The normal function of the extrinsic apoptotic pathway is to mediate apoptosis. Thus, this pathway is generally recognized to be critical in host immune surveillance against cancer. However, many studies have suggested that some key components in this pathway including Fas, death receptor 5 (DR5), Fas-associated death domain (FADD) and caspase-8 may contribute to cancer growth or metastasis. Our recent study on DR5 and caspase-8 expression in human head and neck cancer tissues indicate that high caspase-8 either alone or along with high DR5 in tumor tissue from patients with lymph node metastasis is significantly associated with poor disease-free survival and overall survival, suggesting that these proteins may be involved in positive regulation of cancer metastasis. Thus, efforts should be made to better understand the role of the death receptor 5/FADD/caspase-8 death signaling in regulation of cancer metastasis.
{"title":"Understanding the Role of the Death Receptor 5/FADD/caspase-8 Death Signaling in Cancer Metastasis.","authors":"Shi-Yong Sun","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The normal function of the extrinsic apoptotic pathway is to mediate apoptosis. Thus, this pathway is generally recognized to be critical in host immune surveillance against cancer. However, many studies have suggested that some key components in this pathway including Fas, death receptor 5 (DR5), Fas-associated death domain (FADD) and caspase-8 may contribute to cancer growth or metastasis. Our recent study on DR5 and caspase-8 expression in human head and neck cancer tissues indicate that high caspase-8 either alone or along with high DR5 in tumor tissue from patients with lymph node metastasis is significantly associated with poor disease-free survival and overall survival, suggesting that these proteins may be involved in positive regulation of cancer metastasis. Thus, efforts should be made to better understand the role of the death receptor 5/FADD/caspase-8 death signaling in regulation of cancer metastasis.</p>","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"3 1","pages":"31-34"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3066014/pdf/nihms278256.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29789575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01DOI: 10.4255/MCPHARMACOL.11.13
Girish C. Shukla, Jagjit Singh, S. Barik
The remarkable discovery of small noncoding microRNAs (miRNAs) and their role in posttranscriptional gene regulation have revealed another fine-tuning step in the expression of genetic information. A large number of cellular pathways, which act in organismal development and are important in health and disease, appear to be modulated by miRNAs. At the molecular level, miRNAs restrain the production of proteins by affecting the stability of their target mRNA and/or by down-regulating their translation. This review attempts to offer a snapshot of aspects of miRNA coding, processing, target recognition and function in animals. Our goal here is to provide the readers with a thought-provoking and mechanistic introduction to the miRNA world rather than with a detailed encyclopedia.
{"title":"MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions.","authors":"Girish C. Shukla, Jagjit Singh, S. Barik","doi":"10.4255/MCPHARMACOL.11.13","DOIUrl":"https://doi.org/10.4255/MCPHARMACOL.11.13","url":null,"abstract":"The remarkable discovery of small noncoding microRNAs (miRNAs) and their role in posttranscriptional gene regulation have revealed another fine-tuning step in the expression of genetic information. A large number of cellular pathways, which act in organismal development and are important in health and disease, appear to be modulated by miRNAs. At the molecular level, miRNAs restrain the production of proteins by affecting the stability of their target mRNA and/or by down-regulating their translation. This review attempts to offer a snapshot of aspects of miRNA coding, processing, target recognition and function in animals. Our goal here is to provide the readers with a thought-provoking and mechanistic introduction to the miRNA world rather than with a detailed encyclopedia.","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"15 1","pages":"83-92"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84330507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-01-01DOI: 10.4255/MCPHARMACOL.11.15
K. Sikand, S. Barik, Girish C. Shukla
The ligand-activated transcription factor, androgen receptor (AR) plays a central role in the development and progression of prostate cancer. Prostate cancer initiates as an androgen-dependent disease and further accumulation of multiple sequential genetic and epigenetic alterations transform it into an aggressive, castration-resistant prostate cancer (CRPC). The molecular basis of the transition from androgen-dependent prostate cancer to CRPC remains unclear. However, it is apparent that AR plays a pivotal role in this alteration. The recent discovery that microRNAs (miRNAs) can target the function of AR suggests a functional role of these non-coding RNAs in the pathogenesis of prostate cancer. miRNAs usually function by targeting the 3' untranslated region (UTR) of a mRNA by base-pairing interactions and modulate translation either by destabilizing the message or by repression of protein synthesis in actively translating ribosomes. Here, we discuss the potential molecular pathways through which AR targeting miRNAs may promote CRPC. Modulation of AR expression by miRNAs presents a novel therapeutic option for prostate cancer, albeit it will likely be used in combination with the existing therapies.
{"title":"MicroRNAs and Androgen Receptor 3' Untranslated Region: A Missing Link in Castration-resistant Prostate Cancer?","authors":"K. Sikand, S. Barik, Girish C. Shukla","doi":"10.4255/MCPHARMACOL.11.15","DOIUrl":"https://doi.org/10.4255/MCPHARMACOL.11.15","url":null,"abstract":"The ligand-activated transcription factor, androgen receptor (AR) plays a central role in the development and progression of prostate cancer. Prostate cancer initiates as an androgen-dependent disease and further accumulation of multiple sequential genetic and epigenetic alterations transform it into an aggressive, castration-resistant prostate cancer (CRPC). The molecular basis of the transition from androgen-dependent prostate cancer to CRPC remains unclear. However, it is apparent that AR plays a pivotal role in this alteration. The recent discovery that microRNAs (miRNAs) can target the function of AR suggests a functional role of these non-coding RNAs in the pathogenesis of prostate cancer. miRNAs usually function by targeting the 3' untranslated region (UTR) of a mRNA by base-pairing interactions and modulate translation either by destabilizing the message or by repression of protein synthesis in actively translating ribosomes. Here, we discuss the potential molecular pathways through which AR targeting miRNAs may promote CRPC. Modulation of AR expression by miRNAs presents a novel therapeutic option for prostate cancer, albeit it will likely be used in combination with the existing therapies.","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"85 1","pages":"107-113"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75372979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The disorder of microRNAs (miRNAs) often referred as 'micromanagers of gene expression' has been implicated with a vast array of neoplasmthe discovery establishes an important connection with the etiology, diagnosis and potential therapy of human cancer. Indeed, the wide range of profiling studies enabled to create miRNA signatures of solid tumors as well as cancers of blood origin. MiRNAs have been observed to play a significant role in the regulation of gene expression-a critical aspect of many biological processes, including cell development, differentiation, apoptosis and proliferation. The differential expression levels of miRNAs in tumors and their normal counterpart have enabled scientists to designate their roles as oncomir or tumor suppressor. Interestingly, the diminishment of oncogenic or enhanced levels of tumor suppressor miRNAs (antagomirs) have been reported to modulate the sensitivity of cancer cells to anticancer agents. To the other end, carcinogenic chemicals either possess the ability of silencing beneficial tumor suppressive miRNAs or maintain the augmented levels of their oncogenic counterpart. In this article we provide a comprehensive overview on the modulation of these "micromanaging oligos" by cancer causing as well as cancer preventing agents.
{"title":"Modulation of MicroRNAs by Chemical Carcinogens and Anticancer Drugs in Human Cancer: Potential Inkling to Therapeutic Advantage.","authors":"Subrata Haldar, Aruna Basu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The disorder of microRNAs (miRNAs) often referred as 'micromanagers of gene expression' has been implicated with a vast array of neoplasmthe discovery establishes an important connection with the etiology, diagnosis and potential therapy of human cancer. Indeed, the wide range of profiling studies enabled to create miRNA signatures of solid tumors as well as cancers of blood origin. MiRNAs have been observed to play a significant role in the regulation of gene expression-a critical aspect of many biological processes, including cell development, differentiation, apoptosis and proliferation. The differential expression levels of miRNAs in tumors and their normal counterpart have enabled scientists to designate their roles as oncomir or tumor suppressor. Interestingly, the diminishment of oncogenic or enhanced levels of tumor suppressor miRNAs (antagomirs) have been reported to modulate the sensitivity of cancer cells to anticancer agents. To the other end, carcinogenic chemicals either possess the ability of silencing beneficial tumor suppressive miRNAs or maintain the augmented levels of their oncogenic counterpart. In this article we provide a comprehensive overview on the modulation of these \"micromanaging oligos\" by cancer causing as well as cancer preventing agents.</p>","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"3 3","pages":"135-141"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266367/pdf/nihms348617.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30421680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anvesha Srivastava, Simeng Suy, Sean P Collins, Deepak Kumar
Prostate cancer (PCa) is the most common non-skin cancer among men. Currently available diagnostic tests for PCa are inadequate in terms of low specificity and poor sensitivity. microRNAs offer a hope to overcome these drawbacks by virtue of their cancer specific expression and high stability. They can readily be detected and quantified in frozen and as well as formalin-fixed paraffin-embedded tissues. Observation of circulating miRNA in serum/plasma samples and other body fluids holds a promise to quickly move from research and provide a biomolecule of clinical relevance and an improvement over presently available biomarkers. This review highlights the potential role of circulating miRNAs as molecular markers for cancer and as targets for therapeutic manipulation. Further, this review summarizes the current understanding of various circulating miRNA with respect to prostate cancer. To conclude, circulating miRNAs are an active area of current investigation and holds promise to serve a wide range of clinical applications and unwrap a new era in cancer diagnosis and therapeutics.
