Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103883
Tanya Denne , Lila C. Winfrey , Cindy Moore , Chase Whitner , Theresa D'Silva , Amala Soumyanath , Lynne Shinto , Amie Hiller , Charles K. Meshul
There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.
{"title":"Recovery of motor function is associated with rescue of glutamate biomarkers in the striatum and motor cortex following treatment with Mucuna pruriens in a murine model of Parkinsons disease","authors":"Tanya Denne , Lila C. Winfrey , Cindy Moore , Chase Whitner , Theresa D'Silva , Amala Soumyanath , Lynne Shinto , Amie Hiller , Charles K. Meshul","doi":"10.1016/j.mcn.2023.103883","DOIUrl":"10.1016/j.mcn.2023.103883","url":null,"abstract":"<div><p><span>There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). </span><span><em>Mucuna</em><em> pruriens</em></span><span> has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of </span><em>Mucuna pruriens</em><span><span><span>, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase<span> (TH) protein expression in the </span></span>nigrostriatal pathway, or </span>glutamate<span><span> biomarkers in both the striatum and motor cortex. Following </span>MPTP administration, resulting in an 80 % loss of striatal TH, treatment with </span></span><em>Mucuna pruriens</em><span> failed to rescue either striatal TH or the dopamine transporter<span> back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta<span> and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with </span></span></span><em>Mucuna pruriens</em>. This <em>Mucuna pruriens</em><span>-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins<span><span>, GLAST (EAAT1) and EAAC1 (EAAT3), and the </span>vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with </span></span><em>Mucuna pruriens</em>, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103883"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10166333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103881
Liping Zhao , Shijiang Liu , Xiaobao Zhang , Juan Yang , Mao Mao , Susu Zhang , Shiqin Xu , Shanwu Feng , Xian Wang
<div><h3>Background</h3><p><span><span>The pathophysiological mechanism underlying chemotherapy-induced neuropathic pain (CINP) remains unclear. Sensory neuronal hypersensitivity in the </span>dorsal root ganglion<span> (DRG) is essential for the onset and maintenance of chronic pain. Satellite glial cells (SGCs) in the DRG potentially affect the function of </span></span>sensory neurons<span>, possibly by mediating extracellular or paracrine signaling. Exosomes play an essential role in cell-cell communication. However, the role of SGC-secreted exosomes in glia-neuron communication and CINP remains unclear.</span></p></div><div><h3>Methods</h3><p><span><span><span>SGCs and sensory neurons were cultured from the DRG of mice. The SGCs were treated with 4 μM oxaliplatin for 24 h. Glial fibrillary </span>acid protein<span><span> (GFAP) and connexin-43 (Cx-43) expressions in the SGCs were examined with immunocytochemistry (ICC). Enzyme-linked immunosorbent assay (ELISA) detected </span>cytokine release in the SGCs after oxaliplatin treatment. Subsequently, SGC-secreted exosomes were collected using </span></span>ultracentrifugation<span> and identified by nanoparticle tracking analysis, transmission electron microscopy<span><span><span>, and western blotting. Subsequently, DRG neurons were incubated with SGC-secreted exosomes for 24 h. The percentage of </span>reactive oxygen species (ROS)-positive neurons was detected using flow cytometry, and acid-sensing ion channel 3 (ASIC3) and </span>transient receptor potential vanilloid 1 (TRPV1) expression were examined by western blotting. SGC-secreted exosomes were intrathecally injected into naïve mice. The mechanical withdrawal threshold was assessed 24, 48, and 72 h following the injection. TRPV1 expression in the DRG was examined 72 h after </span></span></span>intrathecal<span><span> injection. Furthermore, differentially expressed (DE) miRNAs within the SGC-secreted exosomes were detected using </span>RNA sequencing<span> and bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses were performed to predict the function of the target genes of DE miRNAs. Finally, the DE miRNAs with pain regulation potential were identified in silico.</span></span></p></div><div><h3>Results</h3><p><span><span>After in-vitro oxaliplatin treatment, ICC showed an increase in the immunoreactivity of GFAP and Cx-43 in the SGCs. ELISA results suggested an increased release of tumor necrosis factor-α and </span>interleukin (IL)-1β, but a decreased release of IL-10. Oxaliplatin treatment increased the secretion of exosomes in the SGCs from 4.34 to 5.99 × 10</span><sup>11</sup><span> (particles/ml). The exosome-specific markers CD9<span><span> and TSG101<span><span> were positive, whereas calnexin was negative for the obtained exosomes. Additionally, the SGC-secreted exosomes were endocytosed by DRG neurons after co-incubation. Moreover, after incubati
{"title":"Satellite glial cell-secreted exosomes after in-vitro oxaliplatin treatment presents a pro-nociceptive effect for dorsal root ganglion neurons and induce mechanical hypersensitivity in naïve mice","authors":"Liping Zhao , Shijiang Liu , Xiaobao Zhang , Juan Yang , Mao Mao , Susu Zhang , Shiqin Xu , Shanwu Feng , Xian Wang","doi":"10.1016/j.mcn.2023.103881","DOIUrl":"10.1016/j.mcn.2023.103881","url":null,"abstract":"<div><h3>Background</h3><p><span><span>The pathophysiological mechanism underlying chemotherapy-induced neuropathic pain (CINP) remains unclear. Sensory neuronal hypersensitivity in the </span>dorsal root ganglion<span> (DRG) is essential for the onset and maintenance of chronic pain. Satellite glial cells (SGCs) in the DRG potentially affect the function of </span></span>sensory neurons<span>, possibly by mediating extracellular or paracrine signaling. Exosomes play an essential role in cell-cell communication. However, the role of SGC-secreted exosomes in glia-neuron communication and CINP remains unclear.</span></p></div><div><h3>Methods</h3><p><span><span><span>SGCs and sensory neurons were cultured from the DRG of mice. The SGCs were treated with 4 μM oxaliplatin for 24 h. Glial fibrillary </span>acid protein<span><span> (GFAP) and connexin-43 (Cx-43) expressions in the SGCs were examined with immunocytochemistry (ICC). Enzyme-linked immunosorbent assay (ELISA) detected </span>cytokine release in the SGCs after oxaliplatin treatment. Subsequently, SGC-secreted exosomes were collected using </span></span>ultracentrifugation<span> and identified by nanoparticle tracking analysis, transmission electron microscopy<span><span><span>, and western blotting. Subsequently, DRG neurons were incubated with SGC-secreted exosomes for 24 h. The percentage of </span>reactive oxygen species (ROS)-positive neurons was detected using flow cytometry, and acid-sensing ion channel 3 (ASIC3) and </span>transient receptor potential vanilloid 1 (TRPV1) expression were examined by western blotting. SGC-secreted exosomes were intrathecally injected into naïve mice. The mechanical withdrawal threshold was assessed 24, 48, and 72 h following the injection. TRPV1 expression in the DRG was examined 72 h after </span></span></span>intrathecal<span><span> injection. Furthermore, differentially expressed (DE) miRNAs within the SGC-secreted exosomes were detected using </span>RNA sequencing<span> and bioinformatics analysis. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway analyses were performed to predict the function of the target genes of DE miRNAs. Finally, the DE miRNAs with pain regulation potential were identified in silico.</span></span></p></div><div><h3>Results</h3><p><span><span>After in-vitro oxaliplatin treatment, ICC showed an increase in the immunoreactivity of GFAP and Cx-43 in the SGCs. ELISA results suggested an increased release of tumor necrosis factor-α and </span>interleukin (IL)-1β, but a decreased release of IL-10. Oxaliplatin treatment increased the secretion of exosomes in the SGCs from 4.34 to 5.99 × 10</span><sup>11</sup><span> (particles/ml). The exosome-specific markers CD9<span><span> and TSG101<span><span> were positive, whereas calnexin was negative for the obtained exosomes. Additionally, the SGC-secreted exosomes were endocytosed by DRG neurons after co-incubation. Moreover, after incubati","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103881"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10167107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103880
Charlotte Laurfelt Munch Rasmussen , Louiza Bohn Thomsen , Christian Würtz Heegaard , Torben Moos , Annette Burkhart
Introduction
Niemann-Pick type C2 disease (NP-C2) is a fatal neurovisceral disorder caused by defects in the lysosomal cholesterol transporter protein NPC2. Consequently, cholesterol and other lipids accumulate within the lysosomes, causing a heterogeneous spectrum of clinical manifestations. Murine models are essential for increasing the understanding of the complex pathology of NP-C2. This study, therefore, aims to describe the neurovisceral pathology in the NPC2-deficient mouse model to evaluate its correlation to human NP-C2.
