Nitrogen compounds are increasingly recognized as key modulators in nutrigenomics, with profound implications for understanding and influencing the aging process. Traditionally central to human nutrition, these compounds are now understood to play critical roles in regulating gene expression, cellular signalling, and metabolic pathways that are essential for maintaining health during aging. Nitrogen-containing molecules, such as amino acids, polyamines, and nitric oxide, contribute to vital processes including protein synthesis, mitochondrial function, and oxidative stress management. These mechanisms are crucial for cellular homeostasis but become increasingly vulnerable to disruption during aging, leading to tissue degeneration and heightened susceptibility to age-related diseases. Disruptions in nitrogen metabolism can impair proteostasis, mitochondrial bioenergetics, and antioxidant defences, accelerating cellular decline. Recent research has expanded our understanding of how nitrogen compounds interact with nutrient-sensing pathways such as mTOR and AMPK, as well as epigenetic regulators that influence DNA repair, autophagy, and inflammation. These findings highlight the therapeutic potential of optimizing nitrogen metabolism to enhance health span and mitigate the effects of aging. The emerging field of nitrogen nutrigenomics offers promising opportunities for developing targeted nutritional strategies aimed at improving quality of life and delaying age-related decline. By integrating historical perspectives with contemporary discoveries, this review underscores the complex interplay between nitrogen compounds and aging while inspiring future research into innovative interventions that harness their benefits for longevity and well-being. Ultimately, optimizing nitrogen metabolism could pave the way for new approaches to extending health span and addressing age-related health challenges.
扫码关注我们
求助内容:
应助结果提醒方式:
