Pub Date : 2024-10-01Epub Date: 2024-08-22DOI: 10.1002/1878-0261.13711
{"title":"Expression of Concern: T-LAK cell-originated protein kinase (TOPK): an emerging prognostic biomarker and therapeutic target in osteosarcoma.","authors":"","doi":"10.1002/1878-0261.13711","DOIUrl":"10.1002/1878-0261.13711","url":null,"abstract":"","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2601"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459047/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142018045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-19DOI: 10.1002/1878-0261.13698
Melica Nourmoussavi Brodeur, Pier Selenica, Weining Ma, Sara Moufarrij, Christian Dagher, Thais Basili, Nadeem R Abu-Rustum, Carol Aghajanian, Qin Zhou, Alexia Iasonos, Lora H Ellenson, Britta Weigelt, M Herman Chui
Anti-HER2 therapy is indicated for erb-b2 receptor tyrosine kinase 2 (ERBB2)-amplified/overexpressing endometrial carcinoma (EC). Mutations constitute another mode of ERBB2 activation, but only rare ERBB2-mutated ECs have been reported. We sought to characterize the clinicopathologic and genetic features of ERBB2-mutated EC. From an institutional cohort of 2638 ECs subjected to clinical tumor-normal panel sequencing, 69 (2.6%) with pathogenic ERBB2 mutation(s) were identified, of which 11 were also ERBB2-amplified. The most frequent ERBB2 hotspot mutations were V842I (38%) and R678Q (25%). ERBB2 mutations were clonal in 87% of evaluable cases. Immunohistochemistry revealed low HER2 protein expression in most ERBB2-mutated ECs (0/1+ in 66%, 2+ in 27%); all 3+ tumors (7.3%) were also ERBB2-amplified. Compared to ERBB2-wildtype ECs (with or without ERBB2 amplification), ERBB2-mutated/non-amplified ECs were enriched for the microsatellite instability-high (MSI-H) and, to a lesser extent, DNA polymerase epsilon, catalytic subunit (POLE) molecular subtypes, and associated with high tumor mutational burden and low chromosomal instability. Survival outcomes were similar between patients with ERBB2-mutated/non-amplified versus wildtype EC, whereas ERBB2 amplification was associated with worse prognosis on univariate, but not multivariate, analyses. In conclusion, ERBB2 mutation defines a rare subgroup of ECs that is pathogenically distinct from ERBB2-wildtype and ERBB2-amplified ECs.
{"title":"ERBB2 mutations define a subgroup of endometrial carcinomas associated with high tumor mutational burden and the microsatellite instability-high (MSI-H) molecular subtype.","authors":"Melica Nourmoussavi Brodeur, Pier Selenica, Weining Ma, Sara Moufarrij, Christian Dagher, Thais Basili, Nadeem R Abu-Rustum, Carol Aghajanian, Qin Zhou, Alexia Iasonos, Lora H Ellenson, Britta Weigelt, M Herman Chui","doi":"10.1002/1878-0261.13698","DOIUrl":"10.1002/1878-0261.13698","url":null,"abstract":"<p><p>Anti-HER2 therapy is indicated for erb-b2 receptor tyrosine kinase 2 (ERBB2)-amplified/overexpressing endometrial carcinoma (EC). Mutations constitute another mode of ERBB2 activation, but only rare ERBB2-mutated ECs have been reported. We sought to characterize the clinicopathologic and genetic features of ERBB2-mutated EC. From an institutional cohort of 2638 ECs subjected to clinical tumor-normal panel sequencing, 69 (2.6%) with pathogenic ERBB2 mutation(s) were identified, of which 11 were also ERBB2-amplified. The most frequent ERBB2 hotspot mutations were V842I (38%) and R678Q (25%). ERBB2 mutations were clonal in 87% of evaluable cases. Immunohistochemistry revealed low HER2 protein expression in most ERBB2-mutated ECs (0/1+ in 66%, 2+ in 27%); all 3+ tumors (7.3%) were also ERBB2-amplified. Compared to ERBB2-wildtype ECs (with or without ERBB2 amplification), ERBB2-mutated/non-amplified ECs were enriched for the microsatellite instability-high (MSI-H) and, to a lesser extent, DNA polymerase epsilon, catalytic subunit (POLE) molecular subtypes, and associated with high tumor mutational burden and low chromosomal instability. Survival outcomes were similar between patients with ERBB2-mutated/non-amplified versus wildtype EC, whereas ERBB2 amplification was associated with worse prognosis on univariate, but not multivariate, analyses. In conclusion, ERBB2 mutation defines a rare subgroup of ECs that is pathogenically distinct from ERBB2-wildtype and ERBB2-amplified ECs.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2356-2368"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-25DOI: 10.1002/1878-0261.13679
Alexandre de Nonneville, Elsa Kalbacher, Francesco Cannone, Arnaud Guille, José Adelaïde, Pascal Finetti, Maria Cappiello, Eric Lambaudie, Giuseppe Ettore, Emmanuelle Charafe, Emilie Mamessier, Magali Provansal, François Bertucci, Renaud Sabatier
Endometrioid ovarian cancers (EOvC) are usually managed as serous tumors. In this study, we conducted a comprehensive molecular investigation to uncover the distinct biological characteristics of EOvC. This retrospective multicenter study involved patients from three European centers. We collected clinical data and formalin-fixed paraffin-embedded (FFPE) samples for analysis at the DNA level using panel-based next-generation sequencing and array-comparative genomic hybridization. Additionally, we examined mRNA expression using NanoString nCounter® and protein expression through tissue microarray. We compared EOvC with other ovarian subtypes and uterine endometrioid tumors. Furthermore, we assessed the impact of molecular alterations on patient outcomes, including progression-free survival (PFS) and overall survival (OS). Preliminary analysis of clinical data from 668 patients, including 86 (12.9%) EOvC, revealed more favorable prognosis for EOvC compared with serous ovarian carcinoma (5-year OS of 60% versus 45%; P = 0.001) driven by diagnosis at an earlier stage. Immunohistochemistry and copy number alteration (CNA) profiles of 43 cases with clinical data and FFPE samples available indicated that EOvC protein expression and CNA profiles were more similar to endometrioid endometrial tumors than to serous ovarian carcinomas. EOvC exhibited specific alterations, such as lower rates of PTEN loss, mutations in DNA repair genes, and P53 abnormalities. Survival analysis showed that patients with tumors harboring loss of PTEN expression had worse outcomes (median PFS 19.6 months vs. not reached; P = 0.034). Gene expression profile analysis confirmed that EOvC differed from serous tumors. However, comparison to other rare subtypes of ovarian cancer suggested that the EOvC transcriptomic profile was close to that of ovarian clear cell carcinoma. Downregulation of genes involved in the PI3K pathway and DNA methylation was observed in EOvC. In conclusion, EOvC represents a distinct biological entity and should be regarded as such in the development of specific clinical approaches.
{"title":"Endometrioid ovarian carcinoma landscape: pathological and molecular characterization.","authors":"Alexandre de Nonneville, Elsa Kalbacher, Francesco Cannone, Arnaud Guille, José Adelaïde, Pascal Finetti, Maria Cappiello, Eric Lambaudie, Giuseppe Ettore, Emmanuelle Charafe, Emilie Mamessier, Magali Provansal, François Bertucci, Renaud Sabatier","doi":"10.1002/1878-0261.13679","DOIUrl":"10.1002/1878-0261.13679","url":null,"abstract":"<p><p>Endometrioid ovarian cancers (EOvC) are usually managed as serous tumors. In this study, we conducted a comprehensive molecular investigation to uncover the distinct biological characteristics of EOvC. This retrospective multicenter study involved patients from three European centers. We collected clinical data and formalin-fixed paraffin-embedded (FFPE) samples for analysis at the DNA level using panel-based next-generation sequencing and array-comparative genomic hybridization. Additionally, we examined mRNA expression using NanoString nCounter® and protein expression through tissue microarray. We compared EOvC with other ovarian subtypes and uterine endometrioid tumors. Furthermore, we assessed the impact of molecular alterations on patient outcomes, including progression-free survival (PFS) and overall survival (OS). Preliminary analysis of clinical data from 668 patients, including 86 (12.9%) EOvC, revealed more favorable prognosis for EOvC compared with serous ovarian carcinoma (5-year OS of 60% versus 45%; P = 0.001) driven by diagnosis at an earlier stage. Immunohistochemistry and copy number alteration (CNA) profiles of 43 cases with clinical data and FFPE samples available indicated that EOvC protein expression and CNA profiles were more similar to endometrioid endometrial tumors than to serous ovarian carcinomas. EOvC exhibited specific alterations, such as lower rates of PTEN loss, mutations in DNA repair genes, and P53 abnormalities. Survival analysis showed that patients with tumors harboring loss of PTEN expression had worse outcomes (median PFS 19.6 months vs. not reached; P = 0.034). Gene expression profile analysis confirmed that EOvC differed from serous tumors. However, comparison to other rare subtypes of ovarian cancer suggested that the EOvC transcriptomic profile was close to that of ovarian clear cell carcinoma. Downregulation of genes involved in the PI3K pathway and DNA methylation was observed in EOvC. In conclusion, EOvC represents a distinct biological entity and should be regarded as such in the development of specific clinical approaches.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2586-2600"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-31DOI: 10.1002/1878-0261.13673
Ting Ting Cai, Christophe Desterke, Juan Peng, Jean Agnetti, Peixuan Song, Dalila Ouazib, Alexandre Dos Santos, Catherine Guettier, Didier Samuel, Ama Gassama-Diagne
Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and aggressive liver cancer with limited therapeutic options. Precise classification and immunotherapy are perspectives to improve the treatments. We reported the role of septin 9 in apico-basal polarity and epithelial-to-mesenchymal transition (EMT). Here, we aim to elucidate its role in iCCA. We analyzed single-cell transcriptomes from human iCCA tumor cells based on phenotype and cell state. Knockdown of the septin 9 gene (SEPT9) was done using small interfering RNA (siRNA); interferon-γ (IFN-γ) stimulation was performed using different CCA cells; gene expressions were analyzed by reverse transcription and real-time PCR analysis (RT-qPCR); and immunofluorescence, immunoblotting, and flow cytometry were performed to assess the expression of proteins. The differential distributions of SEPT9 and vimentin (VIM) gene expressions allowed us to define specific cellular trajectories of malignant cells and thus identified distinct clusters of iCCA cells. One cluster was enriched in VIM and extracellular-matrix (ECM) remodeling molecules, and another had high expression of SEPT9 and genes from the 'don't eat me' signal involved in immune escape. This antagonism between SEPT9 and VIM was confirmed by in vitro experiments. Notably, SEPT9 and 'don't eat me' gene expressions were inversely correlated to those of vimentin and the EMT markers. SEPT9 expression was upregulated by IFN-γ and SEPT9 knockdown decreased expression of 'don't eat me' signal genes and increased expression of mesenchymal markers. Cancer Cell Line Encyclopedia (CCLE) transcriptome database analyses confirmed that iCCA cells enriched in septin 9 exhibit epithelial-like features. This study revealed septin 9 as a cytoskeleton element of iCCA epithelial-like cells and a regulator of the immune system response. It also brings new insights into the enigmatic relationship between EMT and immune response. Notably, we decoded a potential mechanism that could sensitize patients to immunotherapies.
{"title":"Septin 9 expression regulates 'don't eat me' signals and identifies an immune-epithelial class of intrahepatic cholangiocarcinoma.","authors":"Ting Ting Cai, Christophe Desterke, Juan Peng, Jean Agnetti, Peixuan Song, Dalila Ouazib, Alexandre Dos Santos, Catherine Guettier, Didier Samuel, Ama Gassama-Diagne","doi":"10.1002/1878-0261.13673","DOIUrl":"10.1002/1878-0261.13673","url":null,"abstract":"<p><p>Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and aggressive liver cancer with limited therapeutic options. Precise classification and immunotherapy are perspectives to improve the treatments. We reported the role of septin 9 in apico-basal polarity and epithelial-to-mesenchymal transition (EMT). Here, we aim to elucidate its role in iCCA. We analyzed single-cell transcriptomes from human iCCA tumor cells based on phenotype and cell state. Knockdown of the septin 9 gene (SEPT9) was done using small interfering RNA (siRNA); interferon-γ (IFN-γ) stimulation was performed using different CCA cells; gene expressions were analyzed by reverse transcription and real-time PCR analysis (RT-qPCR); and immunofluorescence, immunoblotting, and flow cytometry were performed to assess the expression of proteins. The differential distributions of SEPT9 and vimentin (VIM) gene expressions allowed us to define specific cellular trajectories of malignant cells and thus identified distinct clusters of iCCA cells. One cluster was enriched in VIM and extracellular-matrix (ECM) remodeling molecules, and another had high expression of SEPT9 and genes from the 'don't eat me' signal involved in immune escape. This antagonism between SEPT9 and VIM was confirmed by in vitro experiments. Notably, SEPT9 and 'don't eat me' gene expressions were inversely correlated to those of vimentin and the EMT markers. SEPT9 expression was upregulated by IFN-γ and SEPT9 knockdown decreased expression of 'don't eat me' signal genes and increased expression of mesenchymal markers. Cancer Cell Line Encyclopedia (CCLE) transcriptome database analyses confirmed that iCCA cells enriched in septin 9 exhibit epithelial-like features. This study revealed septin 9 as a cytoskeleton element of iCCA epithelial-like cells and a regulator of the immune system response. It also brings new insights into the enigmatic relationship between EMT and immune response. Notably, we decoded a potential mechanism that could sensitize patients to immunotherapies.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2369-2392"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459040/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-08DOI: 10.1002/1878-0261.13688
Josep R Ferreres, Antònia Vinyals, Rafael Campos-Martin, Roderic Espín, Sebastian Podlipnik, Raquel Ramos, Esther Bertran, Cristina Carrera, Joaquim Marcoval, Josep Malvehy, Isabel Fabregat, Susana Puig, Àngels Fabra
Paired related homeobox 1 (PRRX1) is an inducer of epithelial-to-mesenchymal transition (EMT) in different types of cancer cells. We detected low PRRX1 expression in nevus but increased levels in primary human melanoma and cell lines carrying the BRAFV600E mutation. High expression of PRRX1 correlates with invasiveness and enrichment of genes belonging to the EMT programme. Conversely, we found that loss of PRRX1 in metastatic samples is an independent prognostic predictor of poor survival for melanoma patients. Here, we show that stable depletion of PRRX1 improves the growth of melanoma xenografts and increases the number of distant spontaneous metastases, compared to controls. We provide evidence that loss of PRRX1 counteracts the EMT phenotype, impairing the expression of other EMT-related transcription factors, causing dysregulation of the ERK and signal transducer and activator of transcription 3 (STAT3) signaling pathways, and abrogating the invasive and migratory properties of melanoma cells while triggering the up-regulation of proliferative/melanocytic genes and the expression of the neural-crest-like markers nerve growth factor receptor (NGFR; also known as neurotrophin receptor p75NTR) and neural cell adhesion molecule L1 (L1CAM). Overall, our results indicate that loss of PRRX1 triggers a switch in the invasive programme, and cells de-differentiate towards a neural crest stem cell (NCSC)-like phenotype that accounts for the metastatic aggressiveness.
{"title":"PRRX1 silencing is required for metastatic outgrowth in melanoma and is an independent prognostic of reduced survival in patients.","authors":"Josep R Ferreres, Antònia Vinyals, Rafael Campos-Martin, Roderic Espín, Sebastian Podlipnik, Raquel Ramos, Esther Bertran, Cristina Carrera, Joaquim Marcoval, Josep Malvehy, Isabel Fabregat, Susana Puig, Àngels Fabra","doi":"10.1002/1878-0261.13688","DOIUrl":"10.1002/1878-0261.13688","url":null,"abstract":"<p><p>Paired related homeobox 1 (PRRX1) is an inducer of epithelial-to-mesenchymal transition (EMT) in different types of cancer cells. We detected low PRRX1 expression in nevus but increased levels in primary human melanoma and cell lines carrying the BRAF<sup>V600E</sup> mutation. High expression of PRRX1 correlates with invasiveness and enrichment of genes belonging to the EMT programme. Conversely, we found that loss of PRRX1 in metastatic samples is an independent prognostic predictor of poor survival for melanoma patients. Here, we show that stable depletion of PRRX1 improves the growth of melanoma xenografts and increases the number of distant spontaneous metastases, compared to controls. We provide evidence that loss of PRRX1 counteracts the EMT phenotype, impairing the expression of other EMT-related transcription factors, causing dysregulation of the ERK and signal transducer and activator of transcription 3 (STAT3) signaling pathways, and abrogating the invasive and migratory properties of melanoma cells while triggering the up-regulation of proliferative/melanocytic genes and the expression of the neural-crest-like markers nerve growth factor receptor (NGFR; also known as neurotrophin receptor p75NTR) and neural cell adhesion molecule L1 (L1CAM). Overall, our results indicate that loss of PRRX1 triggers a switch in the invasive programme, and cells de-differentiate towards a neural crest stem cell (NCSC)-like phenotype that accounts for the metastatic aggressiveness.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2471-2494"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459042/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-16DOI: 10.1002/1878-0261.13636
Asli Küçükosmanoglu, Carolien L van der Borden, Lisanne E A de Boer, Roel Verhaak, David Noske, Tom Wurdinger, Teodora Radonic, Bart A Westerman
Genetic heterogeneity in tumors can show a remarkable selectivity when two or more independent genetic events occur in the same gene. This phenomenon, called composite mutation, points toward a selective pressure, which frequently causes therapy resistance to mutation-specific drugs. Since composite mutations have been described to occur in sub-clonal populations, they are not always captured through biopsy sampling. Here, we provide a proof of concept to predict composite mutations to anticipate which patients might be at risk for sub-clonally driven therapy resistance. We found that composite mutations occur in 5% of cancer patients, mostly affecting the PIK3CA, EGFR, BRAF, and KRAS genes, which are common precision medicine targets. Furthermore, we found a strong and significant relationship between the frequencies of composite mutations with commonly co-occurring mutations in a non-composite context. We also found that co-mutations are significantly enriched on the same chromosome. These observations were independently confirmed using cell line data. Finally, we show the feasibility of predicting compositive mutations based on their co-mutations (AUC 0.62, 0.81, 0.82, and 0.91 for EGFR, PIK3CA, KRAS, and BRAF, respectively). This prediction model could help to stratify patients who are at risk of developing therapy resistance-causing mutations.
{"title":"Oncogenic composite mutations can be predicted by co-mutations and their chromosomal location.","authors":"Asli Küçükosmanoglu, Carolien L van der Borden, Lisanne E A de Boer, Roel Verhaak, David Noske, Tom Wurdinger, Teodora Radonic, Bart A Westerman","doi":"10.1002/1878-0261.13636","DOIUrl":"10.1002/1878-0261.13636","url":null,"abstract":"<p><p>Genetic heterogeneity in tumors can show a remarkable selectivity when two or more independent genetic events occur in the same gene. This phenomenon, called composite mutation, points toward a selective pressure, which frequently causes therapy resistance to mutation-specific drugs. Since composite mutations have been described to occur in sub-clonal populations, they are not always captured through biopsy sampling. Here, we provide a proof of concept to predict composite mutations to anticipate which patients might be at risk for sub-clonally driven therapy resistance. We found that composite mutations occur in 5% of cancer patients, mostly affecting the PIK3CA, EGFR, BRAF, and KRAS genes, which are common precision medicine targets. Furthermore, we found a strong and significant relationship between the frequencies of composite mutations with commonly co-occurring mutations in a non-composite context. We also found that co-mutations are significantly enriched on the same chromosome. These observations were independently confirmed using cell line data. Finally, we show the feasibility of predicting compositive mutations based on their co-mutations (AUC 0.62, 0.81, 0.82, and 0.91 for EGFR, PIK3CA, KRAS, and BRAF, respectively). This prediction model could help to stratify patients who are at risk of developing therapy resistance-causing mutations.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2407-2422"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459034/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-26DOI: 10.1002/1878-0261.13687
Mary C Clark, Rongze Olivia Lu, Winson S Ho, Matheus Henrique Dias, René Bernards, Stephen J Forman
Immune checkpoint blockade has emerged as a potent new tool in the war on cancer. However, only a subset of cancer patients benefit from this therapeutic modality, sparking a search for combination therapies to increase the fraction of responding patients. We argue here that inhibition of protein phosphatase 2A (PP2A) is a promising approach to increase responses to immune checkpoint blockade and other therapies that rely on the presence of tumor-reactive T cells. Inhibition of PP2A increases neoantigen expression on tumor cells, activates the cGAS/STING pathway, suppresses regulatory T cells, and increases cytotoxic T cell activation. In preclinical models, inhibition of PP2A synergizes with immune checkpoint blockade and emerging evidence indicates that patients who have tumors with mutations in PP2A respond better to immune checkpoint blockade. Therefore, inhibition of PP2A activity may be an effective way to sensitize cancer cells to immune checkpoint blockade and cell-based therapies using tumor-reactive T cells.
免疫检查点阻断疗法已成为抗击癌症的有力新工具。然而,只有一小部分癌症患者能从这种治疗方式中获益,这引发了人们对联合疗法的探索,以提高应答患者的比例。我们在此指出,抑制蛋白磷酸酶2A(PP2A)是一种很有前景的方法,可提高对免疫检查点阻断疗法和其他依赖于肿瘤反应性T细胞存在的疗法的反应。抑制 PP2A 会增加肿瘤细胞上新抗原的表达、激活 cGAS/STING 通路、抑制调节性 T 细胞并增加细胞毒性 T 细胞的活化。在临床前模型中,抑制 PP2A 可与免疫检查点阻断产生协同作用,而且新的证据表明,PP2A 发生突变的肿瘤患者对免疫检查点阻断的反应更好。因此,抑制 PP2A 的活性可能是使癌细胞对免疫检查点阻断和使用肿瘤反应 T 细胞的细胞疗法敏感的一种有效方法。
{"title":"A combination of protein phosphatase 2A inhibition and checkpoint immunotherapy: a perfect storm.","authors":"Mary C Clark, Rongze Olivia Lu, Winson S Ho, Matheus Henrique Dias, René Bernards, Stephen J Forman","doi":"10.1002/1878-0261.13687","DOIUrl":"10.1002/1878-0261.13687","url":null,"abstract":"<p><p>Immune checkpoint blockade has emerged as a potent new tool in the war on cancer. However, only a subset of cancer patients benefit from this therapeutic modality, sparking a search for combination therapies to increase the fraction of responding patients. We argue here that inhibition of protein phosphatase 2A (PP2A) is a promising approach to increase responses to immune checkpoint blockade and other therapies that rely on the presence of tumor-reactive T cells. Inhibition of PP2A increases neoantigen expression on tumor cells, activates the cGAS/STING pathway, suppresses regulatory T cells, and increases cytotoxic T cell activation. In preclinical models, inhibition of PP2A synergizes with immune checkpoint blockade and emerging evidence indicates that patients who have tumors with mutations in PP2A respond better to immune checkpoint blockade. Therefore, inhibition of PP2A activity may be an effective way to sensitize cancer cells to immune checkpoint blockade and cell-based therapies using tumor-reactive T cells.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":"2333-2337"},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459031/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141458070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ewing sarcoma, an aggressive pediatric cancer, is driven by the EWS::FLI1 fusion protein, which disrupts gene expression by hijacking the BAF chromatin remodeling complex. Central to this mechanism is the formation of biomolecular condensates, mediated by the prion-like domains (PrLDs) of EWS and ARID1A, a core BAF subunit. ARID1A serves as a critical interface between EWS::FLI1 and the BAF complex, with its condensate-forming ability essential for the aberrant gene expression that drives tumor growth. The loss of condensate-competent ARID1A significantly impairs tumor progression, identifying it as a potential therapeutic target. However, targeting condensate formation is challenging due to the transient nature of the interactions involved, complicating the development of effective inhibitors. This work underscores the importance of further investigation into therapeutic strategies aimed at disrupting condensate formation in Ewing sarcoma and other related malignancies.
{"title":"Hijacking the BAF complex: the mechanistic interplay of ARID1A and EWS::FLI1 in Ewing sarcoma.","authors":"Erich J Sohn, David S Libich","doi":"10.1002/1878-0261.13742","DOIUrl":"10.1002/1878-0261.13742","url":null,"abstract":"<p><p>Ewing sarcoma, an aggressive pediatric cancer, is driven by the EWS::FLI1 fusion protein, which disrupts gene expression by hijacking the BAF chromatin remodeling complex. Central to this mechanism is the formation of biomolecular condensates, mediated by the prion-like domains (PrLDs) of EWS and ARID1A, a core BAF subunit. ARID1A serves as a critical interface between EWS::FLI1 and the BAF complex, with its condensate-forming ability essential for the aberrant gene expression that drives tumor growth. The loss of condensate-competent ARID1A significantly impairs tumor progression, identifying it as a potential therapeutic target. However, targeting condensate formation is challenging due to the transient nature of the interactions involved, complicating the development of effective inhibitors. This work underscores the importance of further investigation into therapeutic strategies aimed at disrupting condensate formation in Ewing sarcoma and other related malignancies.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Precise regulation of gene expression is essential for proper development and the maintenance of homeostasis in organisms. Studies have shown that some transcriptional regulatory proteins influence gene expression through the formation of dynamic, locally concentrated assemblies known as condensates, while dysregulation of transcriptional condensates was associated with several cancers, such as Ewing sarcoma and AML [Wang Y et al. (2023) Nat Chem Biol 19, 1223-1234; Chandra B et al. (2022) Cancer Discov 12, 1152-1169]. Mutations in the histone acetylation "reader" eleven-nineteen-leukemia (ENL) have been shown to form discrete condensates at endogenous genomic targets, but it remains unclear how ENL mutations drive tumorigenesis and whether it is correlated with their condensate formation property. Liu et al. now show, using a conditional knock-in mouse model, that ENL YEATS domain mutation is a bona fide oncogenic driver for AML. This mutant ENL forms condensates in hematopoietic stem/progenitor cells at the genomic loci of key leukemogenic genes, including Meis1 and Hoxa cluster genes, and disrupting condensate formation via mutagenesis impairs its chromatin and oncogenic function. Furthermore, they show that small-molecule inhibition of the acetyl-binding activity displaces ENL mutant condensates from oncogenic target loci, and this inhibitor significantly impairs the onset and progression of AML driven by mutant ENL in vivo.
基因表达的精确调控对于生物体的正常发育和维持平衡至关重要。研究表明,一些转录调控蛋白通过形成动态的、局部集中的集合体(称为凝聚体)来影响基因表达,而转录凝聚体的失调与多种癌症有关,如尤文肉瘤和急性髓细胞性白血病[Wang Y et al. (2023) Nat Chem Biol 19, 1223-1234;Chandra B et al. (2022) Cancer Discov 12, 1152-1169]。组蛋白乙酰化 "阅读器 "十一-十九-白血病(ENL)突变已被证明可在内源性基因组靶点形成离散的凝集物,但ENL突变如何驱动肿瘤发生以及是否与其凝集物形成特性相关仍不清楚。Liu等人现在利用条件性基因敲入小鼠模型表明,ENL YEATS结构域突变是急性髓细胞性白血病的真正致癌驱动因子。这种突变的ENL在造血干细胞/祖细胞中关键致白血病基因(包括Meis1和Hoxa簇基因)的基因组位点上形成凝集物,通过诱变破坏凝集物的形成会损害其染色质和致癌功能。此外,他们还发现,抑制乙酰结合活性的小分子抑制剂可将ENL突变凝集素从致癌靶基因座上置换下来,这种抑制剂可显著抑制突变ENL驱动的AML在体内的发生和发展。
{"title":"ENL mutation and AML: a new model that reveals oncogenic condensate's function in leukemogenesis.","authors":"Zhong Fan, Yanan Jiang, Xiaotian Zhang","doi":"10.1002/1878-0261.13731","DOIUrl":"https://doi.org/10.1002/1878-0261.13731","url":null,"abstract":"<p><p>Precise regulation of gene expression is essential for proper development and the maintenance of homeostasis in organisms. Studies have shown that some transcriptional regulatory proteins influence gene expression through the formation of dynamic, locally concentrated assemblies known as condensates, while dysregulation of transcriptional condensates was associated with several cancers, such as Ewing sarcoma and AML [Wang Y et al. (2023) Nat Chem Biol 19, 1223-1234; Chandra B et al. (2022) Cancer Discov 12, 1152-1169]. Mutations in the histone acetylation \"reader\" eleven-nineteen-leukemia (ENL) have been shown to form discrete condensates at endogenous genomic targets, but it remains unclear how ENL mutations drive tumorigenesis and whether it is correlated with their condensate formation property. Liu et al. now show, using a conditional knock-in mouse model, that ENL YEATS domain mutation is a bona fide oncogenic driver for AML. This mutant ENL forms condensates in hematopoietic stem/progenitor cells at the genomic loci of key leukemogenic genes, including Meis1 and Hoxa cluster genes, and disrupting condensate formation via mutagenesis impairs its chromatin and oncogenic function. Furthermore, they show that small-molecule inhibition of the acetyl-binding activity displaces ENL mutant condensates from oncogenic target loci, and this inhibitor significantly impairs the onset and progression of AML driven by mutant ENL in vivo.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.
{"title":"Rodent models of tumours of the central nervous system.","authors":"Sebastian Brandner","doi":"10.1002/1878-0261.13729","DOIUrl":"https://doi.org/10.1002/1878-0261.13729","url":null,"abstract":"<p><p>Modelling of human diseases is an essential component of biomedical research, to understand their pathogenesis and ultimately, develop therapeutic approaches. Here, we will describe models of tumours of the central nervous system, with focus on intrinsic CNS tumours. Model systems for brain tumours were established as early as the 1920s, using chemical carcinogenesis, and a systematic analysis of different carcinogens, with a more refined histological analysis followed in the 1950s and 1960s. Alternative approaches at the time used retroviral carcinogenesis, allowing a more topical, organ-centred delivery. Most of the neoplasms arising from this approach were high-grade gliomas. Whilst these experimental approaches did not directly demonstrate a cell of origin, the localisation and growth pattern of the tumours already pointed to an origin in the neurogenic zones of the brain. In the 1980s, expression of oncogenes in transgenic models allowed a more targeted approach by expressing the transgene under tissue-specific promoters, whilst the constitutive inactivation of tumour suppressor genes ('knock out')-often resulted in embryonic lethality. This limitation was elegantly solved by engineering the Cre-lox system, allowing for a promoter-specific, and often also time-controlled gene inactivation. More recently, the use of the CRISPR Cas9 technology has significantly increased experimental flexibility of gene expression or gene inactivation and thus added increased value of rodent models for the study of pathogenesis and establishing preclinical models.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}