Methods
Npc2−/− mice holding the LST105 mutation were used in the present study (Npc2Gt(LST105)BygNya). Body and organ weight and histopathological evaluations were carried out in six and 12-week-old Npc2−/− mice, with a special emphasis on neuropathology. The Purkinje cell (PC) marker calbindin, the astrocytic marker GFAP, and the microglia marker IBA1 were included to assess PC degeneration and neuroinflammation, respectively. In addition, the pathology of the liver, lungs, and spleen was assessed using hematoxylin and eosin staining.
Results
Six weeks old pre-symptomatic Npc2−/− mice showed splenomegaly and obvious neuropathological changes, especially in the cerebellum, where initial PC loss and neuroinflammation were evident. The Npc2−/− mice developed neurological symptoms at eight weeks of age, severely progressing until the end-stage of the disease at 12 weeks. At the end-stage of the disease, Npc2−/− mice were characterized by growth retardation, tremor, cerebellar ataxia, splenomegaly, foam cell accumulation in the lungs, liver, and spleen, brain atrophy, pronounced PC degeneration, and severe neuroinflammation.
Conclusion
The Npc2Gt(LST105)BygNya mouse model resembles the pathology seen in NP-C2 patients and denotes a valuable model for increasing the understanding of the complex disease manifestation and is relevant for testing the efficacies of new treatment strategies.
{"title":"The Npc2Gt(LST105)BygNya mouse signifies pathological changes comparable to human Niemann-Pick type C2 disease","authors":"Charlotte Laurfelt Munch Rasmussen , Louiza Bohn Thomsen , Christian Würtz Heegaard , Torben Moos , Annette Burkhart","doi":"10.1016/j.mcn.2023.103880","DOIUrl":"https://doi.org/10.1016/j.mcn.2023.103880","url":null,"abstract":"<div><h3>Introduction</h3><p><span>Niemann-Pick type C2 disease (NP-C2) is a fatal neurovisceral disorder caused by defects in the lysosomal cholesterol transporter protein NPC2. Consequently, cholesterol and other lipids accumulate within the </span>lysosomes, causing a heterogeneous spectrum of clinical manifestations. Murine models are essential for increasing the understanding of the complex pathology of NP-C2. This study, therefore, aims to describe the neurovisceral pathology in the NPC2-deficient mouse model to evaluate its correlation to human NP-C2.</p></div><div><h3>Methods</h3><p><em>Npc2</em>−/− mice holding the LST105 mutation were used in the present study (<em>Npc2</em><sup><em>Gt(LST105)BygNya</em></sup>). Body and organ weight and histopathological evaluations were carried out in six and 12-week-old <em>Npc2</em><span><span>−/− mice, with a special emphasis on neuropathology. The Purkinje cell<span> (PC) marker calbindin, the astrocytic marker </span></span>GFAP<span><span>, and the microglia<span> marker IBA1 were included to assess PC degeneration and neuroinflammation, respectively. In addition, the pathology of the liver, lungs, and spleen was assessed using </span></span>hematoxylin<span><span> and eosin </span>staining.</span></span></span></p></div><div><h3>Results</h3><p>Six weeks old pre-symptomatic <em>Npc2</em><span>−/− mice showed splenomegaly and obvious neuropathological changes, especially in the cerebellum, where initial PC loss and neuroinflammation were evident. The </span><em>Npc2</em>−/− mice developed neurological symptoms at eight weeks of age, severely progressing until the end-stage of the disease at 12 weeks. At the end-stage of the disease, <em>Npc2</em><span>−/− mice were characterized by growth retardation, tremor, cerebellar ataxia, splenomegaly, foam cell accumulation in the lungs, liver, and spleen, brain atrophy, pronounced PC degeneration, and severe neuroinflammation.</span></p></div><div><h3>Conclusion</h3><p>The <em>Npc2</em><sup><em>Gt(LST105)BygNya</em></sup> mouse model resembles the pathology seen in NP-C2 patients and denotes a valuable model for increasing the understanding of the complex disease manifestation and is relevant for testing the efficacies of new treatment strategies.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103880"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49858578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103884
Haicong Zhou , Jiao Wang , Tieqiao Wen
Owing to the continuous increase in human life expectancy, the management of aging-related diseases has become an urgent issue. The brain dominates the central nervous system; therefore, brain aging is a key area of aging-related research. We previously uncovered that dendritic cell factor 1 (Dcf1) maintains the stemness of neural stem cells and its expression in Drosophila can prolong lifespan, suggesting an association between Dcf1 and aging; however, the specific underlying neural mechanism remains unclear. In the present study, we show for the first time that hippocampal neurogenesis is decreased in aged Dcf1−/− mice, which leads to a decrease in the number of brain neurons and an increased number of senescent cells. Moreover, astrocytes proliferate abnormally and express elevated mRNA levels of aging-related factors, in addition to displaying increased activation of Akt and Foxo3a. Finally, behavioral tests confirm that aged Dcf1−/− mice exhibit a significant decline in cognitive abilities related to learning and memory. In conclusion, we reveal a novel mechanism underlying brain aging triggered by Dcf1 deficiency at the molecular, cellular, tissue, and behavioral levels, providing a new perspective for the exploration of brain aging.
