Pub Date : 2024-11-01Epub Date: 2024-01-29DOI: 10.1002/1878-0261.13592
Julien Corné, Véronique Quillien, Florence Godey, Mathilde Cherel, Agathe Cochet, Fanny Le Du, Lucie Robert, Héloïse Bourien, Angélique Brunot, Laurence Crouzet, Christophe Perrin, Claudia Lefeuvre-Plesse, Véronique Diéras, Thibault De la Motte Rouge
Erb-b2 receptor tyrosine kinase 2 (ERBB2)-activating mutations are therapeutically actionable alterations found in various cancers, including metastatic breast cancer (MBC). We developed multiplex digital PCR assays to detect and quantify ERBB2 mutations in circulating tumor DNA from liquid biopsies. We studied the plasma from 272 patients with hormone-receptor-positive, human epidermal growth factor receptor 2-negative (HR+/HER2-) MBC to detect 17 ERBB2 mutations using a screening assay. The assay was developed on the three-color Crystal dPCR™ naica® platform with a two-step strategy for precise mutation identification. We found that nine patients (3.3%) harbored at least one ERBB2 mutation. The mutation rate was higher in patients with lobular histology (5.9%) compared to invasive breast carcinoma of no special type (2.6%). A total of 12 mutations were found with the following frequencies: L755S (25.00%), V777L (25.00%), S310Y (16.67%), L869R (16.67%), S310F (8.33%), and D769H (8.33%). Matched tumor samples from six patients identified the same mutations with an 83% concordance rate. In summary, our highly sensitive multiplex digital PCR assays are well suited for plasma-based monitoring of ERBB2 mutational status in patients with MBC.
{"title":"Plasma-based analysis of ERBB2 mutational status by multiplex digital PCR in a large series of patients with metastatic breast cancer.","authors":"Julien Corné, Véronique Quillien, Florence Godey, Mathilde Cherel, Agathe Cochet, Fanny Le Du, Lucie Robert, Héloïse Bourien, Angélique Brunot, Laurence Crouzet, Christophe Perrin, Claudia Lefeuvre-Plesse, Véronique Diéras, Thibault De la Motte Rouge","doi":"10.1002/1878-0261.13592","DOIUrl":"10.1002/1878-0261.13592","url":null,"abstract":"<p><p>Erb-b2 receptor tyrosine kinase 2 (ERBB2)-activating mutations are therapeutically actionable alterations found in various cancers, including metastatic breast cancer (MBC). We developed multiplex digital PCR assays to detect and quantify ERBB2 mutations in circulating tumor DNA from liquid biopsies. We studied the plasma from 272 patients with hormone-receptor-positive, human epidermal growth factor receptor 2-negative (HR+/HER2-) MBC to detect 17 ERBB2 mutations using a screening assay. The assay was developed on the three-color Crystal dPCR™ naica® platform with a two-step strategy for precise mutation identification. We found that nine patients (3.3%) harbored at least one ERBB2 mutation. The mutation rate was higher in patients with lobular histology (5.9%) compared to invasive breast carcinoma of no special type (2.6%). A total of 12 mutations were found with the following frequencies: L755S (25.00%), V777L (25.00%), S310Y (16.67%), L869R (16.67%), S310F (8.33%), and D769H (8.33%). Matched tumor samples from six patients identified the same mutations with an 83% concordance rate. In summary, our highly sensitive multiplex digital PCR assays are well suited for plasma-based monitoring of ERBB2 mutational status in patients with MBC.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2714-2729"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547241/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-05-08DOI: 10.1002/1878-0261.13639
Hege Marie Vedeld, Heidi Pharo, Anne Klara Sørbø, Sara Brandt-Winge, May-Britt Five, Marine Jeanmougin, Per Guldberg, Rolf Wahlqvist, Guro Elisabeth Lind
Cystoscopy is the gold standard for surveillance of non-muscle invasive bladder cancer (NMIBC), but the procedure is invasive and has suboptimal accuracy. The aim of this study was to investigate the potential of analyzing urine samples for the presence of urine tumor DNA (utDNA) to replace cystoscopy for surveillance of bladder cancer recurrence. In this longitudinal, prospective, and observational study, 47 patients were followed for recurrence for 2 years, involving analysis of utDNA using the BladMetrix DNA methylation biomarker test at each cystoscopy. In total, utDNA was detected in 21/23 recurrences (91% sensitivity), including 5/5 T1, T2, and carcinoma in situ (CIS) tumors (100%) and 10/12 Ta tumors (83%), with < 1% false-negative test results. Importantly, utDNA analysis showed the potential to reduce the number of cystoscopies by 55%, benefitting 79% of the patients. Eleven of 23 recurrences (48%) were detected earlier with utDNA than with cystoscopy, and distinct patterns of residual utDNA post-surgery indicated minimal residual disease (MRD) or field effect in 6% and 15% of the patients, respectively. In conclusion, utDNA analysis shows high sensitivity to detect tumor recurrence, potential to reduce the number of cystoscopies, and promise to guide patient-specific surveillance regimens.
{"title":"Distinct longitudinal patterns of urine tumor DNA in patients undergoing surveillance for bladder cancer.","authors":"Hege Marie Vedeld, Heidi Pharo, Anne Klara Sørbø, Sara Brandt-Winge, May-Britt Five, Marine Jeanmougin, Per Guldberg, Rolf Wahlqvist, Guro Elisabeth Lind","doi":"10.1002/1878-0261.13639","DOIUrl":"10.1002/1878-0261.13639","url":null,"abstract":"<p><p>Cystoscopy is the gold standard for surveillance of non-muscle invasive bladder cancer (NMIBC), but the procedure is invasive and has suboptimal accuracy. The aim of this study was to investigate the potential of analyzing urine samples for the presence of urine tumor DNA (utDNA) to replace cystoscopy for surveillance of bladder cancer recurrence. In this longitudinal, prospective, and observational study, 47 patients were followed for recurrence for 2 years, involving analysis of utDNA using the BladMetrix DNA methylation biomarker test at each cystoscopy. In total, utDNA was detected in 21/23 recurrences (91% sensitivity), including 5/5 T1, T2, and carcinoma in situ (CIS) tumors (100%) and 10/12 Ta tumors (83%), with < 1% false-negative test results. Importantly, utDNA analysis showed the potential to reduce the number of cystoscopies by 55%, benefitting 79% of the patients. Eleven of 23 recurrences (48%) were detected earlier with utDNA than with cystoscopy, and distinct patterns of residual utDNA post-surgery indicated minimal residual disease (MRD) or field effect in 6% and 15% of the patients, respectively. In conclusion, utDNA analysis shows high sensitivity to detect tumor recurrence, potential to reduce the number of cystoscopies, and promise to guide patient-specific surveillance regimens.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2684-2695"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2023-12-23DOI: 10.1002/1878-0261.13557
Ekaterina Kalashnikova, Vasily N Aushev, Allyson Koyen Malashevich, Antony Tin, Shifra Krinshpun, Raheleh Salari, Carly Bess Scalise, Rosalyn Ram, Meenakshi Malhotra, Harini Ravi, Himanshu Sethi, Stephanie Sanchez, Robert Tanner Hagelstrom, Maxim Brevnov, Matthew Rabinowitz, Solomon Moshkevich, Bernhard G Zimmermann, Minetta C Liu, Alexey Aleshin
Several studies have demonstrated the prognostic value of circulating tumor DNA (ctDNA); however, the correlation of mean tumor molecules (MTM)/ml of plasma and mean variant allele frequency (mVAF; %) with clinical parameters is yet to be understood. In this study, we analyzed ctDNA data in a pan-cancer cohort of 23 543 patients who had ctDNA testing performed using a personalized, tumor-informed assay (Signatera™, mPCR-NGS assay). For ctDNA-positive patients, the correlation between MTM/ml and mVAF was examined. Two subanalyses were performed: (a) to establish the association of ctDNA with tumor volume and (b) to assess the correlation between ctDNA dynamics and patient outcomes. On a global cohort, a positive correlation between MTM/ml and mVAF was observed. Among 18 426 patients with longitudinal ctDNA measurements, 13.3% had discordant trajectories between MTM/ml and mVAF at subsequent time points. In metastatic patients receiving immunotherapy (N = 51), changes in ctDNA levels expressed both in MTM/ml and mVAF showed a statistically significant association with progression-free survival; however, the correlation with MTM/ml was numerically stronger.