{"title":"Circulating MicroRNA as Biomarkers: An Update in Prostate Cancer.","authors":"Anvesha Srivastava, Simeng Suy, Sean P Collins, Deepak Kumar","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Prostate cancer (PCa) is the most common non-skin cancer among men. Currently available diagnostic tests for PCa are inadequate in terms of low specificity and poor sensitivity. microRNAs offer a hope to overcome these drawbacks by virtue of their cancer specific expression and high stability. They can readily be detected and quantified in frozen and as well as formalin-fixed paraffin-embedded tissues. Observation of circulating miRNA in serum/plasma samples and other body fluids holds a promise to quickly move from research and provide a biomolecule of clinical relevance and an improvement over presently available biomarkers. This review highlights the potential role of circulating miRNAs as molecular markers for cancer and as targets for therapeutic manipulation. Further, this review summarizes the current understanding of various circulating miRNA with respect to prostate cancer. To conclude, circulating miRNAs are an active area of current investigation and holds promise to serve a wide range of clinical applications and unwrap a new era in cancer diagnosis and therapeutics.</p>","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"3 3","pages":"115-124"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287394/pdf/nihms348615.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30497876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies.
{"title":"STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents.","authors":"Sarah R Walker, Mousumi Chaudhury, David A Frank","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies.</p>","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"3 1","pages":"13-19"},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177107/pdf/nihms324228.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30024302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-12-30DOI: 10.4255/MCPHARMACOL.10.25
N. Saxena, D. Sharma
Breast tumors expressing estrogen receptor alpha (ER) respond well to therapeutic strategies using SERMs (selective estrogen receptor modulators) such as tamoxifen. However, about thirty percent of invasive breast cancers are hormone independent because they lack ER expression due to hypermethylation of ER promoter. Treatment of ER-negative breast cancer cells with demethylating agents and histone deacetylase inhibitors leads to expression of ER mRNA and functional protein. Additionally, growth factor signaling pathways have also been implicated in ER silencing in ER-negative tumor phenotype. Recently, important role of components of ubiquitin-proteasome pathway has been shown in mediating downregulation of ER. In this article, we will review various mechanisms underlying the silencing of ER in ER negative tumor phenotype and discuss diverse strategies to combat it. Ongoing studies may provide the mechanistic insight to design therapeutic strategies directed towards epigenetic and non-epigenetic mechanisms in the prevention or treatment of ER-negative breast cancer.