{"title":"The molecular neural mechanism underlying the acceleration of brain aging due to Dcf1 deficiency","authors":"Haicong Zhou , Jiao Wang , Tieqiao Wen","doi":"10.1016/j.mcn.2023.103884","DOIUrl":"10.1016/j.mcn.2023.103884","url":null,"abstract":"<div><p><span>Owing to the continuous increase in human life expectancy, the management of aging-related diseases has become an urgent issue. The brain dominates the central nervous system<span>; therefore, brain aging is a key area of aging-related research. We previously uncovered that dendritic cell factor 1 (</span></span><em>Dcf1</em><span>) maintains the stemness of neural stem cells and its expression in </span><em>Drosophila</em> can prolong lifespan, suggesting an association between <em>Dcf1</em><span> and aging; however, the specific underlying neural mechanism remains unclear. In the present study, we show for the first time that hippocampal neurogenesis is decreased in aged </span><em>Dcf1</em><sup>−/−</sup> mice, which leads to a decrease in the number of brain neurons and an increased number of senescent cells. Moreover, astrocytes proliferate abnormally and express elevated mRNA levels of aging-related factors, in addition to displaying increased activation of Akt and Foxo3a. Finally, behavioral tests confirm that aged <em>Dcf1</em><sup>−/−</sup> mice exhibit a significant decline in cognitive abilities related to learning and memory. In conclusion, we reveal a novel mechanism underlying brain aging triggered by <em>Dcf1</em> deficiency at the molecular, cellular, tissue, and behavioral levels, providing a new perspective for the exploration of brain aging.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103884"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10166324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103857
Parth Bhatia , Lite Yang , Jay X.J. Luo , Mengyi Xu , William Renthal
The nucleus accumbens (NAc) is a key brain region involved in reward processing and is linked to multiple neuropsychiatric conditions such as substance use disorder, depression, and chronic pain. Recent studies have begun to investigate NAc gene expression at a single-cell resolution, however, our understanding of the cellular heterogeneity of the NAc epigenomic landscape remains limited. In this study, we utilize single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) to map cell-type-specific differences in chromatin accessibility in the NAc. Our findings not only reveal the transcription factors and putative gene regulatory elements that may contribute to these cell-type-specific epigenomic differences but also provide a valuable resource for future studies investigating epigenomic changes that occur in neuropsychiatric disorders.
{"title":"Epigenomic profiling of mouse nucleus accumbens at single-cell resolution","authors":"Parth Bhatia , Lite Yang , Jay X.J. Luo , Mengyi Xu , William Renthal","doi":"10.1016/j.mcn.2023.103857","DOIUrl":"10.1016/j.mcn.2023.103857","url":null,"abstract":"<div><p><span>The nucleus accumbens (NAc) is a key brain region involved in reward processing and is linked to multiple neuropsychiatric conditions such as substance use disorder, depression, and chronic pain. Recent studies have begun to investigate NAc gene expression at a single-cell resolution, however, our understanding of the cellular heterogeneity of the NAc </span>epigenomic<span> landscape remains limited. In this study, we utilize single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) to map cell-type-specific differences in chromatin accessibility in the NAc. Our findings not only reveal the transcription factors and putative gene regulatory elements that may contribute to these cell-type-specific epigenomic differences but also provide a valuable resource for future studies investigating epigenomic changes that occur in neuropsychiatric disorders.</span></p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103857"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10162453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103864
Rafael Bandeira Fabres , Débora Sterzeck Cardoso , Brian Aranibar Aragón , Bruna Petrucelli Arruda , Pamela Pinheiro Martins , Juliane Midori Ikebara , Alexander Drobyshevsky , Alexandre Hiroaki Kihara , Luciano Stürmer de Fraga , Carlos Alexandre Netto , Silvia Honda Takada
Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.
{"title":"Consequences of oxygen deprivation on myelination and sex-dependent alterations","authors":"Rafael Bandeira Fabres , Débora Sterzeck Cardoso , Brian Aranibar Aragón , Bruna Petrucelli Arruda , Pamela Pinheiro Martins , Juliane Midori Ikebara , Alexander Drobyshevsky , Alexandre Hiroaki Kihara , Luciano Stürmer de Fraga , Carlos Alexandre Netto , Silvia Honda Takada","doi":"10.1016/j.mcn.2023.103864","DOIUrl":"10.1016/j.mcn.2023.103864","url":null,"abstract":"<div><p><span>Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period<span>. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The </span></span>myelin<span><span> sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes<span>, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the </span></span>central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.</span></p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103864"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10165257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103866
Shayla A. Vradenburgh , Amy L. Van Deusen , Allison N. Beachum , Jacqueline M. Moats , Ashley K. Hirt , Christopher D. Deppmann , Austin B. Keeler , Eli R. Zunder
Development of neuronal and glial populations in the dorsal root ganglia (DRG) is required for detection of touch, body position, temperature, and noxious stimuli. While female-male differences in somatosensory perception have been previously reported, no study has examined global sex differences in the abundance of DRG cell types, and the developmental origin of these differences has not been characterized. To investigate whether sex-specific differences in neuronal and glial cell types arise in the DRG during development, we performed single-cell mass cytometry analysis on sex-separated DRGs from 4 separate litter replicates of postnatal day 0 (P0) C57/BL6 mouse pups. In this analysis, we observed that females had a higher abundance of total neurons (p = 0.0266), as well as an increased abundance of TrkB+ (p = 0.031) and TrkC+ (p = 0.04) neurons for mechanoreception and proprioception, while males had a higher abundance of TrkA+ (p = 0.025) neurons for thermoreception and nociception. Pseudotime comparison of the female and male datasets indicates that male neurons are more mature and differentiated than female neurons at P0. These findings warrant further studies to determine whether these differences are maintained across development, and their impact on somatosensory perception.
{"title":"Sexual dimorphism in the dorsal root ganglia of neonatal mice identified by protein expression profiling with single-cell mass cytometry","authors":"Shayla A. Vradenburgh , Amy L. Van Deusen , Allison N. Beachum , Jacqueline M. Moats , Ashley K. Hirt , Christopher D. Deppmann , Austin B. Keeler , Eli R. Zunder","doi":"10.1016/j.mcn.2023.103866","DOIUrl":"10.1016/j.mcn.2023.103866","url":null,"abstract":"<div><p><span><span>Development of neuronal and glial populations in the dorsal root ganglia (DRG) is required for detection of touch, body position, temperature, and noxious stimuli. While female-male differences in somatosensory perception have been previously reported, no study has examined global sex differences in the abundance of DRG cell types, and the developmental origin of these differences has not been characterized. To investigate whether sex-specific differences in neuronal and </span>glial cell<span> types arise in the DRG during development, we performed single-cell mass cytometry analysis on sex-separated DRGs from 4 separate litter replicates of postnatal day 0 (P0) C57/BL6 mouse pups. In this analysis, we observed that females had a higher abundance of total neurons (p = 0.0266), as well as an increased abundance of TrkB</span></span><sup>+</sup> (p = 0.031) and TrkC<sup>+</sup><span> (p = 0.04) neurons for mechanoreception and proprioception, while males had a higher abundance of TrkA</span><sup>+</sup><span> (p = 0.025) neurons for thermoreception and nociception. Pseudotime comparison of the female and male datasets indicates that male neurons are more mature and differentiated than female neurons at P0. These findings warrant further studies to determine whether these differences are maintained across development, and their impact on somatosensory perception.</span></p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103866"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.mcn.2023.103882
Katarzyna Grycel , Nick Y. Larsen , Yinghang Feng , Klaus Qvortrup , Poul Henning Jensen , Mishal Fayyaz , Malene G. Madsen , Jens Midtgaard , Zhiheng Xu , Stine Hasselholt , Jens R. Nyengaard
Collapsin response mediator protein 2 (CRMP2) is a member of a protein family, which is highly involved in neurodevelopment, but most of its members become heavily downregulated in adulthood. CRMP2 is an important factor in neuronal polarization, axonal formation and growth cone collapse. The protein remains expressed in adulthood, but is more region specific. CRMP2 is present in adult corpus callosum (CC) and in plastic areas like prefrontal cortex and hippocampus. CRMP2 has been implicated as one of the risk-genes for Schizophrenia (SZ). Here, a CRMP2 conditional knockout (CRMP2-cKO) mouse was used as a model of SZ to investigate how it could affect the white matter and therefore brain connectivity.
Multielectrode electrophysiology (MEA) was used to study the function of corpus callosum showing an increase in conduction velocity (CV) measured as Compound Action Potentials (CAPs) in acute brain slices. Light- and electron-microscopy, specifically Serial Block-face Scanning Electron Microscopy (SBF-SEM), methods were used to study the structure of CC in CRMP2-cKO mice. A decrease in CC volume of CRMP2-cKO mice as compared to controls was observed. No differences were found in numbers nor in the size of CC oligodendrocytes (OLs). Similarly, no differences were found in myelin thickness or in node of Ranvier (NR) structure. In contrast, abnormally smaller axons were measured in the CRMP2-cKO mice.
Using these state-of-the-art methods it was possible to shed light on specific parts of the dysconnectivity aspect of deletion of CRMP2 related to SZ and add details to previous findings helping further understanding the disease. This paper substantiates the white matter changes in the absence of CRMP2 and ties it to the role it plays in this complex disorder.
{"title":"CRMP2 conditional knockout changes axonal function and ultrastructure of axons in mice corpus callosum","authors":"Katarzyna Grycel , Nick Y. Larsen , Yinghang Feng , Klaus Qvortrup , Poul Henning Jensen , Mishal Fayyaz , Malene G. Madsen , Jens Midtgaard , Zhiheng Xu , Stine Hasselholt , Jens R. Nyengaard","doi":"10.1016/j.mcn.2023.103882","DOIUrl":"10.1016/j.mcn.2023.103882","url":null,"abstract":"<div><p>Collapsin response mediator protein 2 (CRMP2) is a member of a protein family, which is highly involved in neurodevelopment, but most of its members become heavily downregulated in adulthood. CRMP2 is an important factor in neuronal polarization, axonal formation and growth cone collapse. The protein remains expressed in adulthood, but is more region specific. CRMP2 is present in adult corpus callosum (CC) and in plastic areas like prefrontal cortex and hippocampus. CRMP2 has been implicated as one of the risk-genes for Schizophrenia (SZ). Here, a CRMP2 conditional knockout (CRMP2-cKO) mouse was used as a model of SZ to investigate how it could affect the white matter and therefore brain connectivity.</p><p>Multielectrode electrophysiology (MEA) was used to study the function of corpus callosum showing an increase in conduction velocity (CV) measured as Compound Action Potentials (CAPs) in acute brain slices. Light- and electron-microscopy, specifically Serial Block-face Scanning Electron Microscopy (SBF-SEM), methods were used to study the structure of CC in CRMP2-cKO mice. A decrease in CC volume of CRMP2-cKO mice as compared to controls was observed. No differences were found in numbers nor in the size of CC oligodendrocytes (OLs). Similarly, no differences were found in myelin thickness or in node of Ranvier (NR) structure. In contrast, abnormally smaller axons were measured in the CRMP2-cKO mice.</p><p>Using these state-of-the-art methods it was possible to shed light on specific parts of the dysconnectivity aspect of deletion of CRMP2 related to SZ and add details to previous findings helping further understanding the disease. This paper substantiates the white matter changes in the absence of CRMP2 and ties it to the role it plays in this complex disorder.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"126 ","pages":"Article 103882"},"PeriodicalIF":3.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10169072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30DOI: 10.1016/j.mcn.2023.103898
Anne E. West , Jeremy J. Day
{"title":"Genetics and epigenetics approaches as a path to the future of addiction science","authors":"Anne E. West , Jeremy J. Day","doi":"10.1016/j.mcn.2023.103898","DOIUrl":"10.1016/j.mcn.2023.103898","url":null,"abstract":"","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"127 ","pages":"Article 103898"},"PeriodicalIF":3.5,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10140767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.1016/j.mcn.2023.103895
