell death and promotes adaptation despite high levels of mitochondrial loss. However, in the absence of Crz1, prolonged activation of CN prevents mitochondrial loss and further cell death by upregulating glutathione biosynthesis genes thereby mitigating damage from reactive oxygen species. These findings illustrate how cells maintain long-term fitness during chronic stress and suggest that CN promotes adaptation in challenging environments by multiple mechanisms.

对环境压力的适应需要压力防御程序和细胞周期进程之间的协调。细胞对许多应激源的即时反应已经得到了很好的描述,但细胞如何在具有挑战性的环境中长期存活却不得而知。在这里,我们研究了应激激活磷酸酶钙调磷酸酶(CN)在酿酒酵母适应慢性 CaCl2 应激中的作用。我们发现,长期暴露于 CaCl2 会损害线粒体功能,并证明细胞通过两种依赖 CN 的机制来应对这种应激,一种需要下游转录因子 Crz1,另一种则不依赖 Crz1。我们的数据表明,CN 通过促进细胞周期的进展和防止 CaCl2 诱导的细胞死亡来维持细胞的健康。当 Crz1 存在时,瞬时 CN 激活可抑制细胞死亡并促进适应,尽管线粒体损失水平很高。然而,在没有 Crz1 的情况下,CN 的长期激活可通过上调谷胱甘肽(GSH)生物合成基因防止线粒体丢失和细胞进一步死亡,从而减轻活性氧的损伤。这些发现说明了细胞如何在慢性应激过程中保持长期的适应性,并表明 CN 通过多种机制促进对挑战性环境的适应。
{"title":"Calcineurin promotes adaptation to chronic stress through two distinct mechanisms.","authors":"Mackenzie J Flynn, Nicholas W Harper, Rui Li, Lihua Julie Zhu, Michael J Lee, Jennifer A Benanti","doi":"10.1091/mbc.E24-03-0122","DOIUrl":"10.1091/mbc.E24-03-0122","url":null,"abstract":"<p><p>Adaptation to environmental stress requires coordination between stress-defense programs and cell cycle progression. The immediate response to many stressors has been well characterized, but how cells survive in challenging environments long term is unknown. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in adaptation to chronic CaCl<sub>2</sub> stress in <i>Saccharomyces cerevisiae.</i> We find that prolonged exposure to CaCl<sub>2</sub> impairs mitochondrial function and demonstrate that cells respond to this stressor using two CN-dependent mechanisms-one that requires the downstream transcription factor Crz1 and another that is Crz1 independent. Our data indicate that CN maintains cellular fitness by promoting cell cycle progression and preventing CaCl<sub>2</sub>-induced cell death. When Crz1 is present, transient CN activation suppresses cell death and promotes adaptation despite high levels of mitochondrial loss. However, in the absence of Crz1, prolonged activation of CN prevents mitochondrial loss and further cell death by upregulating glutathione biosynthesis genes thereby mitigating damage from reactive oxygen species. These findings illustrate how cells maintain long-term fitness during chronic stress and suggest that CN promotes adaptation in challenging environments by multiple mechanisms.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shared and redundant proteins coordinate signal cross-talk between MAPK pathways in yeast. 共享和冗余蛋白协调酵母中 MAPK 通路之间的信号交叉。
IF 3.1 3区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-31 DOI: 10.1091/mbc.E24-06-0270
Shu Zhang, Hao Wang, Emily L Sipko, Shuang Li, Timothy A Daugird, Wesley R Legant, Henrik G Dohlman

All cells must detect, interpret, and adapt to multiple and concurrent stimuli. While signaling pathways are highly specialized, different pathways often share components or have components with overlapping functions. In the yeast Saccharomyces cerevisiae, the high osmolarity glycerol (HOG) pathway has two seemingly redundant branches, mediated by Sln1 and Sho1. Both branches are activated by osmotic pressure, leading to phosphorylation of the MAPKs Hog1 and Kss1. The mating pathway is activated by pheromone, leading to phosphorylation of the MAPKs Fus3 and Kss1. Given that Kss1 is shared by the two pathways, we investigated its role in signal coordination. We activated both pathways with a combination of salt and pheromone, in cells lacking the shared MAPK and in cells lacking either of the redundant branches of the HOG pathway. By systematically evaluating MAPK activation, translocation, and transcription programs, we determined that Sho1 mediates cross talk between the HOG and mating pathways and does so through Kss1. Further, we show that Kss1 initiates a transcriptional program that is distinct from that induced by Hog1 and Fus3. Our findings reveal how redundant and shared components coordinate concurrent signals and thereby adapt to sudden environmental changes.

所有细胞都必须检测、解释和适应多种并发刺激。虽然信号通路高度专业化,但不同的通路往往具有共享的成分或功能重叠的成分。在酿酒酵母中,高渗透压甘油(HOG)通路有两个看似多余的分支,分别由 Sln1 和 Sho1 介导。两个分支都由渗透压激活,导致 MAPK Hog1 和 Kss1 磷酸化。交配途径由信息素激活,导致 MAPKs Fus3 和 Kss1 磷酸化。鉴于两种途径共享 Kss1,我们研究了它在信号协调中的作用。我们在缺乏共享 MAPK 的细胞和缺乏 HOG 通路冗余分支的细胞中,用盐和信息素的组合激活了这两条通路。通过系统地评估MAPK的激活、转位和转录程序,我们确定Sho1介导了HOG和交配途径之间的交叉对话,并且是通过Kss1实现的。此外,我们还发现 Kss1 启动的转录程序与 Hog1 和 Fus3 诱导的转录程序不同。我们的研究结果揭示了冗余和共享成分如何协调并发信号,从而适应突如其来的环境变化。
{"title":"Shared and redundant proteins coordinate signal cross-talk between MAPK pathways in yeast.","authors":"Shu Zhang, Hao Wang, Emily L Sipko, Shuang Li, Timothy A Daugird, Wesley R Legant, Henrik G Dohlman","doi":"10.1091/mbc.E24-06-0270","DOIUrl":"10.1091/mbc.E24-06-0270","url":null,"abstract":"<p><p>All cells must detect, interpret, and adapt to multiple and concurrent stimuli. While signaling pathways are highly specialized, different pathways often share components or have components with overlapping functions. In the yeast <i>Saccharomyces cerevisiae</i>, the high osmolarity glycerol (HOG) pathway has two seemingly redundant branches, mediated by Sln1 and Sho1. Both branches are activated by osmotic pressure, leading to phosphorylation of the MAPKs Hog1 and Kss1. The mating pathway is activated by pheromone, leading to phosphorylation of the MAPKs Fus3 and Kss1. Given that Kss1 is shared by the two pathways, we investigated its role in signal coordination. We activated both pathways with a combination of salt and pheromone, in cells lacking the shared MAPK and in cells lacking either of the redundant branches of the HOG pathway. By systematically evaluating MAPK activation, translocation, and transcription programs, we determined that Sho1 mediates cross talk between the HOG and mating pathways and does so through Kss1. Further, we show that Kss1 initiates a transcriptional program that is distinct from that induced by Hog1 and Fus3. Our findings reveal how redundant and shared components coordinate concurrent signals and thereby adapt to sudden environmental changes.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141860285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Molecular Biology of the Cell
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1