{"title":"Epigenetic Reactivation of Estrogen Receptor: Promising Tools for Restoring Response to Endocrine Therapy.","authors":"N. Saxena, D. Sharma","doi":"10.4255/MCPHARMACOL.10.25","DOIUrl":"https://doi.org/10.4255/MCPHARMACOL.10.25","url":null,"abstract":"Breast tumors expressing estrogen receptor alpha (ER) respond well to therapeutic strategies using SERMs (selective estrogen receptor modulators) such as tamoxifen. However, about thirty percent of invasive breast cancers are hormone independent because they lack ER expression due to hypermethylation of ER promoter. Treatment of ER-negative breast cancer cells with demethylating agents and histone deacetylase inhibitors leads to expression of ER mRNA and functional protein. Additionally, growth factor signaling pathways have also been implicated in ER silencing in ER-negative tumor phenotype. Recently, important role of components of ubiquitin-proteasome pathway has been shown in mediating downregulation of ER. In this article, we will review various mechanisms underlying the silencing of ER in ER negative tumor phenotype and discuss diverse strategies to combat it. Ongoing studies may provide the mechanistic insight to design therapeutic strategies directed towards epigenetic and non-epigenetic mechanisms in the prevention or treatment of ER-negative breast cancer.","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"94 1","pages":"191-202"},"PeriodicalIF":0.0,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84305874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-29DOI: 10.4255/MCPHARMACOL.10.13
M. Heins, W. Quax
Abstract Most neurodegenerative disorders are the result of inflammation and neuronal cell death. Although many cytokines have been implied to be involved in the pathogenesis, recent studies have shown TRAIL to be responsible for neuronal apoptosis. TRAIL is best known for its ability to induce apoptosis in many cancer cells. Normally TRAIL is not present in the CNS. However, it is induced by β‐ amyloid protein and upregulated on infected macrophages which can infiltrate the CNS. TRAIL is able to induce apoptosis via death receptors DR4 and DR5. DR5 is shown to be expressed on neuronal cells. The identification of an antagonistic peptide that specifically binds DR5 provides us with a useful investigative tool. Small peptides can bind their targets with high affinity and specificity. In addition, they are easily modified and further developed for clinical application. So the peptide R2C16 might even be used as a lead peptide for the development of therapeutic agents in neurodegenerative scenario is that TRAIL production is induced in cells disorders. Keywords:
{"title":"Implications of a Newly Discovered DR5 Specific Antagonistic Peptide for Neurodegenerative Disorders","authors":"M. Heins, W. Quax","doi":"10.4255/MCPHARMACOL.10.13","DOIUrl":"https://doi.org/10.4255/MCPHARMACOL.10.13","url":null,"abstract":"Abstract Most neurodegenerative disorders are the result of inflammation and neuronal cell death. Although many cytokines have been implied to be involved in the pathogenesis, recent studies have shown TRAIL to be responsible for neuronal apoptosis. TRAIL is best known for its ability to induce apoptosis in many cancer cells. Normally TRAIL is not present in the CNS. However, it is induced by β‐ amyloid protein and upregulated on infected macrophages which can infiltrate the CNS. TRAIL is able to induce apoptosis via death receptors DR4 and DR5. DR5 is shown to be expressed on neuronal cells. The identification of an antagonistic peptide that specifically binds DR5 provides us with a useful investigative tool. Small peptides can bind their targets with high affinity and specificity. In addition, they are easily modified and further developed for clinical application. So the peptide R2C16 might even be used as a lead peptide for the development of therapeutic agents in neurodegenerative scenario is that TRAIL production is induced in cells disorders. Keywords:","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"37 1","pages":"97-100"},"PeriodicalIF":0.0,"publicationDate":"2010-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74359589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-10DOI: 10.4255/MCPHARMACOL.10.19
Yu Huang, Chih-hao Yang, Chiuan-Shiou Chiou, Chiung‐Chun Huang, K. Hsu
Abstract Vascular endothelial growth factor (VEGF), in addition to its essential role in the processes of vascularization and angiogenesis, exerts direct effects on neural cells in the central nervous system. There is abundant evidence indicating that VEGF protects neurons against cell death induced by a variety of insults, including hypoxia/ischemia and seizures. Recent work has demonstrated the expression of VEGF and its receptors in neurons and has revealed that VEGF can act as a neurotrophic factor to regulate neurogenesis and mediate the effects of enriched environment and antidepressants on hippocampal plasticity. Current studies from our laboratory and those of others have found that VEGF can activate divergent signaling components to regulate excitatory synaptic transmission in hippocampal neurons. Here we present an overview on current understanding of cellular and molecular mechanisms by which VEGF signaling is regulated in neural cells and discuss the recent advances in the understanding of how VEGF signaling regulates excitatory synaptic transmission in hippocampal neurons. The role for VEGF in regulating synaptic plasticity will be also discussed in the article.