{"title":"Correlation between variant allele frequency and mean tumor molecules with tumor burden in patients with solid tumors.","authors":"Ekaterina Kalashnikova, Vasily N Aushev, Allyson Koyen Malashevich, Antony Tin, Shifra Krinshpun, Raheleh Salari, Carly Bess Scalise, Rosalyn Ram, Meenakshi Malhotra, Harini Ravi, Himanshu Sethi, Stephanie Sanchez, Robert Tanner Hagelstrom, Maxim Brevnov, Matthew Rabinowitz, Solomon Moshkevich, Bernhard G Zimmermann, Minetta C Liu, Alexey Aleshin","doi":"10.1002/1878-0261.13557","DOIUrl":"10.1002/1878-0261.13557","url":null,"abstract":"<p><p>Several studies have demonstrated the prognostic value of circulating tumor DNA (ctDNA); however, the correlation of mean tumor molecules (MTM)/ml of plasma and mean variant allele frequency (mVAF; %) with clinical parameters is yet to be understood. In this study, we analyzed ctDNA data in a pan-cancer cohort of 23 543 patients who had ctDNA testing performed using a personalized, tumor-informed assay (Signatera™, mPCR-NGS assay). For ctDNA-positive patients, the correlation between MTM/ml and mVAF was examined. Two subanalyses were performed: (a) to establish the association of ctDNA with tumor volume and (b) to assess the correlation between ctDNA dynamics and patient outcomes. On a global cohort, a positive correlation between MTM/ml and mVAF was observed. Among 18 426 patients with longitudinal ctDNA measurements, 13.3% had discordant trajectories between MTM/ml and mVAF at subsequent time points. In metastatic patients receiving immunotherapy (N = 51), changes in ctDNA levels expressed both in MTM/ml and mVAF showed a statistically significant association with progression-free survival; however, the correlation with MTM/ml was numerically stronger.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2649-2657"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138460997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Metzenmacher, Gregor Zaun, Marija Trajkovic-Arsic, Phyllis Cheung, Timm M Reissig, Hendrik Schürmann, Nils von Neuhoff, Grainne O'Kane, Stephanie Ramotar, Anna Dodd, Steven Gallinger, Alexander Muckenhuber, Jennifer J Knox, Volker Kunzmann, Peter A Horn, Jörg D Hoheisel, Jens T Siveke, Smiths S Lueong
Pancreatic ductal adenocarcinoma (PDAC) comprises two clinically relevant molecular subtypes that are currently determined using tissue biopsies, which are spatially biased and highly invasive. We used whole transcriptome sequencing of 10 plasma samples with tumor-informed subtypes, complemented by proteomic analysis for minimally invasive identification of PDAC subtype markers. Data were validated in independent large cohorts and correlated with treatment response and patient outcome. Differential transcript abundance analyses revealed 32 subtype-specific, protein-coding cell-free RNA (cfRNA) transcripts. The subtype specificity of these transcripts was validated in two independent tissue cohorts comprising 195 and 250 cases, respectively. Three disease-relevant cfRNA-defined subtype markers (DEGS1, KDELC1, and RPL23AP7) that consistently associated with basal-like tumors across all cohorts were identified. In both tumor and liquid biopsies, the overexpression of these markers correlated with poor survival. Moreover, elevated levels of the identified markers were linked to a poor response to systemic therapy and early relapse in resected patients. Our data indicate clinical applicability of cfRNA markers in determining tumor subtypes and monitoring disease recurrence.
{"title":"Minimally invasive determination of pancreatic ductal adenocarcinoma (PDAC) subtype by means of circulating cell-free RNA.","authors":"Martin Metzenmacher, Gregor Zaun, Marija Trajkovic-Arsic, Phyllis Cheung, Timm M Reissig, Hendrik Schürmann, Nils von Neuhoff, Grainne O'Kane, Stephanie Ramotar, Anna Dodd, Steven Gallinger, Alexander Muckenhuber, Jennifer J Knox, Volker Kunzmann, Peter A Horn, Jörg D Hoheisel, Jens T Siveke, Smiths S Lueong","doi":"10.1002/1878-0261.13747","DOIUrl":"https://doi.org/10.1002/1878-0261.13747","url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) comprises two clinically relevant molecular subtypes that are currently determined using tissue biopsies, which are spatially biased and highly invasive. We used whole transcriptome sequencing of 10 plasma samples with tumor-informed subtypes, complemented by proteomic analysis for minimally invasive identification of PDAC subtype markers. Data were validated in independent large cohorts and correlated with treatment response and patient outcome. Differential transcript abundance analyses revealed 32 subtype-specific, protein-coding cell-free RNA (cfRNA) transcripts. The subtype specificity of these transcripts was validated in two independent tissue cohorts comprising 195 and 250 cases, respectively. Three disease-relevant cfRNA-defined subtype markers (DEGS1, KDELC1, and RPL23AP7) that consistently associated with basal-like tumors across all cohorts were identified. In both tumor and liquid biopsies, the overexpression of these markers correlated with poor survival. Moreover, elevated levels of the identified markers were linked to a poor response to systemic therapy and early relapse in resected patients. Our data indicate clinical applicability of cfRNA markers in determining tumor subtypes and monitoring disease recurrence.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jieun Kim, Rokhyun Kim, Wonseok Lee, Gyu Hyun Kim, Seeun Jeon, Yun Jin Lee, Jong Seok Lee, Kyung Hyun Kim, Jae-Kyung Won, Woochan Lee, Kyunghyuk Park, Hyun Je Kim, Sun-Wha Im, Kea Joo Lee, Chul-Kee Park, Jong-Il Kim, Ji Yeoun Lee
Glioblastoma (GBM) has a fatal prognosis because of its aggressive and invasive characteristics. Understanding the mechanism of invasion necessitates an elucidation of the relationship between tumor cells and the tumor microenvironment. However, there has been a scarcity of suitable models to investigate this. In this study, we established a glioblastoma-cerebral organoid assembloid (GCOA) model by co-culturing patient-derived GBM tumoroids and human cerebral organoids. Tumor cells from the tumoroids infiltrated the cerebral organoids, mimicking the invasive nature of the parental tumors. Using time-lapse imaging, various invasion patterns of cancer cells within cerebral organoids resembling a normal tissue milieu were monitored. Both single- and collective-cell invasion was captured in real-time. We also confirmed the formation of an intercellular tumor network and tumor-normal-cell interactions. Furthermore, the transcriptomic characterization of GCOAs revealed distinct features of invasive tumor cells. Overall, this study established the GCOA as a three-dimensional (3D) in vitro assembloid model to investigate invasion mechanisms and interactions between tumor cells and their microenvironment.
{"title":"Assembly of glioblastoma tumoroids and cerebral organoids: a 3D in vitro model for tumor cell invasion.","authors":"Jieun Kim, Rokhyun Kim, Wonseok Lee, Gyu Hyun Kim, Seeun Jeon, Yun Jin Lee, Jong Seok Lee, Kyung Hyun Kim, Jae-Kyung Won, Woochan Lee, Kyunghyuk Park, Hyun Je Kim, Sun-Wha Im, Kea Joo Lee, Chul-Kee Park, Jong-Il Kim, Ji Yeoun Lee","doi":"10.1002/1878-0261.13740","DOIUrl":"https://doi.org/10.1002/1878-0261.13740","url":null,"abstract":"<p><p>Glioblastoma (GBM) has a fatal prognosis because of its aggressive and invasive characteristics. Understanding the mechanism of invasion necessitates an elucidation of the relationship between tumor cells and the tumor microenvironment. However, there has been a scarcity of suitable models to investigate this. In this study, we established a glioblastoma-cerebral organoid assembloid (GCOA) model by co-culturing patient-derived GBM tumoroids and human cerebral organoids. Tumor cells from the tumoroids infiltrated the cerebral organoids, mimicking the invasive nature of the parental tumors. Using time-lapse imaging, various invasion patterns of cancer cells within cerebral organoids resembling a normal tissue milieu were monitored. Both single- and collective-cell invasion was captured in real-time. We also confirmed the formation of an intercellular tumor network and tumor-normal-cell interactions. Furthermore, the transcriptomic characterization of GCOAs revealed distinct features of invasive tumor cells. Overall, this study established the GCOA as a three-dimensional (3D) in vitro assembloid model to investigate invasion mechanisms and interactions between tumor cells and their microenvironment.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pietro Paolo Vitiello, Nadia Saoudi González, Alberto Bardelli
The discovery of growth factors and their involvement in cancer represents the foundation of precision oncology. The preclinical and clinical development of agents targeting epidermal growth factor receptor (EGFR) in colorectal cancer (CRC) were accompanied by big hype and hopes, though the clinical testing of such agents clashed with intrinsic and acquired resistance, greatly limiting their therapeutic value. However, a better understanding of the biology of the EGFR signaling pathway in CRC, coupled with the development of liquid biopsy methodologies to study cancer evolution in real time, fostered the clinical refinement of anti-EGFR treatment in CRC. Such a workflow, based on the co-evolution of biology knowledge and clinical development, allowed to couple the discovery of relevant therapy resistance mechanisms to the development of strategies to bypass this resistance. A broader application of this paradigm could prove successful and create an effective shortcut between the bench and the bedside for treatment strategies other than targeted therapy.
{"title":"When molecular biology transforms clinical oncology: the EGFR journey in colorectal cancer.","authors":"Pietro Paolo Vitiello, Nadia Saoudi González, Alberto Bardelli","doi":"10.1002/1878-0261.13754","DOIUrl":"https://doi.org/10.1002/1878-0261.13754","url":null,"abstract":"<p><p>The discovery of growth factors and their involvement in cancer represents the foundation of precision oncology. The preclinical and clinical development of agents targeting epidermal growth factor receptor (EGFR) in colorectal cancer (CRC) were accompanied by big hype and hopes, though the clinical testing of such agents clashed with intrinsic and acquired resistance, greatly limiting their therapeutic value. However, a better understanding of the biology of the EGFR signaling pathway in CRC, coupled with the development of liquid biopsy methodologies to study cancer evolution in real time, fostered the clinical refinement of anti-EGFR treatment in CRC. Such a workflow, based on the co-evolution of biology knowledge and clinical development, allowed to couple the discovery of relevant therapy resistance mechanisms to the development of strategies to bypass this resistance. A broader application of this paradigm could prove successful and create an effective shortcut between the bench and the bedside for treatment strategies other than targeted therapy.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Phillips, Sizèd van Enk, Sara Kildgaard, Silja Schlue, Mona Göttmann, Victoria Jennings, Frederic Bethke, Gabriele Müller, Christel Herold-Mende, Daniel Pastor-Flores, Martin Schneider, Dominic Helm, Thomas Ostenfeld Larsen, Violaine Goidts
Glioblastoma is a highly aggressive brain tumor for which there is no cure. The dire prognosis of this disease is largely attributable to a high level of heterogeneity, including the presence of a subpopulation of tumor-initiating glioblastoma stem-like cells (GSCs), which are refractory to chemo- and radiotherapy. Here, in an unbiased marine-derived fungal extract screen, together with bioguided dereplication based on high-resolution mass spectrometry, we identified malformin C to preferentially induce cell death in patient-derived GSCs and explore the potential of this cyclic peptide as a therapeutic agent for glioblastoma. Malformin C significantly reduced tumor growth in an in vivo xenograft model of glioblastoma. Using transcriptomics and chemoproteomics, we found that malformin C binds to many proteins, leading to their aggregation, and rapidly induces the unfolded protein response, including autophagy, in GSCs. Crucially, chemical inhibition of translation using cycloheximide rescued malformin C-induced cell death in GSCs, demonstrating that the proteotoxic effect of the compound is necessary for its cytotoxicity. At the same time, malformin C appears to accumulate in lysosomes, disrupting autophagic flux, and driving cells to death. Supporting this, malformin C synergizes with chloroquine, an inhibitor of autophagy. Strikingly, we observed that autophagic flux is differentially regulated in GSCs compared with normal astrocytes. The sensitivity of GSCs to malformin C highlights the relevance of proteostasis and autophagy as a therapeutic vulnerability in glioblastoma.
胶质母细胞瘤是一种侵袭性极强的脑肿瘤,目前尚无根治方法。这种疾病可怕的预后在很大程度上归因于高度的异质性,包括存在对化疗和放疗难治的肿瘤启动胶质母细胞瘤干样细胞(GSCs)亚群。在这里,我们通过无偏见的海产真菌提取物筛选,结合基于高分辨质谱的生物引导去复制,发现了麦角苷 C,它能优先诱导患者来源的胶质母细胞瘤细胞死亡,并探索了这种环肽作为胶质母细胞瘤治疗剂的潜力。在胶质母细胞瘤的体内异种移植模型中,麦芽糖苷 C 能明显减少肿瘤生长。通过转录组学和化学蛋白组学研究,我们发现麦芽糖苷 C 能与多种蛋白质结合,导致蛋白质聚集,并迅速诱导 GSCs 中的未折叠蛋白反应,包括自噬。最重要的是,使用环己亚胺对翻译进行化学抑制可以挽救二恶茂霉素C诱导的GSCs细胞死亡,这表明该化合物的蛋白毒性效应是其细胞毒性的必要条件。同时,二恶茂霉素 C 似乎会在溶酶体中积聚,破坏自噬通量,导致细胞死亡。恶霉灵 C 与自噬抑制剂氯喹的协同作用也证明了这一点。令人震惊的是,我们观察到与正常星形胶质细胞相比,GSCs 的自噬通量受到不同程度的调控。GSCs 对二甲双胍 C 的敏感性凸显了蛋白稳态和自噬作为胶质母细胞瘤治疗脆弱性的相关性。
{"title":"Malformin C preferentially kills glioblastoma stem-like cells via concerted induction of proteotoxic stress and autophagic flux blockade.","authors":"Emma Phillips, Sizèd van Enk, Sara Kildgaard, Silja Schlue, Mona Göttmann, Victoria Jennings, Frederic Bethke, Gabriele Müller, Christel Herold-Mende, Daniel Pastor-Flores, Martin Schneider, Dominic Helm, Thomas Ostenfeld Larsen, Violaine Goidts","doi":"10.1002/1878-0261.13756","DOIUrl":"https://doi.org/10.1002/1878-0261.13756","url":null,"abstract":"<p><p>Glioblastoma is a highly aggressive brain tumor for which there is no cure. The dire prognosis of this disease is largely attributable to a high level of heterogeneity, including the presence of a subpopulation of tumor-initiating glioblastoma stem-like cells (GSCs), which are refractory to chemo- and radiotherapy. Here, in an unbiased marine-derived fungal extract screen, together with bioguided dereplication based on high-resolution mass spectrometry, we identified malformin C to preferentially induce cell death in patient-derived GSCs and explore the potential of this cyclic peptide as a therapeutic agent for glioblastoma. Malformin C significantly reduced tumor growth in an in vivo xenograft model of glioblastoma. Using transcriptomics and chemoproteomics, we found that malformin C binds to many proteins, leading to their aggregation, and rapidly induces the unfolded protein response, including autophagy, in GSCs. Crucially, chemical inhibition of translation using cycloheximide rescued malformin C-induced cell death in GSCs, demonstrating that the proteotoxic effect of the compound is necessary for its cytotoxicity. At the same time, malformin C appears to accumulate in lysosomes, disrupting autophagic flux, and driving cells to death. Supporting this, malformin C synergizes with chloroquine, an inhibitor of autophagy. Strikingly, we observed that autophagic flux is differentially regulated in GSCs compared with normal astrocytes. The sensitivity of GSCs to malformin C highlights the relevance of proteostasis and autophagy as a therapeutic vulnerability in glioblastoma.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142504363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lipid metabolism is altered in rapidly proliferating cancer cells, where fatty acids (FAs) are utilized in the synthesis of sphingolipids and glycerophospholipids to produce cell membranes and signaling molecules. Receptor for activated C-kinase 1 (RACK1; also known as small ribosomal subunit protein) is an intracellular scaffolding protein involved in signaling pathways. Whether such lipid metabolism is regulated by RACK1 is unknown. Here, integrated spatially resolved metabolomics and spatial transcriptomics revealed that accumulation of lipids in cervical cancer (CC) samples correlated with overexpression of RACK1, and RACK1 promoted lipid synthesis in CC cells. Chromatin immunoprecipitation verified binding of sterol regulatory element-binding protein 1 (SREBP1) to acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) promoters. RACK1 enhanced de novo FA synthesis by upregulating expression of sterol regulatory element binding transcription factor 1 (SREBP1) and lipogenic genes FASN and ACC1. Co-immunoprecipitation and western blotting revealed that RACK1 interacted with protein kinase B (AKT) to activate the AKT/mammalian target of rapamycin (mTOR)/SREBP1 signaling pathway to promote FA synthesis. Cell proliferation and apoptosis experiments suggested that RACK1-regulated FA synthesis is key in the progression of CC. Thus, RACK1 enhanced lipid synthesis through the AKT/mTOR/SREBP1 signaling pathway to promote the growth of CC cells. RACK1 may become a therapeutic target for CC.
在快速增殖的癌细胞中,脂质代谢发生了改变,脂肪酸(FA)被用于合成鞘磷脂和甘油磷脂,以产生细胞膜和信号分子。活化 C 激酶 1 受体(RACK1,又称核糖体小亚基蛋白)是一种细胞内支架蛋白,参与信号传导途径。这种脂质代谢是否受 RACK1 的调控尚不清楚。在这里,综合空间解析代谢组学和空间转录组学发现,宫颈癌(CC)样本中脂质的积累与RACK1的过表达相关,RACK1促进了CC细胞中脂质的合成。染色质免疫共沉淀验证了固醇调节元件结合蛋白1(SREBP1)与乙酰-CoA羧化酶(ACC)和脂肪酸合成酶(FASN)启动子的结合。RACK1通过上调固醇调节元件结合转录因子1(SREBP1)以及生脂基因FASN和ACC1的表达,促进了FA的从头合成。共免疫沉淀和免疫印迹显示,RACK1与蛋白激酶B(AKT)相互作用,激活AKT/哺乳动物雷帕霉素靶标(mTOR)/SREBP1信号通路,促进FA合成。细胞增殖和凋亡实验表明,RACK1调控的FA合成是CC进展的关键。因此,RACK1通过AKT/mTOR/SREBP1信号通路促进脂质合成,从而促进CC细胞的生长。RACK1可能成为CC的治疗靶点。
{"title":"Combined spatially resolved metabolomics and spatial transcriptomics reveal the mechanism of RACK1-mediated fatty acid synthesis.","authors":"Lixiu Xu, Jinqiu Li, Junqi Ma, Ayshamgul Hasim","doi":"10.1002/1878-0261.13752","DOIUrl":"https://doi.org/10.1002/1878-0261.13752","url":null,"abstract":"<p><p>Lipid metabolism is altered in rapidly proliferating cancer cells, where fatty acids (FAs) are utilized in the synthesis of sphingolipids and glycerophospholipids to produce cell membranes and signaling molecules. Receptor for activated C-kinase 1 (RACK1; also known as small ribosomal subunit protein) is an intracellular scaffolding protein involved in signaling pathways. Whether such lipid metabolism is regulated by RACK1 is unknown. Here, integrated spatially resolved metabolomics and spatial transcriptomics revealed that accumulation of lipids in cervical cancer (CC) samples correlated with overexpression of RACK1, and RACK1 promoted lipid synthesis in CC cells. Chromatin immunoprecipitation verified binding of sterol regulatory element-binding protein 1 (SREBP1) to acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN) promoters. RACK1 enhanced de novo FA synthesis by upregulating expression of sterol regulatory element binding transcription factor 1 (SREBP1) and lipogenic genes FASN and ACC1. Co-immunoprecipitation and western blotting revealed that RACK1 interacted with protein kinase B (AKT) to activate the AKT/mammalian target of rapamycin (mTOR)/SREBP1 signaling pathway to promote FA synthesis. Cell proliferation and apoptosis experiments suggested that RACK1-regulated FA synthesis is key in the progression of CC. Thus, RACK1 enhanced lipid synthesis through the AKT/mTOR/SREBP1 signaling pathway to promote the growth of CC cells. RACK1 may become a therapeutic target for CC.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ability of cancer cells to change and adapt poses a critical challenge to identifying curative solutions. Tumor evolution has been extensively studied from a genetic perspective, to guide clinicians in selecting the most appropriate therapeutic option based on a patient's mutational profile. However, several studies reported that tumors can evolve toward more aggressive stages or become resistant to therapies without changing their genetic makeup. Indeed, several cell-intrinsic and cell-extrinsic mechanisms contribute to tumor evolution. In this viewpoint, I focus on how chromatin, epigenetic, and transcriptional changes contribute to tumor evolution, allowing cancer cells to transition to different cell states and bypass response to therapies. Although tumor nongenetic evolution is harder to trace and predict, understanding its principles might open new therapeutic opportunities.