Chen Mo , Zhenyao Ye , Yezhi Pan , Yuan Zhang , Qiong Wu , Chuan Bi , Song Liu , Braxton Mitchell , Peter Kochunov , L. Elliot Hong , Tianzhou Ma , Shuo Chen
In the last two decades of Genome-wide association studies (GWAS), nicotine-dependence-related genetic loci (e.g., nicotinic acetylcholine receptor – nAChR subunit genes) are among the most replicable genetic findings. Although GWAS results have reported tens of thousands of SNPs within these loci, further analysis (e.g., fine-mapping) is required to identify the causal variants. However, it is computationally challenging for existing fine-mapping methods to reliably identify causal variants from thousands of candidate SNPs based on the posterior inclusion probability. To address this challenge, we propose a new method to select SNPs by jointly modeling the SNP-wise inference results and the underlying structured network patterns of the linkage disequilibrium (LD) matrix. We use adaptive dense subgraph extraction method to recognize the latent network patterns of the LD matrix and then apply group LASSO to select causal variant candidates. We applied this new method to the UK biobank data to identify the causal variant candidates for nicotine addiction. Eighty-one nicotine addiction-related SNPs (i.e.,-log(p) > 50) of nAChR were selected, which are highly correlated (average ) although they are physically distant (e.g., >200 kilobase away) and from various genes. These findings revealed that distant SNPs from different genes can show higher LD than their neighboring SNPs, and jointly contribute to a complex trait like nicotine addiction.
{"title":"An in-depth association analysis of genetic variants within nicotine-related loci: Meeting in middle of GWAS and genetic fine-mapping","authors":"Chen Mo , Zhenyao Ye , Yezhi Pan , Yuan Zhang , Qiong Wu , Chuan Bi , Song Liu , Braxton Mitchell , Peter Kochunov , L. Elliot Hong , Tianzhou Ma , Shuo Chen","doi":"10.1016/j.mcn.2023.103895","DOIUrl":"10.1016/j.mcn.2023.103895","url":null,"abstract":"<div><p><span><span>In the last two decades of Genome-wide association studies (GWAS), nicotine-dependence-related genetic loci<span> (e.g., nicotinic acetylcholine receptor – nAChR subunit genes) are among the most replicable genetic findings. Although GWAS results have reported tens of thousands of </span></span>SNPs<span> within these loci, further analysis (e.g., fine-mapping) is required to identify the causal variants. However, it is computationally challenging for existing fine-mapping methods to reliably identify causal variants from thousands of candidate SNPs based on the posterior inclusion probability. To address this challenge, we propose a new method to select SNPs by jointly modeling the SNP-wise inference results and the underlying structured network patterns of the linkage disequilibrium (LD) matrix. We use adaptive dense subgraph extraction method to recognize the latent network patterns of the LD matrix and then apply group LASSO to select causal variant candidates. We applied this new method to the UK biobank data to identify the causal variant candidates for nicotine addiction. Eighty-one nicotine addiction-related SNPs (i.e.,-log(p) > 50) of nAChR were selected, which are highly correlated (average </span></span><span><math><msup><mi>r</mi><mn>2</mn></msup><mo>></mo><mn>0.8</mn></math></span>) although they are physically distant (e.g., >200 kilobase away) and from various genes. These findings revealed that distant SNPs from different genes can show higher LD <span><math><msup><mi>r</mi><mn>2</mn></msup></math></span> than their neighboring SNPs, and jointly contribute to a complex trait like nicotine addiction.</p></div>","PeriodicalId":18739,"journal":{"name":"Molecular and Cellular Neuroscience","volume":"127 ","pages":"Article 103895"},"PeriodicalIF":3.5,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}