{"title":"Vascular endothelial growth factor regulates excitatory synaptic transmission in hippocampal neurons","authors":"Yu Huang, Chih-hao Yang, Chiuan-Shiou Chiou, Chiung‐Chun Huang, K. Hsu","doi":"10.4255/MCPHARMACOL.10.19","DOIUrl":"https://doi.org/10.4255/MCPHARMACOL.10.19","url":null,"abstract":"Abstract Vascular endothelial growth factor (VEGF), in addition to its essential role in the processes of vascularization and angiogenesis, exerts direct effects on neural cells in the central nervous system. There is abundant evidence indicating that VEGF protects neurons against cell death induced by a variety of insults, including hypoxia/ischemia and seizures. Recent work has demonstrated the expression of VEGF and its receptors in neurons and has revealed that VEGF can act as a neurotrophic factor to regulate neurogenesis and mediate the effects of enriched environment and antidepressants on hippocampal plasticity. Current studies from our laboratory and those of others have found that VEGF can activate divergent signaling components to regulate excitatory synaptic transmission in hippocampal neurons. Here we present an overview on current understanding of cellular and molecular mechanisms by which VEGF signaling is regulated in neural cells and discuss the recent advances in the understanding of how VEGF signaling regulates excitatory synaptic transmission in hippocampal neurons. The role for VEGF in regulating synaptic plasticity will be also discussed in the article.","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"18 1","pages":"137-141"},"PeriodicalIF":0.0,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78005058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-03-09DOI: 10.4255/MCPHARMACOL.10.03
L. Brueggemann, Bharath K. Mani, A. Mackie, L. Cribbs, K. Byron
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used medications for the treatment of both acute and chronic pain. Selective cyclooxygenase-2 (COX-2) inhibitors, such as celecoxib (Celebrex(®)), rofecoxib (Vioxx(®)), and diclofenac, have been among the most widely prescribed NSAIDs because they prevent the generation of prostaglandins involved in inflammation and pain, but avoid some of the gastrointestinal complications associated with less selective COX-1/COX-2 inhibitors. In 2004, rofecoxib (Vioxx(®)) was voluntarily withdrawn from the market because of adverse cardiovascular side effects. This led to an explosion of research into the cardiovascular effects of the 'coxibs', which revealed differential cardiovascular risk profiles among the members of this drug class. The differential risk profiles may relate to the tendency of some of the drugs to elevate blood pressure (BP). An important component of BP regulation is dependent on the contractile state of vascular smooth muscle cells (VSMCs), which is controlled to a large extent by the activities of KCNQ (Kv7 family) potassium channels and L-type calcium channels. Our recently published data indicate that celecoxib, but not rofecoxib or diclofenac, at therapeutically relevant concentrations, acts as a Kv7 potassium channel activator and a calcium channel blocker, causing relaxation of VSMCs and decreasing vascular tone. These vasorelaxant ion channel effects may account for the differential cardiovascular risk profiles among the different COX-2 inhibitors. We further speculate that these properties may be exploited for therapeutic benefit in the treatment of cardiovascular diseases or other medical conditions.
{"title":"Novel Actions of Nonsteroidal Anti-Inflammatory Drugs on Vascular Ion Channels: Accounting for Cardiovascular Side Effects and Identifying New Therapeutic Applications.","authors":"L. Brueggemann, Bharath K. Mani, A. Mackie, L. Cribbs, K. Byron","doi":"10.4255/MCPHARMACOL.10.03","DOIUrl":"https://doi.org/10.4255/MCPHARMACOL.10.03","url":null,"abstract":"Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used medications for the treatment of both acute and chronic pain. Selective cyclooxygenase-2 (COX-2) inhibitors, such as celecoxib (Celebrex(®)), rofecoxib (Vioxx(®)), and diclofenac, have been among the most widely prescribed NSAIDs because they prevent the generation of prostaglandins involved in inflammation and pain, but avoid some of the gastrointestinal complications associated with less selective COX-1/COX-2 inhibitors. In 2004, rofecoxib (Vioxx(®)) was voluntarily withdrawn from the market because of adverse cardiovascular side effects. This led to an explosion of research into the cardiovascular effects of the 'coxibs', which revealed differential cardiovascular risk profiles among the members of this drug class. The differential risk profiles may relate to the tendency of some of the drugs to elevate blood pressure (BP). An important component of BP regulation is dependent on the contractile state of vascular smooth muscle cells (VSMCs), which is controlled to a large extent by the activities of KCNQ (Kv7 family) potassium channels and L-type calcium channels. Our recently published data indicate that celecoxib, but not rofecoxib or diclofenac, at therapeutically relevant concentrations, acts as a Kv7 potassium channel activator and a calcium channel blocker, causing relaxation of VSMCs and decreasing vascular tone. These vasorelaxant ion channel effects may account for the differential cardiovascular risk profiles among the different COX-2 inhibitors. We further speculate that these properties may be exploited for therapeutic benefit in the treatment of cardiovascular diseases or other medical conditions.","PeriodicalId":18748,"journal":{"name":"Molecular and cellular pharmacology","volume":"46 1","pages":"15-19"},"PeriodicalIF":0.0,"publicationDate":"2010-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89503324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}