{"title":"Nongenetic evolution of the tumor: from challenges to new therapeutic opportunities.","authors":"Elisa Oricchio","doi":"10.1002/1878-0261.13753","DOIUrl":"https://doi.org/10.1002/1878-0261.13753","url":null,"abstract":"<p><p>The ability of cancer cells to change and adapt poses a critical challenge to identifying curative solutions. Tumor evolution has been extensively studied from a genetic perspective, to guide clinicians in selecting the most appropriate therapeutic option based on a patient's mutational profile. However, several studies reported that tumors can evolve toward more aggressive stages or become resistant to therapies without changing their genetic makeup. Indeed, several cell-intrinsic and cell-extrinsic mechanisms contribute to tumor evolution. In this viewpoint, I focus on how chromatin, epigenetic, and transcriptional changes contribute to tumor evolution, allowing cancer cells to transition to different cell states and bypass response to therapies. Although tumor nongenetic evolution is harder to trace and predict, understanding its principles might open new therapeutic opportunities.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fleur M G Cornelissen, Zhaoren He, Edward Ciputra, Richard R de Haas, Ammarina Beumer-Chuwonpad, David Noske, W Peter Vandertop, Sander R Piersma, Connie R Jiménez, Cornelis Murre, Bart A Westerman
Glioblastoma (GB), the most common and aggressive brain tumor, demonstrates intrinsic resistance to current therapies, resulting in poor clinical outcomes. Cancer progression can be partially attributed to the deregulation of protein translation mechanisms that drive cancer cell growth. In this study, we present the translatome landscape of GB as a valuable data resource. Eight patient-derived GB sphere cultures (GSCs) were analyzed using ribosome profiling and messenger RNA (mRNA) sequencing. We investigated inter-cell-line differences through differential expression analysis at both the translatome and transcriptome levels. Translational changes post-radiotherapy were assessed at 30 and 60 min. The translation of non-coding RNAs (ncRNAs) was validated using in-house and public mass spectrometry (MS) data, whereas RNA expression was confirmed by quantitative PCR (qPCR). Our findings demonstrate that ribosome sequencing provides more detailed information than MS or transcriptional analyses. Transcriptional similarities among GSCs correlate with translational similarities, aligning with previously defined subtypes such as proneural and mesenchymal. Additionally, we identified a broad spectrum of open reading frame types in both coding and non-coding mRNA regions, including long non-coding RNAs (lncRNAs) and pseudogenes undergoing active translation. Translation of ncRNAs into peptides was independently confirmed by in-house data and external MS data. We also observed that translational regulation of histones (downregulated) and splicing factors (upregulated) occurs in response to radiotherapy. These data offer new insights into genome-wide protein synthesis, identifying translationally regulated genes and alternative translation initiation sites in GB under normal and radiotherapeutic conditions, providing a rich resource for GB research. Further functional validation of differentially expressed genes after radiotherapy is needed. Understanding translational control in GB can reveal mechanistic insights and identify currently unknown biomarkers, ultimately enhancing the diagnosis and treatment of this aggressive brain cancer.
{"title":"The translatome of glioblastoma.","authors":"Fleur M G Cornelissen, Zhaoren He, Edward Ciputra, Richard R de Haas, Ammarina Beumer-Chuwonpad, David Noske, W Peter Vandertop, Sander R Piersma, Connie R Jiménez, Cornelis Murre, Bart A Westerman","doi":"10.1002/1878-0261.13743","DOIUrl":"https://doi.org/10.1002/1878-0261.13743","url":null,"abstract":"<p><p>Glioblastoma (GB), the most common and aggressive brain tumor, demonstrates intrinsic resistance to current therapies, resulting in poor clinical outcomes. Cancer progression can be partially attributed to the deregulation of protein translation mechanisms that drive cancer cell growth. In this study, we present the translatome landscape of GB as a valuable data resource. Eight patient-derived GB sphere cultures (GSCs) were analyzed using ribosome profiling and messenger RNA (mRNA) sequencing. We investigated inter-cell-line differences through differential expression analysis at both the translatome and transcriptome levels. Translational changes post-radiotherapy were assessed at 30 and 60 min. The translation of non-coding RNAs (ncRNAs) was validated using in-house and public mass spectrometry (MS) data, whereas RNA expression was confirmed by quantitative PCR (qPCR). Our findings demonstrate that ribosome sequencing provides more detailed information than MS or transcriptional analyses. Transcriptional similarities among GSCs correlate with translational similarities, aligning with previously defined subtypes such as proneural and mesenchymal. Additionally, we identified a broad spectrum of open reading frame types in both coding and non-coding mRNA regions, including long non-coding RNAs (lncRNAs) and pseudogenes undergoing active translation. Translation of ncRNAs into peptides was independently confirmed by in-house data and external MS data. We also observed that translational regulation of histones (downregulated) and splicing factors (upregulated) occurs in response to radiotherapy. These data offer new insights into genome-wide protein synthesis, identifying translationally regulated genes and alternative translation initiation sites in GB under normal and radiotherapeutic conditions, providing a rich resource for GB research. Further functional validation of differentially expressed genes after radiotherapy is needed. Understanding translational control in GB can reveal mechanistic insights and identify currently unknown biomarkers, ultimately enhancing the diagnosis and treatment of this aggressive brain cancer.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}