The ligand-activated transcription factor, androgen receptor (AR) plays a central role in the development and progression of prostate cancer. Prostate cancer initiates as an androgen-dependent disease and further accumulation of multiple sequential genetic and epigenetic alterations transform it into an aggressive, castration-resistant prostate cancer (CRPC). The molecular basis of the transition from androgen-dependent prostate cancer to CRPC remains unclear. However, it is apparent that AR plays a pivotal role in this alteration. The recent discovery that microRNAs (miRNAs) can target the function of AR suggests a functional role of these non-coding RNAs in the pathogenesis of prostate cancer. miRNAs usually function by targeting the 3' untranslated region (UTR) of a mRNA by base-pairing interactions and modulate translation either by destabilizing the message or by repression of protein synthesis in actively translating ribosomes. Here, we discuss the potential molecular pathways through which AR targeting miRNAs may promote CRPC. Modulation of AR expression by miRNAs presents a novel therapeutic option for prostate cancer, albeit it will likely be used in combination with the existing therapies.
L-dopa is one of the best treatments for the motor symptoms of Parkinson's disease. However, its use is limited by the fact that it provides only symptomatic relief and chronic therapy leads to dyskinesias. There is therefore a continual search for novel therapeutic approaches. Nicotine, a drug that acts at nicotinic acetylcholine receptors (nAChRs), has been shown to protect against nigrostriatal damage and reduce L-dopa-induced dyskinesias. NAChRs may therefore represent novel targets for Parkinson's disease management. Since there are multiple nAChRs throughout the body, it is important to understand the subtypes involved in striatal function to allow for the development of drugs with optimal beneficial effects. Here we discuss recent work from our laboratory which indicates that α6β2* and α4β2* nAChRs are key in regulating striatal dopaminergic function. Experiments in parkinsonian rats using cyclic voltammetry showed that both α6β2* and α4β2* nAChR-mediated evoked-dopamine release in striatal slices is affected by nigrostriatal damage. These subtypes also appear to be important for neuroprotection against nigrostriatal damage and the nicotine-mediated reduction in L-dopa-induced dyskinesias in parkinsonian animal models. Our combined findings indicate that α4β2* and α6β2* nAChRs may represent useful therapeutic targets for Parkinson's disease.
The remarkable discovery of small noncoding microRNAs (miRNAs) and their role in posttranscriptional gene regulation have revealed another fine-tuning step in the expression of genetic information. A large number of cellular pathways, which act in organismal development and are important in health and disease, appear to be modulated by miRNAs. At the molecular level, miRNAs restrain the production of proteins by affecting the stability of their target mRNA and/or by down-regulating their translation. This review attempts to offer a snapshot of aspects of miRNA coding, processing, target recognition and function in animals. Our goal here is to provide the readers with a thought-provoking and mechanistic introduction to the miRNA world rather than with a detailed encyclopedia.
A recent study reports that histone deacetylase (HDAC) inhibitors, AR42 and MS- 275, upregulated H3K4 methylation marks in prostate cancer cells, leading to transcriptional activation of genes including those associated with roles in tumor suppression and cell differentiation (1). Evidence suggests that the crosstalk between histone deacetylation and histone H3K4 methylation is attributable to the ability of these HDAC inhibitors to repress the JARID1 family of histone H3 lysine 4 demethylases (H3K4DMs), including RBP2, PLU-1, SMCX, and LSD1, through the downregulation of Sp1 expression. This demonstrates the complexity of the functional roles of HDACs in the regulation of histone modifications as well as the activation of epigenetically silenced gene expression. Equally important is the ability of HDAC inhibitors to transcriptionally suppress H3K4DM gene expression which has therapeutic implications, in that several H3K4DMs such as LSD1 and PLU-1 have been implicated in the pathogenesis of many types of malignancies.
One of the most common and profound biochemical phenotypes of animal and human cancer cells is their ability to metabolize glucose at high rates, even under aerobic conditions. Such alterations lead to establishment of tumor-specific metabolic machinery that is sufficient for supporting the biosynthetic and energy requirements of the tumor cells for facilitating rapid tumor growth and adaptation to new metastatic niches. These changes entail rapid glycolysis by the tumor cells, shifting the flux of glucose from tricarboxylic acid (TCA) cycle to glycolysis, resulting in generation of vast amounts of lactate, which is then secreted outside the tumor cells. This phenomenon is also termed as Warburg effect, as originally described by Otto Warburg. Several oncogenes and tumor suppressors have been implicated in altering tumor cell metabolism in order to facilitate tumor growth and metastasis. MicroRNAs mediate fine-tuning of the cancerassociated glycolytic pathways either directly or at the level of oncogenes. This article intends to review the mechanisms and pathways by which miRNAs regulate the aerobic glycolysis in cancer.